Complex Event Processing
with Triceps CEP v2.1

Developer's Guide

Sergey A. Babkin



Complex Event Processing with Triceps CEP v2.1 : Developer's Guide

Sergey A. Babkin
Copyright © 2014 Sergey A. Babkin

All rights reserved.
Thismanual is apart of the Triceps project. It is covered by the same Triceps version of the LGPL v3 license as Triceps itself.
The author can be contacted by e-mail at <babkin@users.sf.net> or <sah123@hotmail.com>.

Many of the designations used by the manufacturers and sellersto distinguish their products are claimed as trademarks. Where those designations appear
in this manual, and the author was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this manual, the author assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.




Table of Contents

[ (= =0 PP S O PTTPPPPPT T Xi
1. ADOUL the MENUEL ......ooee ettt e et e e e Xi
2. SOIME COMOEPLS ..eveeitieeti ettt e et ettt et ettt e e ettt e e et e e et e e e et et et et et e e e e e et e et n et e e et et neeen e ennn s Xi
L1 THE FIEIA OF CEP ...ttt ettt e e et e et et e et et e e e e na s 1
L1 WHEE IS ThE CEP? ..o ettt e e e e e e 1
1.2, TRE USES OF CEP ...ttt e et e e e et e ettt e ettt e e e et e e e e ba s 2
1.3, SUrVEYing the CEP 8NGSTADE ... .cccetiieeiii ettt ettt e et e et e e e et eeeenen s 2
1.4. Were not in 1950S @NY MOFE, OF @€ WE? ......uieueeit et et e et e e et e e et e e e tt e e e e e et e e et e ean e ean e aennaeeannas 3
A 0= I = oL ST UPPPTTRPUPPIN 7
P o= = o (o I | ST P PP UPPPTPRUPPIN 7
A o 1= o TR Y o g o | 8
N =W ] o 0 To B I T = o TP OO UPPPTTRUPPIN 11
3.1, DOWNIOAOING TTICEDS ... eeeetti ettt ettt ettt ettt ettt ettt e et et e ettt e et e b e et e b e e e et 11
3.2. The referenCe ENVITONIMENT .......coiii ittt e et e et et e e et e e e e et e e e eenaes 11
3.3 . ThE DESIC DU ... ettt et e e et e e e e 12
3.4. BUilding the dOCUMENTELION ..........iiiiii ettt e et e e ettt e e ettt e e e e et e e e enn e eeen 12
3.5. Running the examples and SIMPIE PrOOraMS .........iieurieieii ettt e e eeeanns 13
3.6. LOCAIE UEPENTEINCY ....eeetieieit ettt ettt ettt e ettt et e et e et e e e eaaa s 14
3.7. Installation Of the Perl THOrary ............i i et 14
3.8. Instalation Of the CH+ lIrary ... e 15
3.9. Disambiguation Of the C THDIaIY ......c..uuiiiiii e 16
3.10. Build CONfiQUIation SEELINGS ......vueeeertneeeiit ettt ettt e et e et e e et et e et et e et ebt e e eerb e eeeenaaeeees 17
A, APl FUNAMENTAIS .....eeete ettt ettt e et et e et et e e et et e e et et e e e e et e e e e ena s 19
4.1, LangUagES AN TAYENS ... e 19
4.2. Errors, deaths and CONTESSIONS .. ...cuiiriitiitii e et e et et e e et e e et e eaeeaeeneeens 19
4.3. Memory management fUNCaMENTAIS ..........cviiueiieii e e 20
4.4. Code references and SNIPPELS .......coeuuu ittt et et e 21
A5, TTICEPS CONSIAIES ... eevtueeeitt ettt e ettt e ettt e ettt e ettt e ettt e e ettt e ettt e et e bb e et e et e e e e e nb e e e enaa s 22
4.6. Printing the ODJECT CONTENTS ......uuiiiiii et e e ettt e e e et e e e ent e eeenes 23
A.7. The HUNQAITAN NOBLION ......eeeiteieitt ettt ettt e et et e e e et e e e e et e e e enne e eeennans 24
4.8. The Perl libraries and eXaMPIES ...ttt e e e e s 25
LT {0 T S PRSPPI 27
I IS 110 L= Y o= TP TPPPPTPUPPPIN 27
5.2, ROW TYPES .. ie ittt ettt ettt e et et e et 27
5.3. ROW TYPES EQUIVBIEINCE ... .ttt ettt et e et e et e et e e e e an e e e eenans 29
5. ROWS ..ttt e et e et et et e e e 30
6. LabDE!S and ROW OPEIGLIONS .......tuieiietieeeeet ettt et ettt e e et e et et et e et e et et r e et e e r e e e et e e e e ene e eeenens 33
B.1. LADEIS DBSICS ...oeveiiiii e 33
6.2, LaADEl CONSITUCTION ...ttt ettt ettt e et e et et e ettt e e e et e e e era s 34
6.3. Other 1ahel MELNOOS .......coeiiiiee et e e e e s 35
B.4. ROW OPEIBIIONS ....eetteeeeti ettt ettt ettt e e ettt ettt et ettt et ettt e e et ettt e e e ettt e e eebt e e e eebb e eeeeneaeeees 37
B.5. OPICOTES ....eeeti ettt ettt ettt et e et e e e e e e eaaas 38
S o 11= o (U] 110 To [PPSR 41
7.1. Introduction t0 the SChEAUIING ........euu et e s 41
7.2. Comparative scheduling in the various CEP SYStEMS ..........oiiiiiiiiiiiiii e 41
7.3. EXECULION UNIT DBSICS ...oeveiiiiiii et et e e e e e e e e eaans 41
A 1 = £ T PP UPPUPPN 43
7.5. Error handling during the EXECULTON ..........cooiuiiiiiiii e 44
7.6, NO BUNAIING ...t ettt ettt ettt e e e na e e eneans 45
FAT A el oo o e o I Lo o o TP PPPPTTT 46
7.8. THE MEIN TOOP ...ttt ettt e ettt e et e e et e et e e e eae e e eenens 51
7.9. Main [00P WIth @ SOCKEL .......eiiiiiie et e et e e 54
7.10. TraCing the @XECULION .....c.uuueeeiie ettt ettt e e et e e et e e et et e e e e et e e et e b e e et et e e e eban s 63




7.11. The gritty details of Triceps SChedUIING ........ccouniiii e e 69

7.12. The gritty details of Triceps [00p SChedUlING ..........covuiiiii i 72
8 R (= o = Yo oo g 11 (o) PP 74
8. MEMOIY IMANAGEIMENE ... euii ittt et e e e e e et e et e e e et e e e e e e e e e e e e e e e e e en 77
T = = 0o 0y - 77
8.2. Clearing Of the 1aEIS .. .ceu e 78
8.3. The ClEAriNgG IADEIS ... ceii e e e e e e e e e e e et 79
LS I =SSP 81
N 1= T Lo T = o = PP 81
0.2, TADIES @NA TA0EIS ...ee e 82
9.3. Basic iteration through the table ...........ooui i e 85
LS 1= T i o = T o 85
9.5. A closer 100k at the ROWHANAIES .........uuiiiiiii e 86
9.6. A WINAOW 1S @ FIFO .ouiiiiiiiiei i e e et e ettt e e e et e e e et e e e e eran s 88
0.7. SECONUAIY INUEXES .. cevueiiieeii e e e e e e e e e et e et e e et e et et e e et e e et e e e ta e e aa e e at e e st e astnaersneeennaees 92
SR RO 0 = o [T To = PP 95
S S o 11 (o [T oo PP 95
9.10. SIMPIEOTAErEA INAEX ...vvuiiieiii et e e e e e e e e e e e e et e e et r e et eeta e e et e esaneeeeas 98
0 B I 0 TC N 1 o (ot = PP 101
9.12. Table and indeX tyPe INFOSPECLION .......uvuiiii i e e e e e e e e e e e et e e e e ean s 112
LS NG T I o T= ooV 1 - Y/ PPN 116
LS 0 B I o LT =0 oL o NS 116
O 1= 0L (N 117
O IR @ a0 = = A= 1010 LU =4 117
O 1= 0410 = (A7 T = £/ PPN 118
10.3. SIMPIE WIapPEr TEMPIBEES ... civt e ee e e e e e e e e e e et e et e e et e e et e e et e e et e e et e eetn e eanaees 119
10.4. Templates of interconNECted COMPONENES ... ....uiiiiieiiiieeieee et e e e e e e e e e et e e et e et e e aaeeaens 119
O 1= 0010 = (= o 1 o =P 124
10.6. Code generation in the tEMPIAES .........couiiiiii e e e 129
10.7. Result projection in the tEMPIAES .........oiiiiii e e e e e e e e e e aaas 136
10.8. Error reporting in the teMPIateS ........co.uiiiii e 141
N0 o | = o (o o 143
11.1. The UbIQUITOUS VWA ...t e e e e e e e e et e et e e et e e et e e e e eaaaees 143
A V= g TU T o o | (=0 = o 145
11.3. Introducing the Proper agQregalion ...........ccuueeiiieei e e e e e e e e e e e e e et e e et e e et e e et e eaaeeeanns 149
11.4. Tricks with aggregation on a Sliding WINAOW ........cccuiiiiiiiiiiieiie e e e e e e e e e aaes 153
11.5. OptiMIZEA DELETES .. .cciiiiiiiiiii ettt e e s e e et n e e et e e e e et e e e e et e e e e et eeas 157
SR Ao o [ A== o o = = 1 Lo 159
11.7. Computation fUNCLION @rQUMENES .......uuiiiiieii i eeie e e e e e e e et e e e e e e e et e e et e e s e e et e e et e eenaas 163
11.8. USING MUILIPIE INOEXES ...ovniiiciii et e e e e e e e e et e e e e e e et e e et e e eanaas 165
IS TS T 0T o =70 o | =0 = (o 169
11.10. The guts Of SIMPIEAGOrEIAON .. ..uuiiie e e et e e e e e e e e et e e et e e et e s et e e st e e et s eeanaeaanaees 173
22 o 1 PSP 181
N T o1 R = S 181
2 o 1= o o1 181
12.3. The lookup join, done MaNUEITY ........c..uiiiiiiiiiii e e e e e et e e e e e aaaees 182
12.4. The LOOKUPJOIN tEBMPIALE ... c.veiii e e e e e e e e et e e et e e e eanaas 184
12.5. Manual iteration With LOOKUPJOIN ........uuiiiiiiii e e e e e e e e e e et e et e e ea e e eanees 189
12.6. The key fields Of LOOKUPJIOIN .. ...uuiieeiiiieii e e e e e et e e e e e e e e e e e e et s e e e et eeaa e e aaneeeanss 190
12.7. A Peek iNSIAe LOOKUDPIOIN . ..uuiiiie et iei et e e e e e e e e e et r e et e e e e e et e e et e eeanaas 192
12.8. JOINTWO JOINS TWO tADIES .. ..uuiii e e e e e e e e e et e e et eeaaas 195
12.9. The key field duplication iN JOINTWO .......cvuueiiiiee e e e e e e e e e e e e e e e et e e e eaannas 203
12.10. The override optioNS iN JOINTWO ......iiutiiiii e e e e e e e e e e e e et e e e e et e e et e eeannas 204
12.11. JoinTWO iNPUE @VENE FIITEITNG ....ieee it e e e e e e e e eeen 204
12.12. Self-join done With JOINTWO ......ceuniiii i e e e e e e e e e e e e e e e et e e et e e et e e aneeaneees 208

Complex Event Processing with Triceps CEP v2.1



12.13. Self-join done MANUAITY .........iiiiieie e e e 212

12.14. Self-join done With @ LOOKUPJOIN .. ...uuiiii it e e e e e e e e e e e e e et e e et e e e e eanaeeeen 214
12.15. A glimpse inside JoinTwo and the hidden options of LOOKUPJOIN ............oeeviiiiiiiiiiiieiiii e 216
G T 0 S o 0o o P 221
13.1. Time-limited PrOPagatioN .......ccuuneiiiiei e e et e e e e e e e e e e e e e e e et e e et e e et eeaa e e et e eeaneaeanaes 221
T = oo (Yo U oo = (- 227
13.3. The general 1SSUES Of tiME PrOCESSING .. cvvuuiiineiii et et e e e e e e e et e e e e e e e et e e et e e ean e eaaeeanneeannns 230
14. The other templateS and SOIULIONS ........uuiiiiiiii e e e e e e e e e e et e et e e et e e et e e etaeeeanaees 233
14.1. The dreaded GIamMONG ...........iiiiiiiiie e et e et e e et e e e aaanr e e e et neeeesnnns 233
14.2. CollaPSEA UPUBIES ... cevueiiiieeii ettt e e e e e e e e e e e e et e e et e e et e e aa e e et e e et eeaneeaes 237
14.3. Large deletes in SMall ChUNKS ..........iiiiiii e e e e e e e e e e aaaees 244
IS = o T g To 0 Tox o 249
15.1. Introduction to Streaming FUNCLIONS ..........uiiiii i e e e e e e e e eanas 249
15.2. Streaming functions by example, another version of Collapse ........cccouvviviiiiiiii i 251
15.3. Collapse with grouping by key with streaming fUNCLIONS ............ccoiiiiiiiiii e 253
15.4. Table-based tranglation with streaming fUNCLIONS ..........cc.uiiiiiiiiii e, 256
15.5. Streaming fUNCLIONS @N0 O0PS ... .ccvuiiiiiieiii e e e e e e e e e e e e e et e et e eaaeenen 259
15.6. Streaming functions and PIPEIINES ........couuiiiiiiii e e 262
15.7. Streaming fUNCLions and tablES ..........ciiiniiii i 266
15.8. Streaming functions and temMpPlate rESUITS ........cc.uiiiiiii e 268
15.9. Streaming fUNCLIONS aNd FECUIMSION ......uiitiiii e e e e e e e e e e e e e et e e et e e st e e et e eaaaeeanaes 269
15.10. Streaming fUNCLiONS aNd MOIE FECUISION .......vvuieiiieeii ettt e et e e e e e e et e et e e et e e et e e et eeaaeeeanaas 273
15.11. Streaming functions and unit BOUNAAITES ...........uiiiiiiiiii e 283
15.12. The ways to call a streaming fUNCLION ...........coouiiiiiiii e e e aens 288
15.13. The gritty details of streaming functions scheduling .............coooiiiiiii i 288
W 1 T ="o [ Vo PP 289
16.1. Triceps MUltithreading CONCEPLS .......ivuniiii e e e e e e e e et e e et e eea e eeas 289
T I ST L= o B T (=0 = 290
16.3. Multithreaded PIPEIINE ... ...uiiii e e e e e e e e e e e e aaas 292
16.4. Object passing Between threadsS ..........coouiiiiii e 299
16.5. Threads and fil@ JESCIIPLOIS ... .cuu i e e e e e e e e et e et e e et eean s 303
16.6. Dynamic threads and fragments in @ SOCKEL SEIVEY .........oiiiiiiiiii i e 306
16.7. ThreadedServer implementation, and the details of thread harvesting .............cccoooviii i, 316
16.8. ThreadedClient, @ TrCEPS EXPECL ....cvuuiiiiiiiii et e e e e e e e aaaas 320
16.9. Thread main loop and timeouts in the guts of ThreadedClient .............ccoooeiiiiiiiin e, 323
16.10. The threaded dreaded diamond and data reordering ..........coovvuieiiiiiiiii e 325
17. TQL, Triceps Trivial QUENY LANQUAGE .....uuiiunieiiii i ee ettt e e e e e e e e e e et e e e e et e e st e e et e e et eeaneeanns 335
0 O 1 1 oo 0 ' T (o T 1 P 335
I O IS o - PP 335
17.3. TQL COMMANGS ....uiitieiiieiit ettt e e e et e e et e et e e e et e e e e e et e e et eeaa e e et e e et e e et aeeaa e ean s eaetneesnneeennns 336
17.4. TQL in asiNgle-threaded SEIVEr .......ouiiiii e e e aaaas 338
17.5. TQL in amulti-threaded SEIVEY ........ooiiiiiii e e e e e e e e e e e 340
oI g1 0= g = o= Y O T o 347
18, PEITOIMMANCE ... ettt ettt ettt e e et aa e et e et et et e et et e e e b e e et e e e ean s 357
19. Triceps Perl AP REFEIENCE ... .cou i e e e e e e e e et e et e e et e e et e e aaaaas 361
19.1. TOp-1eVEl FUNCLIONS FEFEIENCE .. ..ui i e e e e e e et e e e et e e aan s 361
19.2. Code hEIPErS FEfEIEINCE .....ivviiei e e et e e e et e e et e e et e e et e eaenaaes 363
19.3. Unit and FrameMark FEfEIENCE ......cveueii e e e 364
RS = o L= Y o L= €= (= 1 T 369
RS N 1 10 Lo Y oL (== (1 TS 371
19.6. AQQregalorTYPE FEfEIEINCE . .uuiteit e et e e e e e e e e e e e e e et e et e ea e an e e e e aneeenes 374
RIS Tl o [=TaNe o [0 = (0 g 1= (= (= o= Y 375
RS R I o L (= = oot PP 376
19.9. ROWHANAIE FEFEIENCE .. .ovviiieeiiiii et e e e e e e e e et e e e e st e e e e aan s 379
19.10. AQOregatorCONEXE FEFEIENCE ... ... i i e e e e e e e e e e e e e e et e e e eenes 380




S I I I O oL = = 1= S 382
R A T [ S (= = oot PP 384
e e T I o) (U N o T g T (== (= 1 P 385
19.14. JOINTWO FEFEIEINCE ...ievtiieeiiii ettt e ettt e e et e e et e e e ettt e e ettt e e e eatneeeett e e e aestnaeeeeaenneeaees 388
RS LT @0 =0 1S SN = = (= o= 391
RS 2T o= o I £ = = oot PP 392
19.17. FNRELUIMN FEFEIBINCE ... . iet ettt ettt et e et e et e e et r et eb e e et e e et aeean e eanas 393
19.18. FNBINAING FEFEIENCE ... ceviiiii e e e e e e e e e et e e st e e et e e aaeeaanas 395
19.19. AULOFNBING FEFEIENCE ..uu it e ettt e ettt e e e ettt e e ettt e e e e ebtn s e e e estnaeeaentnaaaees 399
S I O A o] I == = o= 400
19.20.1. ApP iNStANCE MANAJEMENT ....uuiieeeii i eii e et e e e e et e e et e e et e e et e e st e e et e e e e eat e e et eeaneenen 400

RS 2 T2 A o) I == o [ o) o 401

RS T2 O e TN o) o 10 0= o= o T o U 401
19.20.4. APP harvester CONIOl ..........iiiuiiiiii e e e e e e e e e e 401
19.20.5. APP StaE MEANAGEIMENT ... vuii ittt e e e e e e e e e e e e e e e e e e anaenns 402

RS T2 O NS TN o) o o | T a T e o Y 404

RS T A A o) = A 1101 1 405
19.20.8. File descriptor transfer through an APP «..c.ve e e e 406
19.20.9. APP DU ..o aaaa 407
RS T N g T= o I L (= 0o P PTPR 408
19.22. TriEalOWNES TEIEIENCE .. ciiiit ettt e et e e e ettt e e e e et s e e e et e e e eett e e e eebaaeaeees 410
19.22.1. TrieadOWNEr CONSLIUCLION ...vuuuuieieiiiieeeiti e e ettt e e ettt e e et e e e et e e e et e e e e et e e e e et e e e eerenaes 411
19.22.2. TrieadOwner general MEhOOS ..........covuiiiiii e 411
19.22.3. TrHEAHOWNES raiNS ...vuuieiiiiiee e e et e e et e e et e e e e et e e e et e e e e et e e e eren s 418
19.22.4. TrieadOwner file INtEITTUPLION .......oouniii e e e e e e e aans 418
19.22.5. TraCKEAFTIE ...vu ettt e et r e et n e e e et n e e e aaa e e eeaenns 419
19.23. INEXUS FEFEIEIICE ... eetieeeiee et ettt ettt ettt et e et e et e e et e e et r e et e e ebaa e e et e e eaeaeanns 420
TO.24. FACEL TEFEIBICE ... eiee ettt ettt et ettt e et e et e et e et e e et e e et e e et e e b e e e e ean s 421
19.25. AULODIEIN FEFEIEINCE .. oiiviiieeiiii ettt e e e e e et e e e et r e e e et e e e e st e e eeatnn s 423
20. TrCEPS CHt APl REFEIENCE .. ittt e e e e e e e e e et e e et e e et e e et eeaaeaaanaes 425
P20 I O N o B V1 oo (1 1 o o [T 425
20.2. The CONSE-NESS 1N CH it e e et e e et e e e et e e e e et e e e e tt e e e eat e eaeetn s 425
20.3. Memory management in the C++ APl and the Autoref reference..........ooooeeveviiiiinii e 426
20.4. The Many WayS t0 00 @ COPY ..vvuuiiiunieiiiieiiie e et et et e e et e e e e e et e e st e e et eeat e e et e eetneeean e et e eaaneeennnes 429
b0 SIS T 0T U 11T 431
20.6. Perl wrapping for the CH+ ODJECES .. ...uiiiiii i e e e e e e e e eaaas 432
20.7. Error reporting and Errors FEfEIENCE .........uiiiii e e e e e e e e e e e e e eaes 435
O T (v o 1o T = (= (= o= 439
20.9. INItialiZBHON TEMPIAEES .. cive i e e e e e e e e e e e et e e et e e et e e e et e e st e e et e eetneeeaneees 441
I O I o1 == = o= 442
20.11. SIMPIE tYPES FEFEIEINCE ...uiiie et e e e e e et e e et e et e e et e e et e e et e e e eeaanns 444
O (o YV Y/ o L= = [ (=0 To = R 445
20.13. ROW and ROWTEF TEFEIEINCE ....uuiieieiiii e e e e et e e et e e et 448
WO I o LY Y o I (= L= (= o= P 454
20.15. NAMESEL FEFEIEINCE ... . ieeneeii ettt et ettt e et et et e et e e et r e et e e an e e et e eenn e 457
20.16. INOEXTYPE FEFEIEINCE ..vuiitiiiii ettt e et et e e e e e e et e e e e e et e e et e e st e e e e e an e eetneeeaneeeaas 458
P A 1o O Q1= 1 = g o= PSP 460
20.18. FIfOINAEXTYPE FEFEIENCE . .ovuiciii e et e e e e e e e e e e e e e et e e et e e et e e et e e eeannns 460
20.19. HashediNdeXTYPE FEfEIENCE ....vuiiiii e e e e et e e e e et e e et e e et e e et e aaanaaes 461
20.20. SOrtediNEXTYPE FEFEIENCE . .ovui it eei et e e e e e e e e e e et e e et e e et e e et e e e et e e et e e et e eananes 461
20.21. OrderediNdeXTYPE FEFEIENCE .. ovuu it eei e e e e e e e e et e e et e e e e et e e et e et eeanans 471
O R €T o (o (= Q== (= 0+ YN 471
R I o L (= 1 1 g o= PPN 473
PO I T B T = W (1] 0 4 o PP 475
WO B S o YA = 1 (0] £ TP 476

Vi

Complex Event Processing with Triceps CEP v2.1



20.24. RowHandle and RINIEf FEFEIENCE .........uieiiii e e e e e et et e s s e aaaanas 476

20.25. AQQregator Classes FEFEIENCE ... ...uu it e e e e e e e et e e e e e e eaas 477
20.25.1. AQQregatorTYPE FEFEIEINCE .. ..uiee i e e e e e e e e e een 477
20.25.2. AQQregatorGadget FEFEIENCE .......iie e e e e e e e e e e e e e et e e e e aanas 480
20.25.3. AQQregalor FEfEIENCE .. ...t e e e e e e e 480
20.25.4. BasiCAQQregator TYPE FEFEIENCE ... cvve it e e e e e aaas 483
20.25.5. AQQEJAOr EXAMPIE ..uuiii it eee et e e e e e e e e 483

O I g T 1= = (= 0o ORI 488

20.27. UNIit TraCr TEIEIENCE .. oiivei ettt e et e e et e et e e e et e e e eaa e e e e eaan e eeennnns 491

2 R I o= B 1= 1 1 g o= PPN 493

20.29. ROWOP FEFBIBNCE ...euiiiii ettt e e et e e e e e et et e e et e et e e e et e e e e e e e eaneeaeees 495

O I = YA == = o 496

20.31. FrameMark FEfEIENCE .. ..euuun ittt e et e et et eaannn 497

20.32. ROWSELTYPE FEFEIEINCE .. ovniiiii e e et e e e e e et e e e e et e e e e e eneens 498

20.33. FNRELUMN FEFEIBINCE ... .ottt et et e et e e eaa s 499

20.34. FNBINAING FEFEIENCE .. .oviiiii e e e e e e e e e e e et e e et e e et e e aaaeeaaaas 502

20.35. ScopeFnBind and AUtOFNBING FEFEIENCE ......uiiii e 504

B0 LI AN o] I (= 1= (= 110 506

Py A I T=='o I (= = = 0ol PP 509

20.38. TriealOWNEN TEFEIEICE ...euvuuieiiiii e ettt e e e e e et e e et e e e et e e e e et n e e e eaaneeeenan e eeennnns 510

20.39. NEXUS FEFEIBICE ... ettt ettt e ettt et et e et e e et e e eb e e e e e eanas 514

20.40. FACEL FEFEIBINCE ... ettt ettt et et e e e e 514

20.40. AULODIGIN FEFEIEICE ...evvueieiii ettt e et e et e et e e et e e e ettt e e e et e e e e et e e e eett e e e eettaeeaentaaaaes 517

A0 S To U g2 (= (= (= [T 518

20.43. TrieadJOiN FEFEIEINCE ....vuuieieeii ettt et e e et e e e e et e e e e et e e e eett e e e eett e eeaereaeaees 519

O T (o U o LA = (= (=0 PP 520

20.45. BasiCPIhreat rEfErENCE ... ooiiii e ettt et e e 520

P I o L 1= s N o (=< PP 523

P2 N (= 1= T O PP 523

P I o (= 1= S P 523

P G o (= 1= S O P 524

P2 (= 1= 1S 0 0 PR 525

P2 IR o (= == S O PP 525

20.6. REEASE 0.99 ...ttt et e ettt e e e et e e et e e aataaaae 525

LT ] o] oo =" /RS 527
g0 1= PP 529

Vii



viii



List of Figures

6.1. Stateful elements wWith Chained 18DEIS. .......coouuiiiii e 34
7.1. Labels forming @ topologiCal 100P. .......ccouuuiiiiiiiie ettt 46
7.2. Proper CallS IN @ 100D, .. .eeuiieiiiii ettt ettt et et r e aee 73
O.1. DIrawWingS [EOBNM. ... .cceetiieieii ettt ettt e e et et e et et a e et eaaas 102
L O 0T 1o (=g 1Y o PP PPPPPTT 103
0.3, SHAIGNE NMESHING. ... eeeett ettt ettt ettt e et e et et et et et e e e e e e enaa s 104
9.4. begi n(), begi nl dx($i t A) and begi nl dx($i t B) work the samefor thistable. ....................ccevvnnnen. 105
9.5.findl dx($itA $rh) goesthrough A and then switches to the begi nl dx() 10giC. .........ccoevvvriiinnnnnn. 106
9.6. first O Groupl dX((Bi £ B,  Br N . e nennnenee 107
9.7.next G oupl dX(Bi B,  Brh) . oo 107
9.8. TWO TOP-1EVEl TNUEX TYPES. . etieeeiit ettt ettt ettt ettt e et et et e et e e e e ane e e ennans 109
9.9. A “primary” and “Secondary” INAEX TYPE. .....uu ittt ettt e e et e 110
9.10. TWO indeX tyPES NESLE UNUEN ONE. .....uiuiiiiti ettt e e et e e et e et et e e et et e e e e eaa s 111
14.1. The diamOond tOPOIOGY. ......ueeeetiee ittt ettt e e et e e et et e e et et e e e e et e e e e et e e e e era s 233
15.1. The difference between the function and Macro CallS. ..........coivuiiiiiiii e 249
15.2. The query patterns and Streaming fFUNCLIONS. ...........uuuiiiiii e eeaans 250
16.1. Triceps multithreaded apPIICALION. ..........uu.iiiiii et e e et e ettt e e et e e e eeba e eeens 289
16.2. Chat Server iNtErNal SIMUCKUIE. ...ttt ettt et et e et e e e et e e eaa s 307
17.1. Multithreaded TQL appliCation SIFUCLUIE. ........iieiii ettt e e et e e e 341
19.1. The use of IMMEAIBIE IMPOIT. .....coett ettt e et e e et e e et et e ettt e e e eett e e e eere e eeenes 416







Preface

1. About the manual

Before starting on the subject of the Triceps CEP itself, | want to tell some things about the organization of this manual.

It had grown quite large, and if it were printed on paper, | would have divided it into at least three volumes. But in the
electronic form it's more convenient as a single document, this way the cross-references between any parts of it work
seamlesgly.

The manual keeps living and growing together with Tricepsitself. Asthings changein Triceps, they change in the manual,
but sometimes it's difficult to track down and update all the mentions of the changed subject. I've been spending a huge
effort on tracking all such instances down but sometimes things slip through. Keep this in mind and don't be too scared
when some paragraph says something contradictory.

A known issue with thismanual isthat it tendsto describe the subjectsin the bottom-up fashion, starting from the low-level
detailsand then building up to the high-level concepts. Thisis partially because the manual has been growing together with
Triceps, which is being built from the ground up. And partialy it's because | like the details. When | read about a product,
| want to understand, how exactly it works. When | write, | want to convey thisinformation. | rewrote some of the chapters
to put the high-level descriptions up front. But it's a huge work that will take some time to complete for the whole manual.
In the meantime, 1'd rather not delay the releases for it, they've been already slowed alot by the documentation work. So it
will get better with time, and in the meantime, if you feel that some details are too much for you, feel freeto skip over them.

There are great many other improvements that can be done to the manual, and they will eventually be done. But my take
on itisthat it's better to have an imperfect manual now than a perfect one in some distant future. It had already been too
long in the works, writing the manual for the version 2.0 had taken awhole year, and then it has baan along time between
versions2.0 and 2.1.

2. Some concepts

When talking about the CEP programs, | often use the term “model”. What isamodel? It's basically a CEP program. And
more about the models and about what is the CEP itself is described in Chapter 1 .

Many of the examplesare built around the world of stock trading. In the modern times almost everyoneis probably familiar
with the basics of this area. But if case if you're not, let me tell the most fundamental thing needed for understanding the
examples: what is a symbol.

When the stock shares of some company are traded on an exchange, this company gets assigned a short identifier. This
identifier is known as the stock symbol for this company. This word is also often used to mean not just the identifier but
also the shares denoted by it. If a company has multiple classes of shares, each class would have its own symbol. And if a
company is traded on multiple exchanges, each exchange may have its own identifier for its shares. The options and other
derivative financia products also have their own symbols.

xi



Xii



Chapter 1. The field of CEP
1.1. What is the CEP?

CEP stands for the Complex Event Processing. If you look at Wikipedia, it has separate articles for the Event Stream
Processing and the Complex Event Processing. In redlity it's al the same thing, with the naming driven by the marketing.
| would not be surprised if someone invents yet another name, and everyone will start jumping on that bandwagon too.

In general a CEP system can be thought of as a black box, where the input events come in, propagate in some way through
that black box, and come out as the processed output events. There is also an idea that the processing should happen fast,
though the definitions of “fast” vary widely.

If we open the lid on the box, there are at least three ways to think of its contents:
* agpreadsheet on steroids
+ adataflow machine

» adatabase driven by triggers

Hopefully you've seen a spreadsheet before. The cells in it are tied together by formulas. Y ou change one cell, and the
machine goes and recal culates everything that depends on it. So does a CEP system. If we look closer, we can discern the
CEP engine (which is like the spreadsheet software), the CEP model (like the formulas in the spreadheet) and the state
(like the current values in the spreadsheet). An incoming event is like a change in an input cell, and the outgoing events
are the updates of the valuesin the spreadshest.

Only atypical CEP system is bigger: it can handle some very complicated formulas and many millions of records. There
actually are products that connect the Excel spreadsheets with the behind-the-curtain computations in a CEP system, with
the results coming back to the spreadsheet cells. Pretty much every commercial CEP provider has a product that does that
through the Excel RT interface. The way these models are written are not exactly pretty, but the results are, combining the
nice presentation of spreadsheets and the speed and power of CEP.

A dataflow machine, where the processing elements are exchanging messages, isyour typical academical ook at CEP. The
events represented as data rows are the messages, and the CEP model describes the connections between the processing
elements and their internal logic. This approach naturally maps to the multiprocessing, with each processing element be-
coming a separate thread. The hiccup is that the research in the dataflow machines tends to prefer the non-looped topol o-
gies. The loops in the connections complicate the things.

And many real-world relational databases already work very similarly to the CEP systems. They have the constraints
and triggers propagating these constraints. A trigger propagates an update on one table to an update on another table. It's
like aformulain a spreasheet or alogical connection in a dataflow graph. Y et the databases usually miss two things. the
propagation of the output events and the notion of being “fast”.

The lack of propagation of the output eventsis totally baffling to me: the RDBMS engines aready write the output event
stream as the redo log. Why not send them also in some generalized format, XML or something? Then people realize that
yes, they do want to get the output events and start writing some strange add-ons and aftermarket solutions like the log
scrubbers. Thishas been amystery to mefor some 15 years. | mean, how more obvious can it be? But nobody budges. Well,
with the CEP systems gaining popularity and the need to connect them to the databases, | think it will eventually grow on
the database vendors that a decent event feed is a competitive advantage, and | think it will happen somewhere soon.

The feeling of “fast” or lack thereof has to do with the databases being stored on disks. The growth of CEP has coincided
with the growth in RAM sizes, and the datais usually kept completely in memory. People who deploy CEP tend to want
the performance not of hundreds or thousands but hundreds of thousands events per second. The second part of “fast” is
connected with the transactions. In atraditional RDBMS a single event with all its downstream effects is one transaction.




Which is safe but may cause lots of conflicts. The CEP systems usually allow to break up the logic into multiple loose-
ly-dependent layers, thus cutting on the overhead.

1.2. The uses of CEP

Despite what Wikipedia says (and honestly, the Wikipedia articles on CEP and ESP are not exactly connected with reality),
the pattern detection is not your typical usage, by awide, wide margin. The typical usage is for the data aggregation: lots
and lots of individual events come in, and you want to aggregate them to keep a concise and consistent picture for the
decision-making. The actual decision making can be done by humans or again by the CEP systems. It may involve some
pattern recognition but usually even when it does, it doesn't look like patterns, it looks like conditions and joins on the
historical chains of events.

The usage in the cases | know of includes the ad-click aggregation, the decisions to make a market trade, the watching
whether the bank's end-of-day balance falls within the regulations, the choosing the APR for lending.

A related use would be for the general aert consoles. The data aggregation is what they do too. The last time | worked
with it up close (around 2006), the processing in the BMC Patrol and Nagios was just plain inadequate for anything useful,
and | had to hand-code the data collection and console logic. I've been touching this issue recently again at Google, and
apparently nothing has changed much since then. All the real monitoring is done with the systems devel oped in-house.

But the CEP would have been just the ticket. | think, the only reason why it has not been widespread yet is that the
commercial CEP licenses had cost alot. But with the all-you-can-eat pricing of Sybase, and with the Open Source systems,
thisis gradually changing.

Well, and there is al so the pattern matching. It has been lagging behind the aggregation but growing too.

1.3. Surveying the CEP langscape

What do we have in the CEP areanow? The sceneis pretty much dominated by Sybase (combining the former competitors
Aleri and Coral8) and StreamBase.

There seem to be two major approachesto the execution model. One was used by Aleri, another by Coral8 and StreamBase.
I'm not hugely familiar with StreamBase, but that's how it seems to me. Since I'm much more familiar with Coral8, I'll be
calling the second model the Coral8 model. If you find StreamBase substantially different, let me know.

The Aleri ideais to collect and keep al the data. The relational operators get applied on the data, producing the derived
data ("materialized views") and eventually the results. So, even though the Aleri models were usually expressed in XML
(though an SQL compiler was also available), fundamentally it's avery relational and SQLY approach.

This creates a few nice properties. All the steps of execution can be pipelined and executed in parallel. For persistence,
it's fundamentally enough to keep only the input data (what has been called BaseStreams and then SourceStreams), and al
the derived computations can be easily reprocessed on restart (it's funny but it turns out that often it's faster to read a small
state from the disk and recalculate the rest from scratch in memory than to load alarge state from the disk).

It also hasissues. It doesn't allow loops, and the procedural calculations aren't lways easy to express. And keeping all the
state requiresmore memory. Theissues of loopsand procedural computations have been addressed in Aleri by FlexStreams:
modul es that would perform the procedural computationsinstead of relational operations, written in SPLASH — avaguely
C-ish or Java-ish language. However this tends to break the relational properties: once you add a FlexStream, usually you
do it for the reasons that prevent the derived cal culations from being re-done, creating issues with saving and restoring the
state. Mind you, you can write a FlexStream that doesn't break any of them, but then it would probably be doing something
that can be expressed without it in the first place.

Coral8 has grown from the opposite direction: the idea has been to process the incoming data while keeping a minimal
state in the variables and short-term windows (limited sliding recordings of the incoming data). The language (CCL) is
very SQL-like. It relies on the state of variables and windows being pretty much global (module-wide), and allows the
statements to be connected in loops. Which means that the execution order matters alot. Which means that there are some

2 The field of CEP



quite extensive rules, determining this order. The logic ends up being very much procedural, but written in the peculiar
way of SQL statements and connecting streams.

The good thing is that all this allows to control the execution order very closely and write things that are very difficult
to express in the pure un-ordered relational operators. Which allows to aggregate the data early and creatively, keeping
less datain memory.

The bad news is that it limits the execution to a single thread. If you want a separate thread, you must explicitly make a
separate module, and program the communi cations between the modules, which is not exactly easy to get right. There are
lots of people who do it the easy way and then wonder, why do they get the occasional data corruption. Also, the ordering
rules for execution inside a module are quite tricky. Even for some fairly simple logic, it requires writing a lot of code,
some of which isjust bulky (try enumerating 90 fields in each statement), and some of which istricky to get right.

The summary is that everything is not what it seems: the Aleri models aren't usually written in SQL but are very declara-
tive in their meaning, while the Coral 8/StreamBase models are written in an SQL-like language but in reality are totally
procedural.

Sybaseisaso striking for amiddle ground, combining the featuresinherited from Aleri and Coral8 inits CEP R5 and later:
use the CCL language but relax the execution order rulesto the Aleri level, except for the explicit single-threaded sections
where the order is important. Include the SPLASH fragments for where the outright procedural logic is easy to use. Even
though it sounds hodgy-podgy, it actually came together pretty nicely. Forgive me for saying so myself since I've done a
fair amount of design and the execution logic implementation for it before I've left Sybase.

Still, not everything is perfect in this merged world. The SQLY syntax still requires you to drag around all your 90 fields
into nearly every statement. The single-threaded order of executionisstill non-obvious. It's possible to write the procedural
code directly in SPLASH but the boundary where the data passes between the SQLY and C-ish code till has awhole lot
of itsown kinks (less than in Aleri but till alot). And worst of all, thereis still no modular programming. Y eah, there are
“modules’ but they are not really reusable. They aretied too tightly to the schema of the data. What is needed, is morelike
C++ templates. Only preferrably something more flexible and less difficult to debug than the C++ templates.

Let me elaborate a little on the point of “dragging around all your fields’. Here is a typical example: you have a stream
of data and you want to pass through only the rows that find a match in some reference table. Which is reasonable to do
with something like:

insert into filtered_data

sel ect
incom ng_data. *

from
incom ng_data as d left join reference_table as r
on d.key_field = r.key_field;

Only you can't writei ncom ng_dat a. * in their syntax, you have to list every single field of it explicitly. If the data
has 90 fields, that becomes quite adrag.

StreamBase does have modules with parametrizable arguments (* capture fields”), somewhat like the C++ templates. The
limitation isthat you can say “and carry any additional fields through unchanged” but can't really specify subsets of fields
for a particular usage (“and use these fields as a key”). Or at least that's my understanding. | haven't used it in practice
and don't understand StreamBase too well.

1.4. We're not in 1950s any more, or are we?

Part of the complexity with CCL programming is that the CCL programs tend to fedl very broken-up, with the flow of
the logic jumping all over the place.

Consider asimple example: some incoming financial information may identify the securities by either RIC (Reutersiden-
tifier) or SEDOL or ISIN, and before processing it further we want to convert them al to ISIN (since the fundamentally
same security may beidentified in multiple ways when it'straded in multiple countries, ISIN isthe common denominator).

We're not in 1950s any more, or are we? 3



This can be expressed in CCL approximately like this (no guarantees about the correctness of this code, since | don't have
acompiler to try it out):

/1 the incom ng data

create schena s_inconi ng (

id_type string, // identifier type: RIC, SEDCL or |ISIN
id_value string, // the value of the identifier

/1 add another 90 fields of payload..

)

/1 the normalized data

create schema s_normalized (

isin string, // the identity is nornmalized to | SIN
/1 add another 90 fields of payload..

)

/1l schema for the identifier translation tables
create schema s_translation (

fromstring, // external id value (R C or SEDQL)
isin string, // the translation to ISIN

)

/1 the windows defining the translations fromR C and SEDOL to | SIN
create wi ndow w_trans_ric schema s_translation

keep | ast per from
create wi ndow w_trans_sedol schema s_translation

keep | ast per from

create input streami _incom ng schema s_incomni ng
create streamincoming_ric schema s_incom ng

create streamincom ng_sedol schena s_incom ng
create streamincomng_isin schema s_inconing

create output streamo_nornalized schena s_nornalized

i nsert
when id_type = '"RIC then incoming_ric
when id_type = 'SEDOL' then incom ng_sedo
when id_type = '"ISIN then incom ng_isin

sel ect *

fromi_incom ng

insert into o_normalized

sel ect
W.isin,
i. ... /] the other 90 fields
from
incoming_ric as i join w_tranc_ric as w
on i.id_value = w.from

insert into o_normalized

sel ect
W.isin,
i. ... I/ the other 90 fields
from
incom ng_sedol as i join w_tranc_sedol as w
on i.id_value = w.from

insert into o_normalized
sel ect
i.id_val ue,
i. ... I/ the other 90 fields

4 The field of CEP



from
i ncom ng_i sin;

Not exactly easy, isit, even with the copying of payload data skipped? Y ou may notice that what it does could aso be
expressed as procedural pseudo-code;

/1 the incom ng data

struct s_incomng (

string id_type, // identifier type: RIC, SEDOL or ISIN
string id_value, // the value of the identifier

/1 add another 90 fields of payload...

)

/1 schema for the identifier translation tables
struct s_translation (

string from // external id value (R C or SEDQO.)
string isin, // the translation to I SIN

)

/1 the wi ndows defining the translations fromR C and SEDOL to | SIN
table s_translation wtrans_ ric

key from

table s_translation w_trans_sedol
key from

s_incom ng i _i ncom ng;

string isin;

if (i_inconmng.id type == "RIC) {
isin = | ookup(w_trans_ric,
w trans_ric.from==i_inconing.id_val ue
).isin;
} elsif (i_incoming.id _type == "'SEDQL') {
isin = | ookup(w_trans_sedol,
w_trans_sedol . from == i _incom ng.id_val ue
).isin;
} elsif (i_incoming.id type =="ISIN) {
isin = i_incomng.id_val ue;

}

if (isin != NULL) {
out put o_ nornalized(isin,
i _incomng. (* except (id_type, id_value))
)

}

Basically, writing in CCL feels like programming in Fortran in the 50s: lots of labels, lots of GOTOs. Each stream is
essentially alabel, when looking from the procedural standpoint. It's actually worse than Fortran, since all the labels have
to be pre-defined (with types!). And there isn't even the normal sequentia flow, each statement must be followed by a
GOTO, like on those machines with magnetic-drum main memory.

Thisisvery much like the examplein my book [Babkin10], in section 6.4. Queues as the sol e synchronization mechanism.
Y ou can alook at the draft text online at http://web.newsguy.com/sab123/tpopp/O6odata.txt. This similarity is not acciden-
tal: the CCL streams are queues, and they are the only communication mechanismin CCL.

The SQL statement structure also adds to the confusion: each statement has the destination followed by the source of the
data, so each statement reads like it flows backwards.

We're not in 1950s any more, or are we? 5


http://web.newsguy.com/sab123/tpopp/06odata.txt




Chapter 2. Enter Triceps
2.1. What led to it

It had happened that I've worked for a while on and with the Complex Event Processing (CEP) systems. |'ve worked for
afew years on the internals of the Aleri CEP engine, then after Aleri acquired Coral8, some on the Coral8 engine, then
after Sybase gobbled up them both, I've designed and did the early implementation of a fair bit of the Sybase CEP R5.
After that I've moved on to Deutsche Bank and got the experience from the other side: using the CEP systems, primarily
the former Coral8, now known as Sybase CEP R4.

Thismade mefeel that writing the CEP modelsis unnecessarily difficult. Even the essentially simple things take too much
effort. I've had thisfeeling before aswell, but one thing isto haveit in abstract, and another isto grind against it every day.

Which in turn led me to thinking about making my own Open Source CEP system, where | could try out theideas| get, and
make the streaming models easier to write. | aim to do better than the 1950's style, to bring the advances of the structured
programming into the CEP world.

Thusthe Triceps project was born. For awhileit was called Biceps, until I've learned of the existence of arecearch project
called BiCEP. It's spelled differently, and isin asubstantially differnt areaof CEP work, but it's easier to avoid confusion,
so | went one better and renamed mine Triceps.

Since then I've moved on from DB, and I'm currently not using any CEP at work (though you never know what would
happen), but Triceps has already gained momentum by itself.

The Triceps development has been largely shaped by two considerations:

* It hasto be different from the Sybase products on which | worked. Thisis helpful from both legal standpoint and from
marketing standpoint: Sybase and StreamBase already have similar products that compete head to head. Thereisno use
getting into the same fray without some major resources.

* It hasto be small. I can't spend the same amount of effort on Triceps as alarge company, or even as a small one. Not
only this saves time but also allows the modifications to be easy and fast. The point of Tricepsisto experiment with the
CEP language to make it easy to use: try out the ideas, make sure that they work well, or replace them with other ideas.
The companies with a large established product can't really afford the radical changes: they have invested much effort
into the product, and are stuck with supporting it and providing compatibility into the future.

Both of these considerations point into the same direction: an embeddable CEP system. Adapting an integrated system for
an embedded usage is hot easy, so it'sagood open niche. Y eah, this niche is not empty either. There aready is Esper. But
from a cursory ook, it seems to have the same issues as Coral 8/StreamBase. It's also Java-centric, and Tricepsis aimed
for embeddability into different languages.

And an embeddable system saves on alot of components.

For starters, no IDE. Anyway, | find the IDEs pretty useless for development in general, and especially for the CEP devel-
opment. Though it comes handy once in awhile for the analysis of the code and debugging.

No new language, no need to devel op compilers, virtual machines, function libraries, external callout APIs. Well, the major
goa of Triceps actually is the development of a new and better language. But it's one of these paradoxes: Aleri does the
relational logic looking like procedural, Coral 8 and StreamBase do the procedural logic looking likerelational, and Triceps
isadesign of alanguage without alanguage. Eventually there probably will be alanguage, to be mixed with the parent one.
But for now alot can be done by simply using the Triceps library in an existing scripting language. The existing scripting
languages are aready powerful, fast, and also support the dynamic compilation.

No separate server executable, no need to control it, and no custom network protocols: the users can put the code directly
into their executables and devise any protocolsthey please. Well, it'snot areal good answer for the protocols, sinceit means




that everyone who wants to communicate the streaming data for Triceps over the network hasto implement these protocols
from scratch. So eventually Triceps will provide a default implementation. But it doesn't have to be done right away.

No data persistence for now either. It's a nice feature, and | have some ideas about it too, but it requires a large amount
of work, and doesn't really affect the API.

The language used to implement Triceps is C++, and the scripting language is Perl. Nothing really prevents embedding
Triceps into other languages but it's not going to happen anywhere soon. The reason being that extra code adds weight
and makes the changes more difficult.

The multithreading support has been a magjor consideration from the start. All the C++ code has been written with the
multithreading in mind. However for the first release the multithreading did not propagate into the Perl API yet.

Even though Tricepsis a system aimed for quick experimentation, that does not imply that it's of atoy quality. The code
is written in production quality to start with, with a full array of unit tests. In fact, the only way you can do the quick
experimentation is by setting up the proper testing from the scratch. The idea of “move fast and break things® is complete
rubbish.

2.2. Hello, world!

Let'sfinally get to business: write asimple “Hello, world!” program with Triceps. Since Tricepsis an embeddable library,
naturally, the smallest “Hello, world!” program would be in the host language without Triceps, but it would not be interest-
ing. So hereisthe ahit contrived but more interesting Perl program that passes some data through the Triceps machinery:

use Triceps;

$hwunit = Triceps::Unit->new"hwnit");
$hw rt = Triceps:: RowType- >new
greeting => "string",
address => "string",

)

ny $print_greeting = $hwunit->makelLabel ($hw rt, "print_greeting", undef, sub {
ny ($l abel, $rowop) = @;
printf("%!\n", join(', ', $rowop->getRow()->toArray()));

b

$hwuni t - >cal | ($pri nt _greeti ng- >makeRowop( &Tri ceps: : OP_I NSERT,
$hw_rt - >makeRowHash(
greeting => "Hello",
address => "worl d",

)
)

What happens there? First, we import the Triceps module. Then we create a Triceps execution unit. An execution unit
keeps the Triceps context and controls the execution for one logical thread.

The argument of the constructor is the name of the unit, that can be used in printing messages about it. It doesn't have to
be the same as the name of the variable that keeps the reference to the unit, but it's a convenient convention to make the
debugging easier. Thisisa common idiom of Triceps: when you create something, you give it aname. If any errors occur
later with this object, the name will be present int the error message, and you'll be able to find easily, which object has
the issue and where it was created.

If something goes wrong, the Triceps methods will confess. To be precise, call Car p: : conf ess, which is like Perl's
di e but also prints the stack trace. Triceps also includesits own high-level call stack into thistrace.

The next statement creates the type for rows. For the simplest example, one row type is enough. It contains two string
fields. A row type does not belong to an execution unit. It may be used in parallel by multiple threads. Once a row type

8 Enter Triceps



is created, it'simmutable, and that's the story for pretty much all the Triceps objects that can be shared between multiple
threads: they are created, they become immutable, and then they can be shared. (Of course, the containers that facilitate
the passing of data between the threads would have to be an exception to thisrule).

Thenwe create alabel. The“label” isthe Tricepsterm for the same kind of stream processing elements asin the other CEP
systems. The Coral8 term for the same concept is“ stream”. The“ SQLY vs procedura” examplein Section 1.4: “We're not
in 1950s any more, or are we?’ (p. 3) shows why these elements are analogs of labels in the procedural programming,
and Triceps generally follows the procedural terminology.

Of course, now, in the days of the structured programming, we don't create labels for GOTOs all over the place. But we
still use labels. The function names are essentially labels, the loops in Perl may have labels. So a Triceps label can often
be seen kind of like afunction definition, but only kind of. It takes a data row as a parameter and does something with it.
But unlike a proper function it has no way to return the processed data back to the caller. It hasto either pass the processed
data to other labels or collect it in some hardcoded data structure, from which the caller can later extract it back. Thus a
Triceps label is still much more like a GOTO label.

Triceps has the streaming functions too, where the caller does provide the way to return the result. These are more than
the ordinary labels.

A basic label takes arow type for the rows it accepts, a name (again, purely for the ease of debugging) and a reference
to a Perl function that will be handling the data. Extra arguments for the function can be specified as well, but there is
no use for them in this example.

Here it's a simple unnamed Perl function. Though of course a reference to a named function can be used instead, and the
same function may be reused for multiple labels. Whenever the label gets a row operation to process, its function gets
called with the reference to the label object, the row operation object, and whatever extra arguments were specified at the
label creation (none in this example). The example just prints a message combined from the data in the row.

Note that the label's handler function doesn't just get arow as an argument. It gets arow operation (“rowop” asit's called
throughout the code). It's an important distinction. A row just stores some data. As the row gets passed around, it gets
referenced and unreferenced, but it just stays the same until the last reference to it disappears, and then it gets destroyed. It
doesn't know what happens with the data, it just storesthem. A row may be shared between multiple threads. On the other
hand, a row operation says “take these data and do such and such a thing with them”. A row operation is a combination
of arow of data, an operation code, and a label that has to carry out the operation. Since the row operation object is also
immutable, areference to arow operation may be kept and reused again and again.

Triceps has the explicit operation codes, very much like Aleri/Sybase R5 (only Aleri doesn't differentiate between arow
and row operation, every row there has an opcode in it). It might be just my background, but let me tell you: the CEP
systems without the explicit opcodes are a pain. The visible opcodes make life alot easier. However unlike Aleri, there
is no UPDATE opcode. The available opcodes are INSERT, DELETE and NOP (no-operation). If you want to update
something, you send two operations:. first DELETE for the old value, then INSERT for the new value. All this will be
described in more detail later.

For this simple example, the opcode doesn't really matter, so the label handler function quietly ignoresiit. It gets the row
from the row operation and extracts the data from it into the Perl representation, then prints them. The Triceps row data
may be represented in Perl in two ways: an array and a hash. In the array format, the array contains the values of the fields
in the order they are defined in the row type. The hash format consists of name-value pairs, which may be stored either
in an actual hash or in an array. The conversion from arow to a hash actually returns an array of values which becomes
ared hash if it gets stored into a hash variable.

Asaside note, this also suggests, how the systems without explicit opcodes came to be: they've been initialy built on the
simple stateless examples. And when the more complex examples have turned up, they've been aready stuck on this path,
and could not afford too deep aretrofit.

The final part of the example is the creation of arow operation for our label, with an INSERT opcode and a row created
from hash-formatted Perl data, and calling it through the execution unit. The row type provides a method to construct the
rows, and the label provides a method to construct the row operations for it. The cal | () method of the execution unit
does exactly what its name implies: it evaluates the label function right now, and returns after all its processing its done.

Hello, world! 9



Thisis avery simple example, so it does only one call. The real Triceps programs get a stream of incoming data, and do
the calls to handle each row of it.

10 Enter Triceps



Chapter 3. Building Triceps

3.1. Downloading Triceps

The official Triceps siteislocated at SourceForge.

http://triceps.sf.net is the high-level page.

http://sf.net/projects/triceps is the SourceForge project page.

The official releases of Triceps can be downloaded from SourceForge and CPAN. The CPAN locationis:
http://search.cpan.org/~babkin/triceps/

The Developer's Guide can aso be found in the Kindle format on Amazon web site, for the Amazon's minimal price of $1.

The release policy of Triceps is aimed towards the ease of development. As the new features are added (or sometimes
removed), they are checked into the SV N repository and documented in the blog form at http://babkin-cep.blogspot.com/.
Periodically the documentation updates are coll ected from the blog into this manual, and the official releases are produced.

If you want to try out the most bleeding-edge features that have been described on the blog but not officially released yet,
you can get the most recent code directly from the SVN repository. The SVN code can be checked out with

svn co https://svn.code.sf.net/p/triceps/code/trunk

Y ou don't need any login for check-out. Y ou can keep it current with latest changes by periodically runningsvn updat e.
After you've checked out the trunk, you can build it as usual. If you do have alogin and SSH key, you can use then aswell:

svn co svn+ssh://your_user name@vn. code. sf.net/p/triceps/code/trunk

3.2. The reference environment

The tested reference build environment is where | do the Triceps development, and currently it is Linux Fedora 11. The
build should work automatically on the other Linux systemsaswell, and the testing reports from CPAN show that it usually
works.

The build should work on the other Unix environments too but may require some manual configuration for the available
libraries. The test reports from CPAN show that the BSD varieties (FreeBSD, OpenBSD, MidnightBSD) usually do well.

Currently you must use the GNU Linux toolchain: GNU make, GNU C++ compiler (version 7.3.0 has been tested), glibc,
valgrind. Y ou can build without valgrind by running only the non-valgrind tests.

If you build the trunk code checked out from SVN (or otherwise in the directory named “t r unk™), there is a catch with
the warning flags. Thiskind of build treats almost all warnings as errors, and this causes varying results with the different
compiler versions. The older compiler versions might not have some of the warning exclusion flags used and will fail. The
newer compiler versions may have some extra warnings that will be treated as errors (and since my reference compiler
doesn't check for them, the code may trigger them). The fix for thissituation isto edit cpp/ Makef i | e. i nc and change
thevariable CFLAGS_WARNI NGS, or just clear it altogether. In the release form thisis not anissue, in the rel ease directory
the warnings are not treated as errors and no warning options are used.

GCC 4.1 isaso known to have complaints about the construct si zeof (fi el d) . I've modified the reported occurrences
but more might creep up in the future. If this stops your build, changethemto si zeof ( TypeO Fi el d) .

The tested Perl version is 5.26.1, and should work on any recent version as well. With the earlier versions your luck may
vary. The Makefile.PL has been configured to require at least 5.8.0. The older versions have a different threading module
and definitely won't work.

11


http://triceps.sf.net
http://sf.net/projects/triceps
http://search.cpan.org/~babkin/triceps/
http://babkin-cep.blogspot.com/

The threads support in the Perl interpreter is needed to run the multithreaded API. If your Perl is built without threads, the
single-threaded part is still usable but all the tests related to multithreading will fail. The last version of Triceps with no
threads support at al is 1.0.1, and it's the last resort if you want to run without threads.

| am interested in hearing the reports about builds in various environments.

The normal build expectation isfor the 64-bit machines. The 32-bit machines should work (and the code even includesthe
special cases for them) but have been untested at the moment. Some of the tests might fail on the 32-bit and/or big-endian
machines due to the different computation of the hash values, and thus producing a different row order in the result.

3.3. The basic build

If everything works, the basic build is simple, go to the Triceps directory and run:

make al |
make test

That would build and test both the C++ and Per| portions of Triceps. The C++ librarieswill be created under cpp/ bui | d.
The Perl libraries will be created under per | / Tri ceps/ bl i b.

Thetestsare normally run with valgrind for the C++ part, without valgrind for the Perl part. Thereason isthat Perl produces
lots of false positives, and the suppressions depend on particular Perl versions and are not exactly reliable.

If your system differs substantially, you may need to adjust the configurable settings manually, since thereisno. / con-
fi gur e script in the Triceps build yet. More information about them is in the Section 3.10: “Build configuration set-
tings’ (p. 17) .

The other interesting nake targets are:

cl ean
Remove dl the built files.

cl obber
Remove the object files, forcing the libraries to be rebuilt next time.

vt est
Run the unit tests with valgrind, checking for leaks and memory corruption.

gt est
Run the unit tests quickly, without valgrind.

rel ease
Export from SVN aclean copy of the code and create arelease package. The package name will be triceps-version.tgz,
wheretheversionistaken from the SV N directory name, from wherethe current directory ischecked out. Thisincludes
the build of the documentation.

3.4. Building the documentation

If you have downloaded the release package of Triceps, the documentation is aready included it in the built form. The
PDF and HTML versions are availablein doc/ pdf anddoc/ ht i . It is aso available online from http://triceps.sf.net.

The documentation is formatted in DocBook, that produces the PDF and HTML outputs. If you check out the source
from SVN and want to build the documentation, you need to download the DocBook tools needed to build it. | hate the
dependency situations, when to build something you need to locate, build and download dozens of other packages firsti,
and then the versions turn out to be updated, and don't want to work together, and all kinds of hell break loose. To make
things easier, I've collected the set of packages that I've used for the build and that are known to work. They've collected

12 Building Triceps


http://triceps.sf.net

in http://downloads.sourceforge.net/project/triceps/docbook-for-1.0/. The DocBook packages come originally from http://
docbook.sf.net, plusafew extrapackagesthat by now | forgot wherel've got from. An excellent book on the DocBook tools
and their configuration is [Stayton07]. And if you're interested, the text formatting in Docbook is described in [Walsh99].

DocBook isgreat intheway it takes cary of great many thingsautomatically but configuringitisplainly abitch. Fortunately,
it's al already taken care of. I've reused the infrastructure I've built for my book [Babkin10] for Triceps. Though some
elements got dropped and some added.

Downloading and extraction of the DocBook tools gets taken care of by running

make - C doc/ dbtool s

These tools are written in Java, and the packages are aready the compiled binaries, so they don't need to be built. Aslong
as you have the Java runtime environment, they just run. However like many Java packages, they are sloppy and often
don't return the correct return codes on errors. So the results of the build have to be checked visually afterwards.

The build also uses Inkscape for converting the figues from the EPS format. The earlier versions used Ghostscript, but the
last version of Ghostscript that is known to work is 8.70, which is quite antique by now. The later versions started crashing
in the SVG driver, and then they've “fixed” it by removing the SVG driver altogether. Fortunately, Inkscape provides a
better replacement.

After the tools have been extracted, the build is done by

make -C doc/src

The temporary files are cleaned with

make -C doc/src cl eanwor k
Theresultswill beindoc/ pdf anddoc/ ht m .

If like meyou plan to usethe DocBook toolsrepeatedly to build the docsfor different versionsof Triceps, you can download
and extract them once in some other directory and then set the exported variable TRI CEPS_TOOLS BASE to point to it.

3.5. Running the examples and simple programs

Overdl, the exampleslivetogether with unit tests. The primary target languagefor Tricepsis Perl, so the examplesfrom the
manual arethe Perl exampleslocatedinper | / Tri ceps/ t . Thefileswith names starting with “x” contain the examples
as such, likexW ndow. t . Usually there are multiple related examples in the same file.

The examples as shown in the manual usually read the inputs from stdin and print their results on stdout. The actual
examplesinper |/ Tri ceps/t arenot quite exactly the same because they are plugged into the unit test infrastructure.
Thedifferenceislimited to the input/output functions: rather than reading and writing on the stdin and stdout, they take the
inputs from variables, put the results into variables, and have the results checked for correctness. This way the examples
stay working and do not experience the bit rot when something changes.

Speaking of the examples outputs, the common convention in this manual isto show the lines entered from stdin as bold
and the lines printed on stdout as regular font. This way they can be easily told apart, and the effects can be connected
to their causes. Likethis:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
| bAver age OP_I| NSERT synbol =" AAA" i d="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
i d="3" synbol =" AAA" price="20" size="20"

| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"

Running the examples and simple programs 13


http://downloads.sourceforge.net/project/triceps/docbook-for-1.0/
http://docbook.sf.net
http://docbook.sf.net

The other unit testsinthe . t files are interesting too, since they contain absolutely all the possible usages of everything,
and can be used as areference. However they tend to be much more messy and hard to read, exactly because they contain
in them lots of tiny snippets that do everything.

The easiest way to start trying out your own small programs s to place them into the same directory per | / Tri ceps/ t
and run them from there. Just name them with the suffix . pl , so that they would not be picked up by the Perl unit test
infrastructre (or if you do want to run them as a part of unit tests, use the suffix . t ).

To make your programs find the Triceps modules, start them with
use ExtUtils::testlib;

use Triceps;
use Carp;

Themodule Ext Uti | s: :testli b takes care of setting the include paths to find Triceps. Y ou can run them from the
parent directory, like:

perl t/xW ndow.t

The parent directory isthe only choice, since Ext Uti | s: : test | i b can not set up the include paths properly from the
other directories.

3.6. Locale dependency

Some of the Perl tests depend on the locale. They expect the English text in some of the error strings received from the OS
and Perl, so if you try to run them in a non-English locale, these testsfail.

To work around thisissue, I've added LANG=C in the top-level Makefile, and when the tests run from there, they use this
English locale.

However if you run make test directly inthe perl/ Tri ceps subdirectory, it has no such override (because the
Makefile there is built by Perl). If you run the test from there and use a non-English locale, you'd have to set the locale
for the command expicitly:

LANG=C nake test

Some of these expected messages might also change between different OSes and between different versions of Perl. They
seem pretty stable overall but you'd never known when something might change somewhere, and that would lead to the
spuriousfailuresthat can beignored. I'd beinterested to |earn of them, to support all known forms of messagesin thefuture.

3.7. Installation of the Perl library

If you have the root permissions on the machine and want to install Tricepsin the central location, just run

make -C perl/Triceps install

If you don't, there are multiple options. One is to create your private Perl hierarchy in the home directory. If you decide
to put it into SHOVE/ i nst , the installation there becomes

nkdir -p $HOVE i nst
cp -Rf perl/Triceps/blib/* $HOWE i nst/

Y ou can then set the environment variable
export PERL5SLI B=$HOVE/ i nst/ i b: SHOVE/ i nst/arch

to have your private hierarchy prepended to the Perl's standard library path. You can then insert “use Tri ceps; ” and
the Triceps module will be found. If you want to have the man pages from that directory working too, set

14 Building Triceps



export MANPATH=$HOWE/ i nst : $MANPATH
Not that Triceps has any usable man pages at the moment.

However if you're building a package that uses Triceps and will be shipped to the customer and/or deployed to aproduction
machine, placing the libraries into the home directory is till not the best idea. Not only you don't want to pollute the
random home directories, you also want to make sure that your libraries get picked up, and not the ones that might happen
to beinstalled on the machine from some other sources (because they may be of different versions, or completely different
libraries that accidentaly have the same name).

The best idea then is to copy Triceps and all the other libraries into your distribution package, and have the binaries
(including the scripts) find them by arelative path.

Suppose you build the package prototype in the $PKGDI R, with the binaries and scripts located in the subdirectory bi n,
and the Triceps library located in the subdirectory bl i b. When you build your package, you install the Triceps library
in that prototype by

cp -Rf perl/Triceps/blib $PKGDI R/

Then this package gets archived, sent to the destination machine and unarchived. Whatever the packagetype, t ar , cpi o or
r pm doesn't matter. Therelative pathsunder it stay the same. For example, if it getsinstalled under / opt / ny_package,
the directory hierarchy would look like this:

[ opt/ nmy_package

+- bin
| +- ny_program pl
+- blib
+- ... Triceps stuff ...

The script ny_pr ogr am pl can then use the following code at the top to load the Triceps package:
#!/ usr/ bi n/ perl
use Fil e:: Basenane;

# This is the magi c sequence that adds the relative include paths.
BEQ N {

my $nypath = di rnane($0);

unshift @NC, "${nypath}/../blib/lib", "${nypath}/../blib/arch";
}

use Triceps;

It finds its own path from $0, by taking its directory name. Then it adds the relative directories for the Perl modules and
XS shared libraries to the include path. And finally loads Triceps using the modified include path. Of course, more paths
for more packages can be added as well. The script can also use that own directory (if saved into a global instead of ny
variable) to run the other programs later, find the configuration files and so on.

3.8. Installation of the C++ library

There are no special install scriptsfor the C++ libraries and includes. To build your C++ code with Triceps, simply specify
thelocation of Tricepssourcesand built librarieswith options- | and - L. For example, if you havebuilt Tricepsin $HOVE/
srcs/triceps-1.0. 0, youcan add the following to your Makefile:

TRI CEPSBASE=$( HOVE) / srcs/triceps-1.0.0

CFLAGS += -1 $(TRI CEPSBASE) / cpp - DTRI CEPS_NSPR4
LDFLAGS += -L$(TRI CEPSBASE)/cpp/build -Itriceps -1nspr4 -pthread

The Triceps include files expect that the Triceps C++ subdirectory is directly in the include path as shown.

Installation of the C++ library 15



The exact set of - Dflagsand extra- | libraries may vary with the Triceps configuration. To get the exact ones used in the
configuration, run the special configuration make targets:

make --quiet -f cpp/ Makefile.inc getconf
make --quiet -f cpp/Makefile.inc getxlib

The additions to CFLAGS are returned by get conf . The additional external libraries for LDFLAGS are returned by
get xl i b. It's important to use the same settings in the build of Triceps itself and of the user programs. The differing
settings may cause the program to crash.

If you build your code with the dynamic library, the best packaging practiceisto copy thel i bt ri ceps. so tothesame
directory where your binary is located and specify its location with the build flags (for GCC, the flags of other compilers

may vary):
LDFLAGS += "-W,-rpath="$$ORIG@ N .""

Or any relative path would do. For example, if your binary package contains the binaries in the subdirectory bi n and the
librariesin the subdirectory | i b, the setting for the path of the libraries relative to the binaries will be:

LDFLAGS += "-W,-rpath="$$ORIAN ../lib""

But locating the binaries and the shared libraries won't work if Triceps and your program get ever ported to Windows.
Windows searches for the DLLs only in the same directory.

Or it might be easier to build your code with the static library: just instead of - | t r i ceps, link explicitly with $( TRI -
CEPSBASE) / cpp/ bui | d/ i btri ceps. a and thelibrariesit requires:

LDFLAGS += $(TRI CEPSBASE)/ cpp/ build/libtriceps.a -|pthread -|nspr4

3.9. Disambiguation of the C++ library

A problem with the shared libraries is that you never know, which exact library will end up linked at run time. The sys-
tem library path takes priority over the one specified in - r pat h. So if somene hasinstalled a Triceps shared library sys-
tem-wide, it would be found and used instead of your one. And it might be of a completely different version. Or some
other package might have messed with LD LI BRARY _PATHintheuser's. prof i | e, and inserted its path with its own
version of Triceps.

Messing with LD LI BRARY_PATH is bad. The good solution is to give your libraries some unique
name, so that it would not get confused. Instead of |ibtriceps.so, name it something like
libtriceps_my_corp_my_project_v_123. so.

Triceps can build the libraries with such names directly. To change the name, edit cpp/ Makef i | e. i nc and change
LI BRARY : = triceps
to

LI BRARY :

triceps_ny_corp_ny_project_v_123

and it will produce the custom-named library. The Perl part of the build detects this name change automatically and still
works (though for the Perl build it doesn't change much, the static C++ Triceps library gets linked into the X S-produced
shared library).

Thereisalso aspecia make target to get back the base name of the Triceps library:
nmake --quiet -f cpp/Makefile.inc getlib

The other potential naming conflict could happen with both shared and dynamic libraries. It appears when you want to link
two different versions of the library into the same binary. Thisis needed rarely, but still needed. If nothing special isdone,

16 Building Triceps



the symbol names in two libraries clash and nothing works. Triceps provides a way around it by having an opportunity
to rename the C++ namespaces, instead of the default namespace “Tri ceps”. It can be done again by editing cpp/
Makef i | e. i nc and modifying the setting TRI CEPS _CONF:

TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsM/Ver si on

Suppose that you have two Triceps versions that you want both to use in the same binary. Suppose that you are building
themin$(HOVE) / srcs/triceps-1.0.0and $(HOVE)/ srcs/triceps-2.0.0.

Then you edit $( HOVE) / srcs/ tri ceps- 1. 0. 0/ cpp/ Makefi | e. i nc and put in there

TRI CEPS_CONF += - DTRI CEPS_NS=Tri ceps1

Andin$(HOME) / srcs/triceps-2.0.0/ cpp/ Makefile.inc put

TRI CEPS_CONF += - DTRI CEPS_NS=Tri ceps2

If you use the shared libraries, you need to disambiguate their names too, as described above, but for the static libraries
you don't have to.

Almost there, but you need to have your code use the different namespaces for different versions too. The good practice
istoincludein your files

#i ncl ude <common/ Conf . h>

and then use everywhere the Triceps namespace TRI CEPS NSinstead of Tr i ceps. Then aslong asone sourcefile deals
with only oneversion of Triceps, it can be easily manipulated to which version to use by providing that versionin theinclude
path. And you get your program to work with two versions of Triceps by linking the object files produces from these source
filestogether into one binary. Then you just build some of your fileswith- 1 $( HOVE) / srcs/ tri ceps-1. 0. 0/ cpp
and somewith - | $( HOVE) / srcs/ tri ceps- 2. 0. 0/ cpp and avoid any conflicts or code changes.

At the link time, you will need to link with the libraries from both versions.

3.10. Build configuration settings

Since Triceps has only avery limited autoconfiguration yet, it may need to be configured manually for the target operating
system. The same method is used for the build options.

The configuration options are set inthefilecpp/ Makef i | e. i nc. The extradefinesare added in TRI CEPS_CONF, the
extralibrary dependenciesin TRI CEPS_XLI B.

So far the only such configurable library dependency is the NSPRA4 library. It's used for its implementation of the atomic
integers and pointers. Normally the build attempts to auto-detect the location and name of the library and includes, or
otherwise builds without it. Without it the code still works but uses a less efficient implementation of an integer or pointer
protected by a mutex. If your system has a version of NSPR4 that doesn't get auto-detected, you can still enable it by
changing the settings manually. For example, for Fedora Linux the auto-detected version amountsto the following settings:

TRI CEPS_CONF += - DTRI CEPS_NSPR -1/ usr/incl ude/ nspr4
TRI CEPS XLIB += -1l nspr4

- DTRI CEPS_NSPR tells the code to compile with NSPR support enabled, and the other settings give the location of the
includes and of the library.

The other build options require only the - D settings.
TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsM/Ver si on
Changes the namespace of Triceps.

TRI CEPS_CONF += - DTRI CEPS_BACKTRACE=f al se

Build configuration settings 17



Disables the use of the glibc stack backtrace library (it's a standard part of glibc nowadays but if you use anon-GNU libc,
you might have to disable it). This library is used to make the messages on fatal errors more readable, and let you find
the location of the error easier.

18 Building Triceps



Chapter 4. APl Fundamentals

4.1. Languages and layers

As mentioned before, at the moment Triceps provides the APIsin C++ and Perl. They are similar but not quite the same,
because the nature of the compiled and scripted languages is different. The C++ API is more direct and expects discipline
from the programmer: if some incorrect arguments are passed, everything might crash. The Perl API should never crash.
It should detect any incorrect use and report an orderly error. Besides, the idioms of the scripted languages are different
from the compiled languages, and different usages become convenient.

So far only the Perl API is documented in this manual. Itsis considered the primary one for the end users, and also richer
and easier to use. The C++ API will be documented aswell, just it didn't make the cut for theversion 1.0. If you'reinterested
in the C++ API, read the Perl documentation first, to understand the ideas of Triceps, and then look in the source code.
The C++ classes have very extensive comments in the header files.

The Perl API isimplemented in XS. Some people, may wonder, why not SWIG? SWIG would automatically export the API
into many languages, not just Perl. The problem with SWIG isthat it just maps the APl one-to-one. And this doesn't work
any good, it makes for some very ugly APIswith abilities to crash from the user code. Which then have to be wrapped into
more scripting code before they become usable. So then why bother with SWIG, it'seasier to just usethe scripting language's
native extension methods. Another benefit of the native XS support is the access to the correct memory management.

In general, I've tried to avoid the premature optimization. The idea is to get it working at all first, and then bother about
working fast. Except for the caseswhen the need for optimization |ooked obvious, and thelogic intertwined with the general
design strongly ehough, that if done one way, would be difficult to change in the future. We'll see, if these “obvious’ cases
really turn out to be the obvious wins, or will they become a premature-optimization mess.

There is usually more than one way to do something in Triceps. It has been written in layers: Thereisthe C++ API layer
on the bottom, then the Perl layer that closely parallelsit, then more of the niceties built in Perl. There is more than one
way to organize the manual, structuring it by features or by layers. Eventually | went in the order of the major features,
discussing each one of them at various layers.

I've also tried to show, how these layers are built on top of each other and connected. Which might be too much detail for
the first reading. If you feel that something is going over your head, just skim over it. It could be marked more clearly but
| don't like this kind of marking. | hate the side-panels in the magazines. | like the text to flow smoothly and sequentially.
| don't like the “simplifications’ that distort the real meaning and add all kinds of confusion. | like having all the details|
can get, and then | can skip over the ones that look too complicated (and read them again when they start making sense).

Also, amajor goal of Triceps is the extensibility. And the best way to learn how to extend it, is by looking up close at
how it has already been extended.

4.2. Errors, deaths and confessions

When the Perl API of Triceps detects an error, it makes the interpreter die with an error message. Unless of course you
catch it with eval . The message includes the call stack as the method Car p: : conf ess() would. conf ess() isa
very useful method that helps a lot with finding the source of the problem, it's much better than the plain di e() . Triceps
uses internally the methods from Carp to build the stack trace in the message. But it also does one better: it includes the
stack of the Triceps label calsinto the trace.

You are welcome to use conf ess directly aswell, it's typically done in the following pattern:

&soneFunction() or confess "Error nessage";
&soneFunction() or confess "Error nessage: $!";

Thisiswhat the Triceps methods implemented in Perl do. The variable $! contains the error messages from the methods
that deal with the system errors. To require the package with conf ess, do:

19



use Carp;

The full description of Carp is available at http://perldoc.perl.org/Carp.html. It has more functions, however | find the full
stack trace the most helpful thing in any case.

There aso are modules to make al the cases of di e work like confess, Devel :: Sinpl eTrace and
Car p: : Always. They work by intercepting the pseudo-signls = WARN _ and _ DIE . The logic of
Car p: : Al ways ispretty simple, see http://cpansearch.perl.org/src/FERREIRA/Carp-Always-0.11/lib/Carp/Always.pm,
so if you're not feeling like installing the module, you can easily do the same directly in your code.

If you want to intercept the error to add more information to the message, use eval :

eval { $self->{unit}->call($rowop) }
or confess "Bad rowop argument:\n$@;

| have some better ideas about reporting the errorsin the nested templated but they need to beimplemented and tried out yet.

A known problem with conf ess in athreaded program is that it leaks the scalars, apparently by leaving garbage on the
Perl stack, even when intercepted with eval . It's actually not a problem when the confession is not intercepted, then the
program exits anyway. But if confessing frequently and catching these confessions, the leak can accumulate to something
noticesble.

The problem seemsto beintheline
package DB;

in the middle of one of itsinternal functions. Perhaps changing the package in the middle of afunction is not such a great
idea, leaving some garbage on the stack. The most interesting part is that this line can be removed altogether, with no
adverse effects, and then the leak stops. So be warned and don't be surprised. Maybe it will get fixed.

Now let's look at how the C++ parts of Triceps interact with confessions. When the Perl code inside a label or tracer or
aggregator or index sorting handler dies, the C++ infrastructure around it catchesthe error. It unrollsthe stack trace through
the C++ code and passesthe di e request to the Perl code that called it. If that Perl code was called through another Triceps
C++ code, that C++ code will catch the error and continue unrolling the stack and reporting back to Perl. When one Perl
label calls another Perl label that calls the third Perl 1abel, the call sequence goesin layers of Perl—C++—Perl—C++—
Perl—C++—Perl. If that last label has its Perl code die and there are no eval s in between, the stack will be correctly
unwound back through all these layers and reported in the error message. The C++ code will include the reports of &l the
chained label callsaswell. If one of the intermediate Perl layers wraps the call in eval , it will receive the error message
with the stack trace up to that point.

More of the error handling details will be discussed later in Section 7.5: “Error handling during the execution” (p. 44)
and Section 10.8: “Error reporting in the templates’ (p. 141) .

4.3. Memory management fundamentals

The memory is managed in Triceps using the reference counters. Each Triceps object has a reference counter in it. In
C++ thisis done explicitly, in Perl it gets mostly hidden behind the Perl memory management that al so uses the reference
counters. Mostly.

In C++the Autoref templateisused to produce the reference objects. The memory management at the C++ level isdescribed
in more detail in Section 20.3: “Memory management in the C++ APl and the Autoref reference” (p. 426) As the
references are copied around between these objects, the reference counts in the target objects are automatically adjusted.
When the reference count drops to 0, the target object gets destroyed. While there are live references, the object can't get
destroyed from under them. All nice and well and simple, however still possible to get wrong.

The major problem with the reference counters is the reference cycles. If object A has a reference to object B, and object
B has areference (possibly, indirect) to object A, then neither of them will ever be destroyed. Many of these cases can be

20 API Fundamentals


http://perldoc.perl.org/Carp.html
http://cpansearch.perl.org/src/FERREIRA/Carp-Always-0.11/lib/Carp/Always.pm

resolved by keeping areference in one direction and a plain pointer in the other. This of course introduces the problem of
hanging pointers, so extra care has to be taken to not reference them. There also are the unpl easant situationswhen thereis
absolutely no way around the reference cycles. For example, the Triceps label's method may keep a reference to the next
label, where to send its processed results. If the labels are connected into aloop (a perfectly normal occurrence), thiswould
cause a reference cycle. Here the way around is to know when all the labels are no longer used (before the thread exit),
and explicitly tell them to clear their references to the other labels. This breaks up the cycle, and then bits and pieces can
be collected by the reference count logic.

The reference cycle problem can be seen all the way up into the Perl level. However Triceps provides the ready solutions
for itstypical occurences. To explain it, more about Triceps operation has to be explained first, so it's described in detail
later in Chapter 8: “Memory Management” (p. 77) .

The reference counting may be single-threaded or multi-threaded. If an object may only be used inside one thread, the
references to it use the faster single-threaded counting. In C++ it's real important to not access and not reference the
single-threaded objects from multiple threads. In Perl, when a new thread is created, only the multithreaded objects from
the parent thread become accessible for it, the rest become undefined, so theissue gets handled automatically (as of version
1.0 even the potentially multithreaded objects are still exported to Perl as single-threaded, with no connection between
threads yet).

The C++ objects are exported into Perl through wrappers. The wrappers perform the adaptation between Perl reference
counting and Triceps reference counting, and sometimes more of the helper functions. Perl sees them as blessed objects,
from which you can inherit and otherwise treat like normal objects.

When we say that a Perl variable $| abel containsa Triceps label object, it really means that it contains areferece to a
label object. When it gets copied like $I abel 2 = $I abel , this copies the reference and now both variables refer to
the same label object (more exactly, even to the same wrapper object). Any changesto the object’s state done through one
reference will also be visible through the other reference.

When the Perl references are copied between the variables, this increases the Perl reference count to the same wrapper
object. However if an object goesinto the C++ land, and then is extracted back (such as, create a Rowop from a Row, and
then extract the Row from that Rowop), a brand new wrapper gets created. It's the same underlying C++ object but with
multiple wrappers. You can't tell that it's the same object by comparing the Perl references, because they may be pointing
to the different wrappers. However Triceps provides the method same() that compares the data inside the wrappers. It
can be used as

$rowl- >sane( $r ow2)
and if it returns true, then both $r owl and $r ow2 point to the same underlying row.

Note also that if you inherit from the Triceps objects and add some extra data to them, none of that data nor even your
derived classes identity will be preserved when anew wrapper is created from the underlying C++ object.

4.4. Code references and snippets

Many of the Triceps Perl API objects accept the Perl code arguments, to be executed as needed. This code can be specified
as either afunction reference or a string containing the source code snippet. The major reason to accept the argumentsin
the source code format is the ability to pass them through between the threads, which cannot be done with the compiled
code. See more information on that in Section 16.4: “Object passing between threads’ (p. 299) .

Only afew of the classes can be exported between the threads but for consistency all the classes support the code arguments
in either format. This feature is built into the general way the Triceps XS methods handle the code references.

The following examples are equivalent, one using a function reference, another using a source code snippet. Of course,
if you know that the created object will be exported to another thread, you must use the source code format. Otherwise
you can take your pick.

$it= Triceps::|ndexType->newPerl| Sorted("b_c", undef,

Code references and snippets 21



sub {
ny $res = ($_[0]->get("b") <=> $_[1]->get("b")
[l $_[0]->get("c") <=> $_[1]->get("c"));
return $res;

}
)

$it= Triceps::|ndexType->newPerl| Sorted("b_c", undef,

ny $res = ($_[0]->get("b") <=> $_[1]->get("b")
[l $_[0]->get("c") <=> $_[1]->get("c"));
return $res;

);
Asyou can see, when specifying the handler as source code, you must specify only thefunction body, andthesub { ... }
will be wrapped around it implicitly. Including the sub would be an error.

There are other differences between the code references and the source code format:

When you compile a function, it carries with it the lexical context. So you can make the closures that refer to the “my”
variables in their lexical scope. With the source code snippets you can't do this. The source code gets compiled in the
context of the main package, and that's all they can see. In some cases, it might not even be compiled immediately. If an
object has an explicit initialization, the code snippets get compiled at the initialization time. And if the object is exported
to another thread, the code snippets will be re-compiled when an object's copy is created and initialized in that another
thread. Remember also that the global variables are not shared between the threads, so if you refer to aglobal variablein
the code snippet and rely on avalue in that variable, it won't be present in the other threads (unless the other threads are
direct descendants and the value was set before their creation).

The code written in Perl can make use of the source code snippets as well. If it just passes these code arguments to the XS
methods, it will get this support automatically. But if it wants to call these snippets directly from the Perl code, Triceps
provides a convenience method that would accept the code in either format and compileit if needed:

$code = Triceps:: Code:: conpil e($code_ref _or_source);

It takes either a code reference or a source code string as an argument and returns the reference to the compiled code. If
the argument was a code reference, it just passes through unchanged. If it was a source code snippet, it gets compiled (and
therules are the same, the text getsthesub { ... } wrapper added around it implicitly).

If the argument was an undef , it also passes through unchanged. This is convenient in case if the code is optional. But
if it isn't then the caller should check for undef .

If the compilation fails, the method confesses, and includes the error and the source code into the message, in the same
way asthe XS methods do.

The optional second argument can be used to provide information about the meaning of the code for the error messages.
If it's undefined then the default is “ Code snippet”:

$code = Triceps:: Code:: conpil e($code_ref_or_source, $description);
For example, if the code represents an error handler, the call can be done asfollows:

$code = Triceps:: Code:: conpil e($code, "Error handler");

4.5. Triceps constants

Triceps has a number of symbolic constants that are grouped into essentially enums. The constants themselves will be
introduced with the classes that use them, but here is the general description common to them all.

22 API Fundamentals



In Perl they al are placed into the same namespace. Each group of constants (that can be thought of as an enum) getsiits
name prefix. For example, the operation codes are all prefixed with OP_, the enqueueing modes with EM _, and so on.

Theunderlying constantsare all integer. The way to give symbolic namesto constantsin Perl isto define afunction without
arguments that would return the value. Each constant has such a function defined for it. For example, the opcode for the
“insert” operation isthe result of function Tr i ceps: : OP_I NSERT.

Most methods that take constants as arguments are also smart enough to recognise the constant names as strings, and
automatically convert them to integers. For example, the following calls are equivalent:

$l abel - >makeRowop( &Tri ceps: : OP_I NSERT, ...);
$l abel - >makeRowop(" OP_I NSERT", ...);

For a while I've thought that the version with Tri ceps: : OP_I NSERT would be more efficient and might check for
correctness of the name at compile time. But as it turns out, no, on both counts. The look-up of the function by name
happens at run time, so there is no compile-time check. And that look-up happensto be alittle slower than the one done by
the Triceps C++ code, so thereisno win there either. The string version isnot only shorter but also more efficient. The only
win with the function isif you call it once, remember the result in avariable and then reuse. Unless you're chasing the last
few percent of performance in atight loop, it's not worth the trouble. Perhaps in the future the functions will be replaced
with the module-level variables: that would be both faster and allow the compile-time checking withuse strict.

What if you need to print out aconstant in amessage? Triceps providesthe conversion functionsfor each group of constants.
They generally arenamed Tr i ceps: : sonet hi ngSt ri ng. For example,

print &Triceps::opcodeString(&Triceps:: OP_I NSERT);

would print “OP_INSERT”. If the argument is out of range of the valid enums, it would confess. Thereis also aversion
of these functions ending with Saf e:

print &Triceps::opcodeStringSafe(&Triceps:: OP_I NSERT) ;

The differenceisthat it returnsundef if the input valueis out of range, thus being safe from confessions.

There dso are functions to convert from strings to constant values. They generaly are named
Tri ceps::stringSonet hi ng. For example,

&Triceps: :stringOpcode(" OP_I NSERT")
&Triceps: :stringOpcodeSaf e(" OP_I NSERT")

would return the integer value of Tri ceps: : OP_I NSERT. If the string name is not valid for this kind of constants, it
would also either confess without Saf e in the name or return undef withit.

4.6. Printing the object contents

When debugging the programs, it's important to find from the error messages, what is going on, what kinds of objects are
getting involved. Because of this, many of the Triceps objects provide away to print out their contentsinto a string. This
is done with the method pri nt () . The simplest useis asfollows:

$message = "Error in object " . $object->print();

Most of the objects tend to have a pretty complicated internal structure and are printed on multiple lines. They look better
when the components are appropriately indented. The default call printsasif the basic message is un-indented, and indents
every extralevel by 2 spaces.

This can be changed with extra arguments. The genera format of pri nt () is

$obj ect->print ([ $i ndent, [$subindent] ])

Printing the object contents 23



where $indent istheinitial indentation, and $subindent is the additional indentation for every level. The default pri nt ()
isequivalenttoprint("", " ").

A special caseis
$obj ect - >pri nt (undef)
It prints the object in asingle line, without line breaks.

Here is an example of how arow type object would get printed. The details of the row types will be described later, for
now just assume that arow type is defined as:

$rtl = Triceps:: Rowlype- >new
a => "uint8",
b => "int32",
c => "int64",
d => "fl oat 64",
e => "string",

)
Then$rt 1->print () produces:

row {
uint8 a,
int32 b,
inté4 c,
float64 d,
string e,

}
With extraarguments$rt 1- >print ("++", "--"):

row {
++--uint8 a,
++--int32 b,
++--int64 c,
++--fl oat 64 d,
++--string e,
++}

Thefirst line doesn't have a“++” because the assumption is that the text gets appended to some other text aready on this
line, so any prefixes are used only for the following lines.

And finally with an undef argument $rt 1- >pri nt (undef):

row{ uint8 a, int32 b, int64 c, float64 d, string e, }

The Rows and Rowops do not havethepri nt () method. That'slargely because the C++ code does not deal with printing
the actual data, thisis left to the Perl code. So instead they have the method pri nt P() that does a similar job. Only
it's simpler and doesn't have any of the indenting niceties. It always prints the data in asingle line. The “P” in “printP”
standsfor “Perl”. The nameis also different because of thislack of indenting niceties. See more about it in the Section 5.4:
“Rows” (p. 30) .

4.7. The Hungarian notation

The Hungarian notation is the idea that the name of each variable should be prefixed with some abbreviation of itstype. It
has probably become most widely known from the Microsoft operating systems.

Overall it's a complete abomination and brain damage. But I'm using it widely in the examplesin this manual. Why? The
problem isthat there usually too many components for one logical purpose. For atable, there would be arow type, atable

24 API Fundamentals



type, and thetableitself. Rather than inventing separate namesfor them, it's easier to have acommon name and an uniform
prefix. Eventually something better would have to be done but for now I've fallen back on the Hungarian notation. One
possibility isto just not give names to the intermediate entities. Say just have a named table, and then there would be the
the type of the table and the row type of the table.

Among the CEP systems, Tricepsis not unique in the Hungarian notation department. Coral 8/Sybase CCL has this mess of
lots of schemas, input streams, windows and output streams, with the same naming problems. The uniform naming prefixes
or suffixes help making this mess more navigable. | haven't actually used StreamBase but from reading the documentation
| get the feeling that the Hungarian notation is probably useful for its SQL aswell.

4.8. The Perl libraries and examples

The official Triceps classes are collected in the Triceps package (and its subpackages).

However when writing tests and examples|'vefound that there are al so some repesting elements. Initially |'ve been handling
the situation by either combining all examples using such an element into a single file or by copying it around. Then I've
collected all such fragments under the package Triceps::X. X can be thought of as a mark of eXperimental, eXample,
eXtraneous code.

While the code in the official part of the library is extensively tested, the X-code is tested only in its most important
functionality and not in the details. This codeis not exactly of production quality but is good enough for the examples, and
can be used as a starting point for development of the better code. Quite a few fragments of Triceps went this way: the
joins have been done as an example first, and then solidified for the main code base, and so did the aggregation.

One of these modules is Triceps:: X::TestFeed. It's a small infrastructure to run the examples, pretending that it gets the
input from stdin and sends output to stdout, while actually doing it al in memory. All of the more complicated examples
have been written to useit. When you look in the code of the actual running examples and compare it to the code snippetsin
the manual, you can seethe differences. A & eadLi ne showsinstead of <STDI N>, and a&send instead of pri nt (and
for the manual, | have a script that does the reverse substitutions automatically when | insert the code examplesinto it).

The Perl libraries and examples 25



26



Chapter 5. Rows

In Triceps the relational datais stored and passed around as rows (once in awhile | call them records, which is the same
thing here). Each row belongs to a certain type, that defines the types of the fields. Each field may belong to one of the
simple types.

5.1. Simple types

The simple valuesin Triceps belong to one of the simple types:

* uint8

* int32

* int64

* float64

e string

| like the explicit specification of the data size, so it's not some mysterious “double” but an explicit “float64” .

When the data is stored in the rows, it's stored in the strongly-typed binary format. When it's extracted from the rows for
the Perl code to access, it gets converted into the Perl values. And the other way around, when stored into the rows, the
conversion is done from the Perl values.

ui nt 8 isthetypeintended to represent the raw bytes. So, for example, when they are compared, they should be compared
as raw bytes, not according to the locale. Since Perl stores the raw bytes in strings, and its pack() and unpack()

functions operate on strings, The Perl side of Triceps extracts the uint8 values from records into Perl strings, and the other
way around.

The string typeisintended to represent atext string in whatever current locale (at some point it may become aways UTF-8,
this question is open for now).

Perl on the 32-bit machines has an issue with int64: it has no type to represent it directly. Because of that, when the int64
values are passed to Perl on the 32-bit machines, they are converted into the floating-point numbers. This gives only 54
bits (including sign) of precision, but that's close enough. Anyway, the 32-bit machines are obsol ete by now, and Triceps
it targeted towards the 64-bit machines.

On the 64-bit machines both int32 and int64 translate to the Perl 64-bit integers.

Note that there is no specia type for timestamps. As of version 1.0 there is no time-based processing inside Triceps, but
that does not prevent you from passing around timestamps as data and use them in your logic. Just store the timestamps
asintegers (or, if you prefer, as floating point numbers). When the time-based processing will be added to Perl, the planis
to still use the int64 to store the number of microseconds since the Unix epoch. My experience with the time typesin the
other CEP systemsisthat they cause nothing but confusion. In the meantime, the time-based processing is still possible by
driving the notion of time explicitly. It's described in the Chapter 13: “Time processing” (p. 221) .

5.2. Row types

A row typeis created from a sequence of (field-name, field-type) string pairs, for example:

$rtl = Triceps:: RowType- >new
a => "uint8",
b => "int32",

27



c => "int64",
d => "float 64",
e => "string",

)

Even though the pairs ook like a hash, don't use an actua hash to create row types! The order of pairsin ahash is unpre-
dictable, while the order of fieldsin arow type usually matters.

In an actual row the field may have avalue or be NULL. The NULLs are represented in Perl asundef .

The real-world records tend to be pretty wide and contain repetitive data. Hundreds of fields are not unusual, and | know
of acase when an Aleri customer wanted to have records of two thousand fields (and succeeded). Thisjust begsfor arrays.
So the Triceps rows allow the array fields. They are specified by adding “[]” at the end of field type. The arrays may only
be made up of fixed-width data, so no arrays of strings.

$rt2 = Triceps:: RowType- >new(
a=>"uint8[]",
b =>"int32[]",
c =>"int64[]",
d => "float64[]",
e => "string", # no arrays of strings!

The arrays are of variable length, whatever array data passed when arow is created determines its length. The individual
elements in the array may not be NULL (and if undef s are passed in the array used to construct the row, they will be
replaced with 0s). The whole array field may be NULL, and this situation is equivalent to an empty array.

The type uint8 is typically used in arrays, “uint8[]” is the Triceps way to define a blob field. In Perl the “uint8[]” is
represented as a string value, same asa simple “unit8”.

Therest of array values are represented in Perl as references to Perl arrays, containing the actual values.

The row type objects provide away for introspection:

$rt->get def ()

returns back the array of pairs used to create this type. It can be used among other things for the schema inheritance. For
exampl e, the multi-part messages with daily unique ids can be defined as:

$rt MsgKey = Triceps:: RowType- >new(
date => "string",

id=>"int32",

)

$rtMsg = Triceps:: RowType- >new(
$rt MsgKey- >get def (),

from=> "string",

to => "string",

subj ect => "string",

)

$rtMsgPart = Triceps:: RowlType- >new(
$rt MsgKey- >get def (),

type => "string",

payl oad => "string",

)
The meaning here is the same as in the CCL example:

create schema rt MsgKey (

28 Rows



string date,
integer id
)
create schenma rtMsg inherits fromrtMgKey (
string from
string to,
string subject
)
create schema rtMsgPart inherits fromrtMgKey (
string type,
string payl oad
)

The grand plan is to provide some better ways of defining the commonality of fields between row types. It should include
the ability to rename fields, to avoid conflicts, and to remember this equivalence to be reused in the further joins without
the need to write it over and over again. But it has not come to the implementation stage yet.

The other methods are:

$rt->get Fi el dNanes()

returns the array of field names only.
$rt->get Fi el dTypes()

returns the array of field types only.
$rt - >get Fi el dMappi ng()

returns the array of pairs that map the field names to their indexes in the field definitions. It can be stored into a hash and
used for name-to-index tranglation. It's used mostly in the templates, to generate code that accesses data in the rows by
field index (which is more efficient than access by name). For example, for r t MsgKey defined above it would return
(date => 0, id => 1).

5.3. Row types equivalence

The Triceps objects are usually strongly typed. A label handles rows of a certain type. A table stores rows of a certain type.
However there may be multiple ways to check whether arow fits for a certain type:

It may be arow of the exact same type, created with the same RowType object.

It may be arow of another type but one with the exact same definition.

* It may be arow of another type that has the same number of fields and field types but different field names. The field
names (and everything else in Triceps) are case-sensitive.

The row types may be compared for these conditions using the methods:

$rtl->same($rt2)
$rt1->equal s($rt2)
$rt1->match($rt2)

The comparisons are hierarchical: if two type references are the same, they would also be equal and matching; two equal
types are also matching.

Most of the objects would accept the rows of any matching type (this may change or become adjustable in the future).
However if the rows are not of the same type, this check involves a performance penalty. If the types are the same, the
comparison is limited to comparing the pointers. But if not, then the whole type definition has to be compared. So every
time arow of adifferent typeis passed, it would involve the overhead of type comparison.

Row types equivalence 29



For example:

ny @chema = (
a => "int32",
b => "string"

)

ny $rtl = Triceps:: RowType->new @chenn);
# $rt2 is equal to $rtl: sane field names and field types
ny $rt2 = Triceps: : RowType->new @chenn);

# $rt3 matches $rtl and $rt2: same field types but different nanes
ny $rt3 = Triceps:: RowType- >new(

A => "int32",

B => "string"

)

my $lab = $unit->makeDummylLabel ($rt1, "lab");

# sane type, efficient

ny $ropl = $l ab- >makeRowop( &Tri ceps: : OP_I NSERT,
$rt1->makeRowArray(1, "x"));

# different row type, involves a conparison overhead

ny $rop2 = $l ab- >makeRowop( &Tri ceps: : OP_I NSERT,
$rt2->makeRowArray(1, "x"));

# different row type, involves a conparison overhead

ny $rop3 = $l ab- >makeRowop( &Tri ceps: : OP_I NSERT,
$rt3->makeRowArray(1, "x"));

A dummy label used hereis alabel that does nothing (its usefulness will be explained later).

Once the Rowop is constructed, no further penalty is involved: the row in the Rowop is re-typed to the type of the label
from now on. It's physically still the same row with another reference to it, but when you get it back from the Rowop, it
will have the label's type. It's all a part of the interesting interaction between C++ and Perl. All the type checking is done
in the Perl XS layer. The C++ code just expects that the data is always right and doesn't carry the types around. When the
Perl code wants to get the row back from the Rowop, it wants to know the type of the row. The only way to get it isto
look, what is the label of this Rowop, and get the row type from the label. This is also the reason why the types have to
be checked when the Rowop is constructed: if a wrong row is placed into the Rowop, there will be no later opportunity
to check it for correctness, and bad data may cause a crash.

5.4. Rows

The rows in Triceps always belong to some row type, and are always immutable. Once a row is created, it can not be
changed. This allows it to be referenced from multiple places, instead of copying the whole row value. Naturally, a row
may be passed and shared between multiple threads.

The row type provides the constructor methods for the rows:

$row
$row

$rowType- >nmakeRowArray( @i el dval ues) ;
$r owType- >makeRowHash( $f i el dNane => $fi el dvalue, ...);

Here $r owis areference to the resulting row. As usual, in case of error it will confess.

In the array form, the values for the fields go in the same order as they are specified in the row type (if there are too few
values, therest will be considered NULL, having too many valuesis an error).

The Perl value of undef istreated as NULL.

In the hash form, the fields are specified as name-value pairs. If the same field is specified multiple times, the last value
will overwrite al the previous ones. The unspecified fields will be left as NULL. Again, the arguments of the function
actually are an array, but if you pass a hash, its contents will be converted to an array on the call stack.

30 Rows



If the performance is important, the array form is more efficient, since the hash form has to trandate internally the field
names to indexes.

The row itself and its type don't have any concept of keysin general and of the primary key in particular. So any fields
may beleft asNULL. Thereisno “NOT NULL" constraint.

Some examples:

$row = $rowType->makeRowArray( @i el ds);

$row = $rowType- >nmakeRowArray($a, $b, $c);
$row = $rowType- >nmakeRowHash(% i el ds) ;

$row = $rowType- >makeRowHash(a => $a, b => $b);

The usua Perl conversions are applied to the values. So for example, if you pass an integer 1 for astring field, it will be
converted to the string “1”. Or if you passastring “” for an integer field, it will be converted to 0.

If afieldisan array (asalways, except for ui nt 8[ ]| whichisrepresented asaPerl string), itsvalueisaPerl array reference
(or undef ). For example:

$rtl = Triceps:: RowlType- >new(
a =>"uint8[]",
b => "int32[]",
);
$row = $rt1->makeRowArray("abcd", [1, 2, 3]);

An empty array will become a NULL value. So the following two are equivalent:

$row
$row

$rt 1- >makeRowAr ray("abcd", []);
$rt 1- >makeRowAr ray("abcd", undef);

Remember that an array field may not contain NULL values. Any undef sin the array fields will be silently converted
to zeroes (since arrays are supported only for the numeric types, a zero value would always be available for all of them).
The following two are equivalent:

$row
$row

$rt1- >makeRowArray("abcd", [undef, undef]);
$rt1- >makeRowArray("abcd", [0, 0]);

Therow aso provides away to copy itself, modifying the values of selected fields:
$row2 = $rowl- >copynod( $fi el dNane => $fiel dvalue, ...);

The fields that are not explicitly specified will be left unchanged. Since the rows are immutable, this is the closest thing
to the field assignment. copynod( ) is generally more efficient than extracting the row into an array or hash, replacing
afew of them with new values and constructing a new row. It bypasses the binary-to-Perl-to-binary conversions for the
unchanged fields.

The row knows its type, which can be obtained with
$row >get Type()

Note that thiswill create a new Perl wrapper to the underlying type object. So if you do:

$rtl1 = ...;
$row = $rt1->makeRow. . . ;
$rt2 = $row >get Type();

then $r t 1 will not be equal to $r t 2 by the direct Perl comparison ($rt1 ! = $rt 2). However both$rt 1 and $rt 2
will refer to the same row type object, so $rt 1- &gt ; same( $rt 2) will betrue.

The row references can also be compared for sameness:

$rowl- >sane( $r ow2)

Rows 31



The row contents can be extracted back into Perl representation as

@dat a
Uhdat a

$row >t oArray();
$r ow >t oHash() ;

Again, the NULL fields will become undef s, and the array fields (unless they are NULL) will become Perl array refer-
ences. Since the empty array fields are equivalent to NULL array fields, on extraction back they will be treated the same
as NULL fields, and become undef s.

Thereis also aconvenience function to get one field from arow at atime by name:
$val ue = $row >get ("fi el dNanme");

If you need to access only a few fields from a big row, get () is more efficient (and easier to write) that extracting the
whole row witht oHash() or evenwitht oArray() . But don't forget that every timeyou call get () , it creates anew
Perl value, which may be pretty involved if the value is an array. So the most efficient way then for the values that get
reused many timesisto cal get (), remember the result in a Perl variable, and then reuse that variable.

Thereis aso away to conveniently print arows contents, usually for the debugging purposes:

$result = $row >printP();

Thename pr i nt Pisan artifact of implementation: it shows that this method isimplemented in Perl and uses the default
Perl conversions of values to strings. The ui nt 8[ ] arrays are printed directly as strings. The result is a sequence of

nane="val ue" or nane=[ "val ue", "value", "value"] foral the non-NULL fields. The backslashes and
double quotes inside the values are escaped by backslashesin Perl style. For example, reusing the row type above,

$row = $rtl->makeRowArray('ab\ "cd"', [0, 0]);
print $row>printP(), "\n";

will produce

a="ab\\ \"cd\"" b=["0", "0"]

It's possible to check quickly if all the fields of arow are NULL:
$result = $row >i sEnpty();

It returns 1 if all thefieldsare NULL and O otherwise.

Finally, there is a deep debugging method:

$result = $row >hexdunp()

That dumps the raw bytes of the row's binary format, and is useful only to debug the more weird issues.

32 Rows



Chapter 6. Labels and Row Operations

6.1. Labels basics

In each CEP engine there are two kinds of logic: One is to get some request, look up some state, maybe update some
state, and return the result. The other has to do with the maintenance of the state: make sure that when one part of the
state is changed, the change propagates consistently through the rest of it. If we take acommon RDBM S for an analog, the
first kind would be like the ad-hoc queries, the second kind will be like the triggers. The CEP engines are very much like
database engines driven by triggers, so the second kind tends to account for alot of code.

Thefirst kind of logic is often very nicely accommodated by the procedural logic. The second kind often (but not always)
can benefit from amore relational, SQLY definition. However the SQLY definitions don't stay SQLY for long. When every
every SQL statement executes, it getscompiled first into the procedural form, and only then executes asthe procedural code.

The Triceps approach is tilted toward the procedural execution. That is, the procedural definitions come out of the box,
and then the high-level relational logic can be defined on top of them with the templates and code generators.

These bits of code, especially where the first and second kind connect, need some way to pass the data and operations
between them. In Triceps these connection points are called Labels.

The streaming data rows enter the procedural logic through a label. Each row causes one call on the label. From the
functional standpoint they are the same as Coral8 Streams, as has been shown in Section 1.4: “We're not in 1950s any
more, or are we?’ (p. 3) . Except that in Triceps the labels receive not just rows but operations on rows, as in Aleri: a
combination of arow and an operation code.

They are named “labels’ because Triceps has been built around the more procedural ideas, and when looked at from that
side, the labels are targets of calls and GOTOs.

If the streaming model is defined as a data flow graph, each arrow in the graph is essentially a GOTO operation, and each
nodeisalabel.

A Tricepslabel isnot quiteaGOTO label, sincethe actual procedural control always returns back after executing the label's
code. It can be thought of as alabel of afunction or procedure. But if the caller does nothing but immedially return after
getting the control back, it works very much like a GOTO label.

Each label accepts operations on rows of a certain type.

Each label belongs to a certain execution unit, so alabel can be used only strictly inside one thread and can not be shared
between threads.

Each label may have some code to execute when it receives arow operation. The labels without code can be useful too.

A Triceps model contains the straightforward code and the mode complex stateful elements, such as tables, aggregators,
joiners (which may be implemented in C++ or in Perl, or created as user templates). These stateful elements would have
some input labels, where the actions may be sent to them (and the actions may also be done as direct method calls), and
output labels, where they would produce the indications of the changed state and/or responses to the queries. Thisis shown
inthe diagramin Figure 6.1 . The output labels are typically the ones without code (* dummy labels™). They do nothing by
themselves, but can pass the data to the other labels. This passing of data is achieved by chaining the labels: when alabel
iscalled, it will first execute its own code (if it has any), and then call the same operation on whatever labels are chained
fromit. Which may have more labels chained from them in turn. So, to pass the data, chain the input label of the following
element to the output label of the previous element.

33



Input label

Element A

Output label

chaining

Input label Input label

Element B Element C

Output label Output label

Figure6.1. Stateful elementswith chained labels.

The make things clear, alabel doesn't have to be a part of a stateful element. The labels absolutely can exist by themselves.
It'sjust that the stateful elements can use the labels as their endpoints.

6.2. Label construction

The execution unit provides methods to construct labels. A dummy label is constructed as:
$l abel = $unit - >makeDunmyLabel ( $rowType, "nane");

It takes as arguments the type of rows that the label will accept and the symbolic name of thelabel. Asusual, the name can
be any but for the ease of debugging it's better to give the same name as the label variable.

The label with Perl code is constructed as follows:

$l abel = $unit->nmakelLabel ($rowType, "nane", $cl ear Sub,
$execSub, @rgs);

Therow type and name arguments arethe same asfor thedummy label. Thefollowing two arguments providethereferences
to the Perl functions that perform the actions. They can be specified as a function reference or a source code string, see
Section 4.4: “ Code references and snippets’ (p. 21) . $exec Sub isthe function that executesto handle the incoming rows.
It gets the arguments:

&pexecSub( $l abel , $rowop, @rgs)

Here $l abel isthislabel, $r owop isthe row operation, and @r gs are the same as extra arguments specified at the
label creation.

34 Labels and Row Operations




The row operation actually contains the label reference, so why pass it the second time? The reason lies in the chaining.
The current label may be chained, possibly through multiple levels, to some original label, and the rowop will refer to that
original label. The extra argument lets the code find the current |abel.

$cl ear Sub isthe function that clears the label. It will be explained in the Section 8.2: “Clearing of the labels’ (p. 78)
Either of $execSub and $cl ear Sub can be specified as undef . Though alabel with an undefined $exec Sub makes
the label useless for anything other than clearing. On an attempt to send datato it, it will complain that the label has been
cleared. The undefined $cl ear Sub causes the function Tri ceps: : cl ear Args() to be used as the default, which
provides the correct reaction for most situations.

There is a specia convenience constructor for the labels that are used only for clearing an object (their usefulness is
discussed in Section 8.2: “Clearing of the labels’ (p. 78) ).

$l b = $uni t->maked eari ngLabel ("nane", @rgs);

The arguments would be the references to the objects that need clearing, usually the object's $sel f . They will be cleared
with Tri ceps: : cl ear Args() when thelabel clearing gets called.

6.3. Other label methods

The chaining of labelsis done with the method:
$l abel 1- >chai n( $l abel 2);

$l abel 2 becomeschained to $| abel 1. A label can not be chained to itself, neither directly nor through other interme-
diate labels. The row types of the chained labels must be equal (thisis more strict than for queueing up the row operations
for labels, and might change one or the other way in the future).

When $1 abel 1 executes, its chained labelswill normally be executed in the order they were chained. However sometines
it's necessary to add alabel to the chain later but haveit called first. Thisis done with the method:

$l abel 1- >chai nFront ($l abel 2) ;

It chains $I abel 2 at the start of the chain. Of course, if more labels will be chained at the front afterwards, $I abel 2
will be called only after them. But usually thereisaneed for only one such label, and it's usually connected to the FnReturn
and Facet objects. For an example, see Section 16.3: “Multithreaded pipeling” (p. 292) .

A label's chainings can be cleared with

$l abel 1- >cl ear Chai ned() ;

It returns nothing, and clears the chainings from this label. There is no way to unchain only some selected labels.
To check if there are any |labels chained from this one, use:

$result = $l abel - >hasChai ned();

The same check can be done with

@hai n = $l abel - >get Chai n() ;

if ($#chain >=0) { ... }

but hasChai ned() ismore efficient since it doesn't have to construct that intermediate array.

Thereis also a convenience method that creates a new label by chaining it from an existing label:

$l abel 2 = $l abel 1- >makeChai ned( $nanme, $subC ear, $subExec, @rgs);

Other label methods 35



The arguments are very much the same asin Uni t : : makelLabel (), only there is no need to specify the row type for
the new label (nor obviously the Unit), these are taken from the original label. It's really awrapper that finds the unit and
row typefrom| abel 1, makesanew label, and then chainsit off | abel 1.

The whole label can be cleared with

$l abel ->cl ear () ;

Thisis fully equivalent to what happens when an execution unit clears the labels: it calls the clear function (if any) and
clears the chainings. Note that the labels that used to be chained from this one do not get cleared themselves, they're only
unchained from this one. To check whether the label has been already cleared use:

$result = $l abel ->i sC eared();

Labels have the usual way of comparing the references:

$l abel 1- >sane( $l abel 2)

returnstrue if both references point to the same label object.

The labels introspection can be done with the methods:

$rowType = $l abel - >get Type();
$rowType = $l abel - >get RowType() ;
$unit = $l abel ->get Unit();

$nanme = $I abel - >get Name() ;

@hai nedLabel s = $I abel - >get Chai n();
$execSubRef = $l abel - >get Code() ;

The methods get Type() and get RowType() arethe same, they both return the row type of the label. get Type()
is shorter, which looked convenient for awhile, but get RowType() hasthe name consistent with the rest of the classes.
This consistency comes useful when passing the objects of various typesto the same methods, using the Perl's name-based
polymorphism. For now both of them are present, but get Type() will likely be deprecated in the future.

If the label has been cleared, get Uni t () will return an undef . get Chai n() returns an array of references to the
chainedlabels. get Code() isactualy haf-donebecauseit returnsjust the Perl function reference to the execution handler
but not itsarguments, nor referenceto the clearing function. 1t will be changed in the futureto fix theseissues. get Code()
is not applicable to the dummy labels, and would return an undef for them.

Thelabelsactually exist in multiple varieties. The underlying common denominator isthe C++ class Label. This class may
be extended and the resulting label s embedded into the C++ objects. These labels can be accesses and controlled from Perl
but their logic is hardcoded in their objects and is not directly visible from Perl. The dummy labels are a subclass of |abels
in general, and can be constructed directly from Perl. Another subclass is the labels with the Perl handlers. They can be
constructed from Perl, and really only from Perl. The C++ code can access and control them, in a symmetrical relation.
The method get Code() has meaning only on these Perl labels. Finally, the clearing labels also get created from Perl,
and fundamentally are Perl labels with many settings hardcoded in the constructor. get Code() can be used on them too
but since they have no handler code, it would always return undef .

Thereis aso away to change alabel's name:

$l abel - >set Nane( $nane) ;

It returns nothing, and there is probably no reason to call it. It will likely be removed in the future.
Thelabel also provides the constructor methods for the row operations, which are described below.

And for completeness I'll mention the methods used to mark the label as non-reentrant and to read this mark back. They
will be described in detail in Section 7.13: “Recursion control” (p. 74) .

$l abel - >set NonReentrant ();

36 Labels and Row Operations



$val = $l abel - >i sNonReentrant () ;

6.4. Row operations

A row operation (also known as rowop) in Tricepsis an unit of work for alabel. It's always destined for a particular label
(which could also pass the rowop to its chained labels), and has a row to process and an opcode. The opcodes will be
described momentarily in the Section 6.5: “Opcodes” (p. 38) .

A row operation is constructed as:
$rowop = $I abel - >makeRowop( $opcode, $row);

Theopcode may be specified aninteger or asastring. Historically, thereisal so an optional extraargument for the enqueuing
mode but it's already obsolete, so | don't show it here.

Since the labels are single-threaded, the rowops are single-threaded too. The rowops are immutable, just as the rows are.
It's possible to keep arowop around and call it over and over again.

A rowop can be created from a bunch of fieldsin an array or hash form in two steps:

$rowop = $I abel - >makeRowop($opcode, $rt - >makeRowHash(
$fiel dName => $fieldvalue, ...));
$rowop = $l abel - >makeRowop( $opcode, $rt->makeRowArray( @i el ds));

Since this kind of creation happens fairly often, writing out these calls every time becomes tedious. The Label provides
the combined constructors to make life easier:

$r owop
$r owop

$l abel - >nakeRowopHash( $opcode, $fiel dNane => $fiel dvalue, ...);
$l abel - >nakeRowopAr r ay( $opcode, @i el ds);

Note that they don't need the row type argument any more, because the label knows the row type and providesit. Internally
these methods are currently implemented in Perl, and just wrap the two callsinto one. In the future they will be rewritten
in C++ for greater efficiency.

There also are the methods that create arowop and immediately call it. They will be described with the execution unit.

A copy of rowop (not just another reference but an honest separate copied object) can be created with:
$rowop2 = $rowopl->copy();

However, since the rowops are immutable, a reference is just as good as a copy. This method is historic and will likely
be removed or modified.

A more interesting operation is the rowop adoption: it is a way to pass the row and opcode from one rowop to another
new one, with a different label.

$rowop2 = $l abel - >adopt ( $r owopl);

It is very convenient for building the label handlers that pass the rowops to the other labels unchanged. For example, a
label that filters the data and passesiit to the next label, can be implemented as follows:

nmy $labl = $unit->makelLabel ($rt1, "labl", undef, sub {
ny ($l abel, $rowop) = @;
if ($rowop->get Row()->get("a") > 10) {
$uni t - >cal | ($l ab2- >adopt ($r owop) ) ;
}
1

This code doesn't even look at the opcode in the rowop, it just passes it through and lets the next label worry about it. The
functionality of adopt () aso can beimplemented with

Row operations 37



$rowop2 = $l abel - >makeRowop( $r owopl- >get Opcode(), $rowopl->get Row());

But adopt () iseasier to cal and also more efficient, because less of the intermediate data surfaces from the C++ level
to the Perl level.

The references to rowops can be compared as usual:

$r owopl- >sane( $r owop?2)

returns true if both point to the same rowop object.

The rowop data can be extracted back:

$l abel = $rowop- >get Label ();

$opcode = $rowop- >get Qpcode() ;

$row = $rowop- >get Row() ;

A Rowop can be printed (usually for debugging purposes) with

$string
$string

$rowop- >print P();
$r owop- >pri nt P($nane) ;

Just as with a row, the method pri nt P() isimplemented in Perl. In the future apri nt () done right in C++ may be
added, but for now | try to keep all the interpretation of the data on the Perl side. Even though pr i nt P() isimplemented
in Perl, it can print the rowops for any kinds of labels. The following example gives an idea of the format in which the
rowops get printed:

$l b = $unit->makeDunmyLabel ($rt, "1b");

$rowop = $l b- >makeRowop( &Tri ceps: : OP_I| NSERT, $row);

print $rowop->printP(), "\n";

would produce

I' b OP_I NSERT a="123" b="456" c¢="3000000000000000" d="3.14" e="text"

The row contents is printed through Row: : pri nt P() , so it has the same format.

The optional argument allows to override the name of the label printed. For example, if in the example above the last line
were to be replaced with

print $rowop->printP("CQ herLabel "), "\n";
the result will become:
Ct her Label OP_I NSERT a="123" b="456" c="3000000000000000" d="3.14" e="text"

It makes the printing of rowops in the chained labels more convenient. A chained label's execution handler receives the
original unchanged rowop that refersto thefirst Iabel in the chain. So when it gets printed, it will print the name of thefirst
label in the chain, which might be very surprising. The explicit argument allows to override it to the name of the chained
label (or to any other value).

6.5. Opcodes

The defined opcodes are;
e &Triceps:: OP_NOPor" OP_NOP"
e &Triceps:: OP_I NSERT or " OP_I NSERT"

e &Triceps:: OP_DELETEor" OP_DELETE"

38 Labels and Row Operations



The meaning is straightforward: NOP does nothing, INSERT inserts arow, DELETE deletesarow. There is no opcode to
replace or update arow. The updates are done as two separate operations: first DELETE the old value then INSERT the
new value. The order isimportant: the old value has to be deleted before inserting the new one. But there is no requirement
that these operations must go one after another. If you want to update ten rows, you can first delete all ten and then insert
the new ten. In the normal processing the end result will be the same, even though it might go through some different
intermediate states. It's a good idea to write your models to follow the same principle.

Internally an opcode is always represented as an integer constant. The same constant value can be obtained by calling
the functions &Tr i ceps: : OP_*. However when constructing the rowops, you can aso use the string literals " OP_* "
with the same result, they will be automatically transtaled to the integers. In fact, the string literal form is dightly faster
(unless you save the result of the function in a variable and then use the integer value from that variable for the repeated
construction).

But when you get the opcodes back from rowops, they are aways returned as integers. Triceps provides functions that
convert the opcodes between the integer and string constants:

$opcode = &Triceps::stringQpcode($opcodeNane);
$opcodeNane = &Triceps::opcodeString($opcode);

They come handy for al kinds of print-outs. If you passtheinvalid values, the conversion to integerswill returnanundef .

The conversion of the invalid integers to strings is more interesting. And by the way, you can pass the invalid integer
opcodes to the rowop construction too, and they won't be caught. The way they will be processed is a bit of alottery. The
proper integer values are actually bitmasks, and they are nicely formatted to make sense. The invalid values would make
some random bitmasks, and they will get processed in some unpredictable way. When converting an invalid integer to
astring, opcodeSt ri ng tries to predict and show thisway in a set of letters | and D in sguare brackets, for INSERT
and DELETE flags. If both are present, usually the INSERT flag wins over the DELETE in the processing. If none are
present, it's a NOP.

In the normal processing you don't normally read the opcode and then compare it with different values. Instead you check
the meaning of the opcode (that isinternally a bitmask) directly with the rowop methods:

$r owop- >i sNop()
$r owop- >i sl nsert ()
$r owop- >i sDel et e()

Thetypical idiom for the label's handler functioniis:

if ($rowop->isinsert()) {
# handle the insert logic ...
} elsif($rowop->isDelete()) {
# handl e the delete logic...

}

The NOPs get silently ignored in thisidiom, as they should be. Generally there is no point in creating the rowops with the
OP_NOP opcode, unless you want to use them for some weird logic.

The main Triceps package also provides functions to check the integer opcode values directly:
Triceps::isNop($opcode)

Triceps::islnsert($opcode)

Triceps::isDel et e($opcode)

The same-named methods of Rowop are just the more convenient and efficient way to say
Triceps::isNop($rowop->get Qpcode())

Triceps::islnsert($rowp->get Opcode())

Triceps: :isDel et e( $r onwop- >get Opcode())

They handle the whole logic directly in C++ without an extra Perl conversion of the values.

Opcodes 39



40



Chapter 7. Scheduling

7.1. Introduction to the scheduling

The scheduling determines, in which order the row operations are processed. If there are multiple operations available,
which one should be processed first? The schedul er keeps a queue of the operations and selects, which one to execute next.
This hasamajor effect on the logic of a CEP model.

The Tricepsapproach to scheduling varied over time. Initially it looked like the purely procedural execution will be enough,
with the order determined by the order of the procedural execution, and no explicit scheduling would be needed. This has
proved to haveits own limitations, and thus the labels and their scheduling were born. Then it had turned out that the most
typical thing to do with alabel isto call it, again in the purely procedural order.

So for the most part you don't need to think about scheduling in Triceps. It just works as expected: when you call alabel
with arowop, the call returns after the label's work is all done. You can pretty much skip over the section with the low-
level details atogether, just read the high-level sections. The only important exception is the topological loops, where the
rowops go repeatedly through a closed loop of the labels. But even for them the Perl API provides the high-level methods
that take care of the details under the hood. And thereis another way to deal with the loops by using the streaming functions
and procedural loops.

If you want to understand the loop scheduling better, skim over the sections with the details. Y ou'd also need to do this if
you plan to write the Triceps modelsin C++, since as of version 2.0 the C++ API does not provide the high-level methods
for building the loops yet.

Only if you are a serious CEP affictionado and want to understand how everything really works, you need to seriously
read al the details.

7.2. Comparative scheduling in the various CEP
systems

There are multiple approaches to scheduling employed by different CEP systems. The classic Aleri CEP essentially didn't
have any, except for the flow control between threads, because each its element is a separate thread. Coral8 had an intricate
scheduling algorithm. Sybase R5.1 has the same logic as Coral8 inside each thread. StreamBase presumably also has some.

The scheduling logic in Triceps is different from the other CEP systems. The Coral8 logic looks at first like the only
reasonable way to go, but could not be used in Tricepsfor threereasons: First, it'satrade secret, soit can't be simply reused.
If I'd never seen it, that would not be an issue but I've worked on it and implemented its version for R5.1. Second, it relies
on the properties that the compiler computes from the model graph analysis. Triceps has no compiler, and could not do
this. Third, in redlity it simply doesn't work that well. There are quite a few cases when the Coral8 scheduler comes up
with a strange and troublesome execution order.

7.3. Execution unit basics

An execution unit (often called simply “unit”) keeps the state of the Triceps execution for one thread. Each thread running
Triceps must have its own execution unit.

It's perfectly possible to have multiple execution units in the same thread. This is typically done when there is some
permanent model plus some small intermittent sub-models created on demand to handle the user requests. These small sub-
models would be created in the separate units, to be destroyed when their work is done. But this is a somewhat advanced
usage, more examples will be shown in Section 15.11: “Streaming functions and unit boundaries’ (p. 283) The TQL
implementation also does this, as described in Chapter 17: “TQL, Triceps Trivial Query Language” (p. 335) .

41



This section describes the basic methods of the units, the most often used ones. The more advanced ones are described in
the following sections, and the full reference islocated in Section 19.3: “Unit and FrameMark reference” (p. 364) .

A unit is created with:
$myUnit = Triceps:: Unit->new"name");

The name argument will be used in the error messages, making easier to find, which exact part of the mode is having
troubles. By convention the name should be the same as the name of the unit variable (“myUnit” in this case).

The name can be read back:
$nanme = $nyUnit - >get Nane() ;

Also, asusual, thevariable Sy Uni t herecontainsareferenceto the actual unit object, and two references can be compared
for whether they refer to the same object:

$result = $unitl->same($unit?2);

A unit also keeps an empty row type (one with no fields), primarily for the creation of the clearing labels (discussed in
Section 8.2: “Clearing of the labels’ (p. 78)and Section 6.2: “Label construction” (p. 34)), but you can use it for any
other purposes too. Y ou can get it with the method:

$rt = $uni t - >get Enpt yRowType();

Each unit has its own instance of an empty row type. Its purely for the conveniece of memory management, they are all
equivalent.

The labels are called with:
$uni t->cal | ($rowop, ...);

Theidentity of the label being called isembedded in the row operation. The*“...” showsthat multiple rowops may be passed
as arguments. So the real signature of this method is:

$uni t->cal | (@ owops);
But thisway it looks more confusing. A call with multiple arguments produces the same result as doing multiple calls with
one argument at atime. Not only rowops but also trays (to be discussed later) of rowops can be used as arguments.

There also are the convenience methods that create the rowops from the field values and immediately call them:

$uni t - >makeHashCal | ( $l abel , $opcode,
$fi el dName => $fieldvalue, ...);
$uni t - >makeArrayCal | ($l abel , $opcode, @i el dval ues);

The methods for creation of labels have been already discussed in Section 6.2: “Label construction” (p. 34) . Hereistheir
recap along with the similar methods for creation of tables and trays that will be discussed later:

$l abel = $unit->makeDumyLabel ( $rowType, “nane");

$l abel = $unit->nmakelLabel ($rowType, "nane",
$cl ear Sub, $execSub, @rgs);

$l abel = $unit->maked eari nglLabel ("nanme", @rgs);
$tabl e = $unit->nmakeTabl e( $t abl eType, "nane");

$tray = $unit->nmakeTray( @ owops);

A special thing about the labels is that when a unit creates alabel, it keeps areference to it, for clearing. A label keeps a
pointer back to the unit but not areference (if you call get Uni t () on alabel, the returned value becomes a reference).

42 Scheduling



For atable or atray, the unit doesn't keep a reference to them. Instead, they keep a reference to the unit. The references
are at the C++ level, not Perl level.

With the tables, the references can get pretty involved: A table haslabels associated with it. When atableis created, it also
createstheselabels. Theunit keepsreferencesof theselabels. Thetableal so keepsreferences of theselabels. Thetablekeeps
areference of the unit. The labels have pointers to the unit and the table but not references, to avoid the reference cycles.

See more on the memory management and label clearing in the Chapter 8: “Memory Management” (p. 77) .

7.4. Trays

The easiest way to store a sequence of rowops is to put them into the Perl arrays, like:

ny @ps = ($rowopl, $rowop2);
push @ps, $rowop3;

However the C++ internals of Triceps do not know about the Perl arrays. And some of them can work directly with the
sequences of rowops. So Triceps defines an internal sort-of-equivalent of Perl array for rowops, called a Tray.

The trays have first been used to “catch” the side effects of operations on the stateful elements, so the name “tray” came
from the metaphor “ put a tray under it to catch the drippings’. The new and better approach for catching the resultsin a
tray catches the results of streaming functions.

The trays get created as.
$tray = $unit->makeTray( @ owops);

A tray always stores rowops for only one unit. It can be only used in one thread. A tray can be used in al the caling/en-
gueueing methods, just like the direct rowops (the detail s of the enqueueing methodswill be described later in Section 7.11:
“The gritty details of Triceps scheduling” (p. 69) and in Section 19.3: “Unit and FrameMark reference” (p. 364) ).

$unit->call ($tray);
$unit->fork($tray);

$uni t - >schedul e($tray);

$uni t - >enqueue( $node, S$tray);
$uni t - >l oopAt ($mark, $tray);

Moreover, multiple trays may be passed, and the loose rowops and trays can be mixed in the arguments of these functions,
for example:

$uni t->cal | ($rowopSt art Pkg, S$tray, $rowopEndPkg);
A tray may contain the rowops of any types mixed in any order. Thisis by design, and it's an important feature that allows

to build the protocol blocks out of rowops and perform an orderly data exchange. This feature is an absolute necessity for
proper inter-process and inter-thread communication.

The ability to send the rows of multiple types through the same channel in order is amust, and its lack makes the commu-
nication with some other CEP systems exceedingly difficult. Coral8 supports only one stream per connection. Aleri (and |
believe Sybase R5) allows to send multiple streams through the same connection but has no guarantees of order between
them. | don't know about the others, check yourself.

To iterate on atray in the Perl code, it can be converted to a Perl array:
@rray = $tray->toArray();
Thesize of thetray (the count of rowopsinit) can be found directly without a conversion, and the unit can be read back too:

$size = $tray->si ze();
$traysUnit = $tray->getUnit();

Trays 43



Another way to create atray is by copying an existing one:
$tray2 = $trayl->copy();

This copiesthe contents (which isthe referencesto the rowops) and does not create any ties between the trays. The copying
isreally just amore efficient way to do an equivalent of:

$tray2 = $trayl->get Unit()->makeTray($trayl->toArray());
The tray references can be compared for whether they point to the same tray object:
$result = $trayl->sanme(Stray2);

The contents of atray may be cleared. Which is more convenient and more efficient than discarding a tray and creating
another one:

$tray->clear();
The data may be added to the back of atray:
$tray- >push( @ owops) ;

Multiple rowops can be pushed in asingle call. There are no other Perl-like operations on atray: it's either create from a
set of rowops, push, or convert to a Perl array.

Note that the trays are mutable, unlike the rows and rowops. Multiple references to a tray will see the same contents. If a
tray is changed through one reference, the others will see the changes too.

7.5. Error handling during the execution

The basics of error handling have been described in Section 4.2: “Errors, deaths and confessions” (p. 19) . Now let's look
more in-depth. When the labels execute, they may produce errorsin one of two ways:

» The Perl codein the label might die.
e Thecall topology might violate the rules.

The rules are basically that by default you can't make the recursive calls. A label may not make calls directly or through
other labelsto itself. Theideais to catch the call sequences that are likely to go into the deep recursion and overflow the
stack. It catchesthem early, on thefirst attempt of recursion. If you need to do the recursion, the best way isto use instead
schedul e() orl oopAt () or the streaming functions with trays. That way you avoid overrunning the stack.

It's also possible to relax the recursion checks by specifying higher limits for the recursion count and stack depth. How to
do it is described in Section 7.13: “Recursion control” (p. 74). It comes useful in some specia cases, as described in
Section 15.9: “Streaming functions and recursion” (p. 269). However such higher limits best be avoided unless really
needed.

What particular stack is meant here? The execution of Tricepsin Perl has three stacks:

» The system stack used by the underlying Triceps C++ code and by the internal functions of the Perl interpreter.
e The Perl call stack, keeping the call history of the Perl code.

» The Triceps call stack, keeping the call history of the Triceps labelsin a Unit.

The answer is “dl three of these stacks’. As the calls are made, frames are pushed onto all these stacks, logically inter-
mingling.

Whichever way the error is detected, it causes the stacks to be unwound, undoing the intermingling in the opposite order.
The Perl error messages from di e or conf ess and the Triceps tracing (in the C++ code) of the rowop calls and label
chainings get combined into a common stack trace as the stacks are being unwound. When the code gets back to Perl, the
XScodetriggersaconf ess with the message containing the unwound stack trace up to this point. If that happensto bein

44 Scheduling



the handler of another label, it continues the hybrid stack unwinding. If not caught by eval , it keeps going to the topmost
TricepsUnitcal | () ordr ai nFrame() and causesthewholeprogramto die, printing the stack trace. In amultithreaded
Triceps model thereisalso astep of interrupting all the threadsin the model, but inthe end it till ends up dying and printing
the stack trace along with the information, what thread caused it. Which is a reasonabl e reaction most of the time.

Remember, the root cause is a serious error that is likely to leave the model in an inconsistent state, and it should usually
be considered fatal.

If you want to catch the errors, nip them in the bud by wrapping your Perl codein eval . Then you can handle the errors
before they have a chance to propagate.

In case if the program runs multiple models (multiple Units, or multiple multithreaded Apps) in it, it can also wrap the
outermost call ineval , and discard just this one erroneous model whileleaving the other models running. If the erroneous
units get properly cleared, they will free their memory and cause no leaks.

What happensto the rowopsthat were enqueued in the Triceps stack frameswhen the stack gets unwound? They get thrown
away. The memory gets collected thanksto the reference counting, but the rowops and their sequence order get thrown out
of the stack. The reason is basically that there may be no catching of the errors until unwinding to the outermost call. The
choiceisto either throw away everything after the first error or keep trying to execute the following rowops, collecting the
errors. And that might become a lot of errors. I've taken the choice of stopping as early as possible, because the state of
the model will probably be corrupted anyway and nothing but garbage would be coming out (if anything would be coming
at all and not be stuck in an endless loop).

7.6. No bundling

The most important principle of Triceps scheduling is: No Bundling. Every rowop isfor itself.

I've seen the most damage done by bundling in the Coral8/Sybase R4 scheduling, so I'll refer to it when explaining the
dangers of bundling.

What is a bundle? It's a set of records that go through the execution together. If you have a model consisting of two
functional elements F1 and F2 connected in a sequential fashion

F1->F2
and afew loose records R1, R2, R3, the normal execution order without bundling will be:
F1(Rl), F2(R1), F1(R2), F2(R2), F1(R3), F2(R3)

Each row goes through the whole model (area simple onein this case) before the next one is touched. This allows F2 to
takeinto accont the state of F1 exactly asit wasright after processing the samerecord, without any interventionsin between.

Even though the trays in Triceps store multiple rowops, they are not bundles. When atray is called, it works exactly asif
every rowop from it were called separately in order. Thefirst rowop fully propagates, then the second one, and so on. The
ordered storage in the trays only provides the order for that future execution or for amanual iteration over the rowops.

If the same records are placed in abundle (R1, R2, R3), the execution order will be different:
F1(Rl), F1(R2), F1(R3), F2(Rl), F2(R2), F2(R3)
The whole bundle goes through F1 before the rows go to F2.

That would not always be a problem, and even could be occasionally useful, if the bundles were always created explicitly.
In the reality of Coral8/Sybase R4 scheduling, every time a statement produces multiple rows from a single one (think
of ajoin that picks multiple rows from another side), it creates a bundle and messes up all the logic after it. Some logic
gets affected so badly that a few statements in CCL (the Sybase modeling language), such as “ON UPDATE”, had to be
designated to always ignore the bundles, otherwise they would not work at all. At my past work | wrote a CCL pattern
for breaking up the bundles. It's rather heavyweight and thus could not be used all over the place but provides a generic
solution for the most unpleasant cases.

No bundling 45



Worse yet, the bundles may get created in Coral 8 absolutely accidentally: if two rows happen to have the same timestamp,
for all practical purposes they would act as a bundle. In the models that were designed without the appropriate guards,
this leads to the time-based bugs that are hard to catch and debug. Writing these guards correctly is hard, and testing them
is even harder.

Another issue with bundlesisthat they make the large queries slower. Suppose you do a query from awindow that returns
amillion rows. All of them will be collected in a bundle, then the bundle will be sent to the interface gateway that would
build one huge protocol packet, which will then be sent to the client, which will receive the whole packet and then finally
iterate on the rows in it. Assuming that nothing runs out of memory along the way, it will be a long time until the client
seesthefirst row. Very, very annoying.

The Aleri CEP also had its own version of bundles, called transactions, but a more smart one. Aleri always relied on the
primary keys. The condition for atransaction isthat it must never contain multiple modification for the same primary key.
Since there are no execution order guarantees between the functional elements, in this respect the transactions work in the
same way as loose records, only with a more efficient communication between threads. Still, if the primary key changes
in an element (say, an aggregator), the condition does not propagate through it. Such elements have to internally collapse
the outgoing transactions along the new key, adding overhead.

7.7. Topological loops

The easiest and most efficient way to schedule the loopsisto do it procedurally, something like this:

foreach ny $row (@owset) {
$uni t->cal | ($! bA- >nakeRowop( &Tri ceps: : OP_I NSERT, $row));
}

However it requires that all the rowops to loop over are known in advance. In some situations this might not be true, but
instead the rowop entering a loop iteration gets produced by the previous iteration. These situations are better served by
the topological loops, formed by connecting the labelsin aloop as shownin Figure 7.1 .

Xr—» A —» B —» C —» Y

Figure7.1. Labelsforming atopological loop.

However if the labels are simplemindedly doing the calls through atopology like this, the loop becomes a recursion: each
label ends up indirectly calling itself for the next iteration of the loop, which repeats the same thing again ang again. This
arrangement would quickly use up the stack and crash, so Triceps normally prohibits the recursive calls.

There are two ways to get around that problem. The first one is to use the trays and streaming functions as described in
Section 15.5: “ Streaming functions and loops” (p. 259). It might be the more powerful aternative of the two, however
the concept of streaming functions takes afair amount of explaining and thusis placed later in the manual. The second way
isto use the more advanced scheduling capabilities of the Triceps units, which is described here.

The detailed explanation of how it all works is somewhat complicated, split into a separate section Section 7.12: “The
gritty details of Triceps loop scheduling” (p. 72) for those interested. But there are the easy methods that cover up
all the complexity.

The first part is done by creating the first 1abel of the loop (such as the label A in Figure 7.1) through a specia wrapper.
This can be done in one of two ways:

46 Scheduling




ny ($lbFirst, $mark) = $unit->makelLoopHead($rowType, "nane", $cl ear Sub,
$execSub, @rgs);
ny ($lbFirst, $mark) = $unit->nmakeLoopAround(" nane", $IbToWap);

makelLoopHead() istheway to useif you're creating anew Perl |abel to bethefirst oneintheloop. It hasthe exact same
arguments asmakelLabel (), whichis described in Section 6.2; “Label construction” (p. 34) . It will put an appropriate
wrapper directly into the Perl code, that would do all the required magic before your code executes.

makelLoopAr ound() istheway to useif you want to start the loop with some existing label (such as an input label of a
table). It will createanew label that doesthe necessary magic, then chainitsargument label from the new one. Nothing really
stops you from creating a Perl label manually and then wrapping it in nakeLoopAr ound() but makeLoopHead()
produces a slightly more efficient code.

Either way, two values are returned: the newly created label and a special FrameMark object.

When you send the rows into the loop, you absolutely must send them to this newly created label, not directly to the
underlying wrapped label! Otherwise the magic won't work.

The FrameMark isaspecial opaque object that is used to remember the state of the Triceps call stack at the start of the loop,
to get back to it on the next iterations. It will be used when sending the rowops to the next iteration of the loop. Naturally,
this object must be made accessible in the label handlers that do this sending.

The name argument will become the name of the created label. The FrameMark object also has a name, useful for diag-
nostics, that gets created by adding a suffix to the argument: “name.mark”.

The second part, whenever you need to send a rowop back to the start of the loop, such asin the label C in Figure 7.1,
don't call it but use a special method:

$uni t - >l oopAt ($mark, @ owops_or _trays);

This will remember this rowop for the future. When the processing of the current iteration is al done, the scheduler in
the unit will pick up the next remembered looped rowop and will feed it into the next iteration, until there are no more
remembered rowops. Only after that will the first call of the first label in the loop return to its caller. In Figure 7.1 the
said caller will be the label X.

The rowops sent back must always be for the label $1 bFi r st , returned by the makeLoop* () .

It's perfectly fine to send multiple rowops back from a single iteration of the loop, each of these rowops will be processed
inits own iteration in the order they were sent.

It's dso perfectly fine to have the nested loops, as long as each loop uses its own frame mark object and starts from a
separate label (add an empty label if needed).

There also are the convenience methods that create a rowop and loop it back in one go, just like nakeHash-
Call ()/ makeArrayCall ():

$uni t - >makeHashLoopAt ($mar k, $I bFirst, $opcode,
$fiel dNanme => $fieldvalue, ...);
$uni t - >makeAr r ayLoopAt ($mark, $I bFirst, $opcode, @i el dval ues);

Now with all this knowledge let's write an example. It will compute the Fibonacci numbers. It's a real overcomplicated
and perverse way of calculating the Fibonacci numbers. But it also is a great fit to the type of problems that get solved
with the topological 1oop, one of a simple kind.

First, aquick reminder of what is a Fibonacci number. Historically it's a solution to the problem of breeding the spherical
rabbits in a vacuum. But in the mathematical redlity it's the sequence of numbers where each number is a sum of the two
previous ones. Two initial elements are defined to be equal to 1, and it goes from there:

Fi=F.a+Fo

Topological loops a7



F]_:l; F2:1

The Fibonacci numbers are often used as an example of recursive computations in the beginner's books on programming.
The computation of the n-th Fibonacci number is usually shown like this:

sub fibl # ($n)

{
nmy $n = shift;
if ($n <= 2) {
return 1;
} else {
return & ibl($n-1) + & i bl($n-2);
}
}

However that's not a good way to compute in the real world. When afunction callsitself recursively once, its complexity

islinear, O(n). When a function calls itself twice or more, its complexity becomes exponential, O(e"). At first you might
think that it's only quadratic O(nz) because it forks two ways on each step. But these two ways keep forking and forking
on each step, and it compounds to exponential. Which isarea bad thing.

To think of it, it's a huge waste, since the (n-2)-th number is calculated anyway for the (n-1)-th number. Why calculate
it separately the second time? We could as well have saved and reused it. The Lisp people have figured this out a long
time ago, and the Lisp books (if you can read Finnish or Russian, [Hyvonen86] is aclassical one) are full of examples that
do exactly that. However I'm too lazy to explain how they work, so we're going to skip it together with the conversion
of atail recursion into aloop and get directly to the loop version. | find the loop version more natural and easier to write
than arecursion anyway.

sub fibStep2 # ($prev, $preprev)

return ($.[0] + $ [1], $.[0]);

}
sub fib2 # ($n)
{

nmy $n = shift;

nmy @rev = (1, 0); # n and n-1

while ($n > 1) {
@rev = & i bStep2(@rev);
$n--;

}

return $prev[0];

}

The split into two functions is not mandatory for the loop version, it just does the clean separation of the loop counter logic
and of the computation of the next step of the function. (But for the recursion version if would be mandatory).

I'm going to take this procedural loop version and transform it into a topological loop. It actually happens to be a real
good match for the topological loop. In atopological loop arecord keeps traveling through it and being transformed until
it satisfies the loop exit condition. Here @r ev is the record contents, and the iteration count will be added to them to
keep track of the exit condition.

$uFib = Triceps::Unit->new("uFib");

ny $rtFib = Triceps:: RowType->new
iter => "int32", # iteration nunber
cur => "int64", # current nunber
prev => "int64", # previous nunber

)

ny $l bPrint = $uFi b->nakelLabel ($rtFi b, "Print", undef, sub {

48 Scheduling



print($_[1]->get Row()->get("cur"));
1)

ny $l bConpute; # will fill in later

ny ($l bNext, $markFib) = $uFi b->nmakelLoopHead(
$rtFib, "Fib", undef, sub {
nmy $iter = $ [1]->get Row()->get("iter");
if ($iter <= 1) {
$uFi b->cal | ($! bPrint->adopt ($_[1]));
} else {
$uFi b->cal | ($l bConput e- >adopt ($_[1]));
}

}
)

$l bConput e = $uFi b->makelLabel ($rtFi b, "Conpute", undef, sub {
ny $row = $_[ 1]->get Row();
ny $cur $row >get ("cur");
$uFi b- >makeHashLoopAt ($mar kFi b, $I bNext, $_[1]->get Opcode(),
iter => $row>get("iter") - 1,
cur => $cur + $row >get ("prev"),
prev => $cur,
)
1)

ny $l bMai n = $uFi b- >makelLabel ($rtFi b, "Miin", undef, sub {
ny $row = $_[ 1]->get Row();
$uFi b- >makeHashCal | ($l bNext, $_[1]->get Opcode(),

iter => $row >get("iter"),

cur => 1,

prev => 0,

)

print(" is Fibonacci nunber ", $row>get("iter"), "\n");

1)

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uFi b- >makeAr rayCal | ($l bMai n, @lat a) ;
$uFi b->drai nFrane(); # just in case, for conpleteness

}

You can see that it has grown quite a bit. That's why the procedural loops are generally a better idea. However if the
computation involves alot of the SQLY logic, the topological loops are still beneficial.

The main loop reads the CSV lines with opcodes (which aren't really used here, just passed through and then thrown away
before printing) and calls $| bMai n. Here is an example of an input and output as they would intermix if the input was
typed from the keyboard. Asin the rest of this manual, the input lines are shown in bold.

OP_| NSERT, 1
1 is a Fibonacci nunber 1
OP_DELETE, 2
1 is a Fibonacci nunber 2
OP_| NSERT, 5
5 is a Fibonacci nunber 5
OP_I NSERT, 6
8 is a Fibonacci nunber 6

Theinput lines contain the values only for thefieldi t er , which intentionally happensto be thefirst field in the row type.
The other fields will be reset anyway in $| bMai n, so they are left asNULL.

Topological loops 49



Thepoint of $| bMai n isto call theloop beginlabel $I bBegi n and then print the message about which Fibonacci number
was requested. The value of the computed number is printed at the end of the loop, so when the words “is a Fibonacci
number” are printed after it, that demonstrates that the execution of $| bMai n continues only after the loop is completed.

Just to rub it in a bit more, $| bMai n itself doesn't get back the result of the computation, because the Tricepscal | ()
has no way to return any results. The intermediate states circle through the loop until the computation is completed, and
the results are forwarded out of the loop to $I bPri nt () . All thistime $| bMai n sits and waits for its call to complete.
After the execution gets back to $I bMai n, it knows that $| bPri nt () aready ran and printed the result, so it prints
more detail after it. Another option would be for the loop result label to put the result value into some static variable, letting
$l bMai n read it and print the whole message in one statement.

Theloop logic is split into two labels $1 bNext and $| bConput e purely to show that it can be split like this. $| bNext
handles the loop termination condition, and $| bConput e does essentially the work of f i bSt ep2() . After the loop
terminates, it passes the result row to $1 bPr i nt for the priniting of the value.

When the code for $I bNext is created, it contains the call of $| bConput e. However the label $I bConput e has not
been created at thistime yet! Not a problem, creating in advance an empty variable $| bConrput e is enough. The closure
in $1 bNext will keep areference to that variable, and the variable will be filled with the reference to the label later (but
before the main loop executes).

And hereisthe version with makeLoopAr ound() :

ny ($l bNext, $markFib); # will fill in later

$! bComput e = $uFi b- >makelLabel ($rtFi b, "Conpute", undef, sub {
nmy $row = $_[1]->get Row();
nmy $cur = $row >get ("cur");
ny $iter = $row>get("iter");
if (Siter <= 1) {
$uFi b->cal | ($l bPrint->adopt ($_[1]));
} else {
$uFi b- >makeHashLoopAt ($mar kFi b, $I bNext, $_[1]->get Opcode(),
iter => $row>get("iter") - 1,
cur => $cur + $row >get("prev"),
prev => S$cur,
)
}
1)

(8l bNext, $markFi b) = $uFi b- >makelLoopAr ound(
"Fib", $IbConpute
)

Theunit, row type, $1 bPri nt , $I bMai n and the main loop have stayed the same, so they are omitted from this example.
The whole loop logic, both the termination condition and the computation step, have been collected into one label $I b-
Conput e, to show that it can be done this way too. Then the loop head is created around $1 bConput e.

Sinceboth $1 bNext and $rmar kFi b need to beaccessibleinside $lI bConput e, they are created in advance and become
visible in the closure scope. But the values are placed into these variables only after $| bConput e is already defined
(since $I bConput e isan argument to build these values).

For the more curious, let's dig alittle into what happensinside the makeLoop* () methods. The same effect can be (and
in C++ APl hasto be) achieved by calling the slightly lower-level methods.

The frame mark is created as follows:
ny $mark = Triceps:: FraneMar k- >new( " mar kNane") ;
It has to be remembered and then used in the first 1abel of the loop to remember the state of the Triceps call stack:

$uni t - >set Mar k( $mar k) ;

50 Scheduling



Thisis normally the first thing done in the first 1abel's handler. Yes, it will be remembered on every iteration of the loop.
However the trick of the arrangement is that the call stack will be returned to the same state before each iteration, so on
the second and following iterations this call will become a no-op.

ThemakeLoop* () methodsjust do thisfor you, their implementation isfairly smple:

sub nakeLoopHead # ($self, $rt, $name, $cl ear Sub, $execSub, @rgs)
{

my ($self, $rt, $name, $clear, $exec, @rgs) = @;
ny $mark = Triceps:: FraneMar k- >new $nane . ".mark");

ny $l abel = $sel f->nakelLabel ($rt, $nane, $clear, sub {
$sel f->set Mar k( $mar k) ;

&$exec( @) ;
}, @rgs);
return ($l abel, $mark);
}
sub nmekeLoopAround # ($sel f, $nane, $I bFirst)
{

my ($self, $nane, $IbFirst) = @;
my $rt = $I bFi rst->get RowType();

ny $mark = Triceps:: FraneMar k- >new $nane . ".mark");

ny $l bWap = $sel f - >makeLabel ($rt, $name, undef, sub {
$sel f->set Mar k( $mar k) ;

1)
$l bW ap- >chai n( $l bFi rst);

return ($l bWap, $nmark);

7.8. The main loop

The examples above had already shown the “main loop”, now let'slook at it up close and discuss, what and why isit doing.
The point of the main loop is to get the execution of the model going: accept some rowops from the outside world, shovel
them into the Triceps model and process them, sending some result rowops back into the outside world. The sending back
is done from inside the label handlers, so aslong as the model runs, nothing else is needed for them.

By the time the program enters the main loop, the model should be all constructed and ready to run. The simplest main
loop may look like this:

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t - >cal | ($r owop) ;
}

Thisloop will read the incoming rowops as long as they're available, and call them. When $uni t - >cal | () returns, the
processing of the rowop in the model is done, including all the nested calls it caused.

However there is also a way to request the post-processing. It's somewhat similar to the Tcl concept of “idletasks’. An
example of post-processing might be the flushing of the output buffer: the normal processing may collect a number of the
output rowopsin the buffer, and after everything is done, the buffer would be serialized and sent out. This post-processing
needs to happen after theinitial call returns.

The rowops are scheduled for post-processing with the method:

The main loop 51



$uni t - >schedul e( @ owops_or _trays);

The model keeps a queue of the post-processing requests, and schedul e() addsto this queue.

However the simplest main loop shown above won't run the postprocessing. The queue would just keep growing. The
postprocessing is done by the method

$uni t - >dr ai nFrane() ;

It callsall the collected post-processing rowopsin order. Their handling may keep scheduling morerowops, and thedraining
won't stop until all of them are processed. So they should not keep schduling more rowops forever, or the draining will
never end. To handle the postprocessing properly, the main loop should be:

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t - >cal | ($r owop) ;
$uni t - >dr ai nFrame() ;

}
You can even writeitin aslightly different form:;

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t - >schedul e( $r owop) ;
$uni t - >dr ai nFrame() ;

}

In this version the incoming rowop gets added to the queue, and then dr ai nFr ane() calsit and any of its after-effects.
Historically, this has been the intended way but then it had turned out that there is no point in first placing the incoming
rowop onto the queue and then reading it from the queue, so calling it directly is slightly more efficient.

What if you decide in some label handler deep in the call tree that now isthe good time to run the schduled rowops, similar
to Tcl's“update idietasks’ and call dr ai nFr ane() ?First of all, thisisavery bad idea. The CEP models are usually very
sensitive to the particular execution order, and inserting some random rowops in the middle tends to break things. Second,
it won't work. It might execute some rowops (which ones exactly is along story, described in Section 7.11: “The gritty
details of Triceps scheduling” (p. 69)) but none of the scheduled ones. In short, there is a reason to why the method is

caled dr ai nFrame() : the queue is organized in frames that are pushed stack-wise as the labels are called, and popped
after the calls complete. Dr ai nFranme() drains the current frame. Schedul e() puts the rowops onto the outermost
frame that becomes accessible for draining only when the model isidle.

It is possible to find out whether there are the post-processing rowops scheduled and to run them one by one;

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t->cal | ($r owop) ;
while (!S$unit->enmpty()) {
$uni t->cal | Next();
}
}

But of course a Perl loop is less efficient than the C++ loop in dr ai nFr ame() .

Another straightforward idea is to read and execute the input as it comes in but delay the post-processing until the input
becomesidle, exacly like the Tcl “idletasks’ do. Somewhat like this:

while (1) {
if (!$Sunit->empty()) {
$rowop = & eadRowopNoWai t () ;
if ($rowop) {
$uni t - >cal | ($r owop) ;
} else {
$uni t->cal | Next();

} else {

52 Scheduling



$rowop = & eadRowop();
last if (!$rowop); # no nore input
$uni t - >cal | ($r owop) ;
}
}

It might even be useful sometimes but most of the time this turns out to be nothing but pain. The problem is that the
exact order of execution becomes dependent on the timing of the data arrival, and the repeatabl e testing becomes next to
impossible. It's another case of the bundling problem.

If the data arrives bundled with multiple rowops per packet, you have a choice whether to drain the frame after each rowop
or after each packet. Which approach is better depends on the needs of the application and on whether the bundling of the
rowops into packets is predictable and repeatable. If there are no defined boundaries between packets but the grouping is
done simply by timeout or buffer size, such bundles are much better off being broken up into the individual rowops.

Now let's look at yet another aspect: the main loop may need to exit not only when there is no more input available but
also after processing some requests. This can be done by adding a globa stop flag, with label handlers setting it when
they need to request the exit:

$stop = O;

while (!$stop && ($rowop = & eadRowop())) {
$uni t->cal | ($rowop) ;
$uni t - >drai nFrame() ;

}

The examplesin this manual tend to read the input data as plain text lines, convert them to rowops and execute. They are
simple-minded, so they don't do any error checking, they would just fail randomly on the incorrect input. Their main loop
usually goes along the following lines (with variations, to fit the examples, and as the main loop was refined over time):

whi | e(<STDI N>) {

chonp;
nmy @ata = split(/,/); # starts with a cormand, then string opcode
ny $type = shift @lata;

if ($type eq "IbCur") {

$uni t - >makeArrayCal | ($l bCur, @lata);
} elsif ($type eq "I bPos") {

$uni t - >makeArrayCal | ($l bPos, @lata);

}

$uni t - >dr ai nFrane() ;

}

It reads the CSV (Comma-Separated Vaues) data from stdin, with the label name in the first column, the opcode in the
second, and the data fields in the rest. Then dispatches according to the label.

Many variations are possible. It can be generalized to look up the labels from the hash:

whi | e(<STDI N>) {
chonp;
nmy @ata = split(/,/); # starts with a cormand, then string opcode
ny $type = shift @lata;
$uni t - >makeArrayCal | ($l abel s{$type}, @lata);
$uni t - >dr ai nFrane() ;

}
Or call the procedural functions for some types:

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "IbCur") {

The main loop 53



$uni t - >makeArrayCal | ($l bCur, @lata);

} elsif ($type eq "I bPos") {
$uni t - >makeAr rayCal | ($l bPos, @lata);

} elsif ($type eq "clear") { # clear the previous day
&cl ear ByDat e( $t Posi ti on, @lata);

}

$uni t - >dr ai nFrane() ;

}

Once again, none of these small examples are production-ready. They have no error handling, and their parsing of the CSV
data is primitive. It can't handle the quoting properly and can't parse the data with commasin it. A better ready way to
parse the data will be provided in the future. For now, make your own.

The multithreaded models have their own special needs for the main loops. These will be discussed in Section 16.6: “ Dy-
namic threads and fragments in a socket server” (p. 306) .

7.9. Main loop with a socket

A fairly typical situation is when a CEP model has to run in a daemon process, receiving and sending data through the
network sockets. Here goes an example that does this. It's not production-ready, it's only of an example quality, and thus
is located in an X-package. It still has the issue with the parsing of the CSV data, its handling of the errors is not well-
tested, and it makes afew simplifying assumptions about the buffering (more on this below). Other than that, it's a decent
starting point. You can import this package as Triceps::X::SimpleServer, its source code found in | i b/ Tri ceps/ X/
Si npl eServer. pm

package Triceps:: X :Sinpl eServer;
sub CLONE_SKIP { 1; }
our $VERSION = 'v2.0.0';

use Carp;

use Errno gw( El NTR EAGAI N) ;

use 1O :Poll gw(POLLIN POLLOUT POLLHUP);
use | O : Socket ;

use | O : Socket: : | NET;

our @SA = gw( Exporter);

our YEXPORT_TAGS = ( "all' => [ agw
out Buf out Cur Buf mai nLoop start Server nakeExitLabel nakeServer CQut Label

) 1)
our @EXPORT_OK = ( @ S$EXPORT_TAGS{'all'} } );

# For whatever reason, Linux signals SIGPlIPE when witing on a closed
# socket (and it's not a pipe). So intercept it.
sub interceptSi gPi pe

if (!'$SIGPIPE}) {
$SIG PIPE} = sub {};
}
}

# and intercept SIGPlIPE by default on inport
& nt ercept Si gPi pe();

The package startswith the usual importsand exports. The CLONE_SKIPisrequired to make surethat the packageinteracts
properly with the multithreading (any objects of this package won't be cloned into the new threads, and since the cloning
tends to not work right anyway, I'm not sure why it's not the default).

54 Scheduling



Then it intercepts and ignores the SIGPIPE signal for the reasons described in the comment. It's very inconvenient to have
your server die on asignal when the other side decides to drop the connection. Any server dealing with sockets on Linux
must intercept SIGPIPE. Intercepting it with an empty handler looks like a better idea than ignoring it altogether, to make
extra-sure that the writer won't be stuck in that write forever, but perhapsignoring it would be just asgood. Theinterception
is placed into a function which gets called on the package import and can be called again later in case if something else
resets the handler to default.

# the socket and buffering control for the main | oop;

# they are all indexed by a unique id

our %lients; # client sockets

our % nbufs; # input buffers, collecting the whole Iines

our %utbufs; # output buffers

our $poll; # the poll object

our $cur_cli; # the id of the current client being processed

our $srv_exit; # exit when all the client connections are cl osed

# Witing to the output buffers. WIIl also trigger the polling to
# actually send the output data to the client's socket.
#
# @aramid - the client id, as generated on the client connection
# (if the client already disconnected, this call wll
# have no effect)
# @aramstring - the string to wite
sub outBuf # ($id, $string)
{
ny $id = shift;
ny $line = shift;
if (exists $clients{$id}) {
$out buf s{$i d} .= $line;
# If there is anything to wite on a buffer, stop reading fromit.
$pol | - >mask($clients{$id} => POLLOUT);
}
}

# Wite to the output buffer of the current client (as set in $cur_cl
# by the main | oop).

#

# @aramstring - the string to wite

sub out CurBuf # ($string)

{

}

out Buf ($cur _cli, @);

# Close the client connection. This doesn't flush the ouput buffer,

# so it nust be called only after the flush is done, or if the flush
# can not be done (such as, if the client has dropped the connection).
# 1t does delete all the client-related data
#
#
#
s

@aramid - the client id, as generated on the client connection
@aram h - the socket handle of the client
ub _closeCient # ($id, $h)

ny $id = shift;

ny $h = shift;

$pol | - >mask($h, 0);

$h->cl ose() ;

delete $clients{$id}; # OK per Perl manual even when iterating
del ete $i nbuf s{$id};

del et e $out buf s{$i d};

Main loop with a socket 55



O HHHFHBFHFFHFHFHHFHFEHF R

The server
Accepts the connections fromit, th
input, reads the data in CSV and di

XXX Caveat s:

The way this works, if there is no
the last Iine won't be processed
Al so, the whole output for all the
before it can be sent.

@ar am srvsock - the server socket
@ar am | abel s -
mappi ngs used to dispatch th
nane => | abel _obj ect
nane => code_reference
The input fromthe clients
contai ning the | abel nane.
actual | abel
the data fields in the order
| ooked up dispatch is a Perl

Ref erence to the | abe

the rest of CSV fields are:

main | oop. Runs with the specified server socket.

en polls the connections for
spatches it using the | abels hash.

'\'n' before EOF,
input will be buffered
handl e

hash,
e input,

that contains the
in either of formats:

s parsed as CSV with the 1st field

Then if the | ooked up dispatch is an
the 2nd t he opcode,
of the label's row type. If the
sub reference, just the whol e input

line is passed to it as an argunent.

ub nai nLoop # ($srvsock, $% abel s)

ny $srvsock = shift;
ny $l abels = shift;

ny $client_id = 0; # unique strings
our $poll =10C:Poll->new);

$srvsock->bl ocki ng(0) ;
$pol | - >mask($srvsock => POLLIN);
$srv_exit = 0;

while(!$srv_exit || keys %lients !
my $r = $poll->poll();
confess "poll failed: $!'" if ($r

if ($poll->events($srvsock)) {
while(1) {

ny $client = $srvsock->accept

if (defined $client) {
$cl i ent - >bl ocki ng(0);
$clients{++Sclient_id} = $c
# print("Accepted client $c
$pol | - >mask( $cl i ent

} elsif($!{EAGAIN} ||
| ast;

} else {

}
}
}

my ($id, $h, $mask, $n, $s);
while (($id, $h) = each %l ients)
no warnings; # or in tests prin

confess "accept failed: $!'";

$cur_cli = $id;
$mask = $pol | - >event s($h) ;
if (($mask & POLLHUP) && !defin

# print("Lost client $client_

= 0) {

<0 & ! $!'{EAGAIN} && ! $!{EINTR});
0

lient;

lient_id\n");

=> (POLLI N| POLLHUP) ) ;
$! {EINTR}) {

{

ts a lot of warnings about undefs

ed $out bufs{$id}) {
idin");

and the rest

56

Scheduling



_closedient($id, $h);
next ;

}
if ($mask & POLLOUT) {
$s = $out buf s{$i d};
$n = $h->syswrite($s);
if (defined $n) {
if ($n >= length($s)) {
del et e $out buf s{$i d};
# now can accept nore input
$pol | - >mask($h => (POLLI N POLLHUP));
} else {
substr ($out buf s{$id}, 0, $n) ="";

}

} elsif(! $'{EAGAIN} && ! $!{EINTR}) {
warn "wite to client $id failed: $!'";
_closedient($id, $h);
next ;

}

}
if ($mask & POLLIN) {

$n = $h- >sysread($s, 10000);

if ($n == 0) {

# print("Lost client $client_id\n");
_closedient($id, $h);
next ;

} elsif ($n > 0) {
$i nbuf s{$i d} .= $s;

} elsif(! ${EAGAIN} && ! $!{EINTR}) {
warn "read fromclient $id failed: $!'";
_closedient($id, $h);
next ;

}

}
# The way this works, if there is no '\n' before ECF
# the last line won't be processed
# Al so, the whole output for all the input will be buffered
# before it can be sent.
whi | e($i nbuf s{$id} =~ s/*(.*)\n//) {
ny $line = $1;
chonp $line;

local $/ = "\r"; # take care of a possible CR-LF in this block
chonp $line;
}
ny @ata = split(/,/, $line);
ny $l nane = shift @lata;
ny $l abel = $I abel s->{$l nane};
if (defined $label) {
if (ref($label) eq ' CODE' ) {
&Sl abel ($line);
} else {
ny $unit = $l abel ->get Unit();
confess "l abel '$lnane' received fromclient $id has been cl eared"
unl ess defined $unit;
eval {
$uni t - >makeArrayCal | ($l abel, @lata);
$uni t - >dr ai nFrane() ;
s

warn "input data error: $@nfromdata: $line\n" if $@

Main loop with a socket 57



} else {
warn "unknown | abel '$lnanme' received fromclient $id: $line

Thegeneral outlinefollowsthe single-threaded multiplexing server described in [Babkinl0]. mai nLoop() getstheserver
socket and a dispatch table of labels or functions as its arguments. It then proceeds with waiting for connections.

Once aconnectionisreceived, it gets added to the set of active connections, to get included in the waiting for theinput data.
The input data is read as simplified CSV (no commas in the middle of values, and no way to reprsent the NULL values
othar than for those omitted at the end of the line). It's expected to have the format:

name, opcode, dat a. . .
Such as:

wi ndow, OP_| NSERT, 5, AAA, 30, 30
wi ndow. query, OP_| NSERT
exit, OP_NOP

The name part is then used to find alabel in the dispatch table. Therest of the data is used to create arowop for that label
and execute it. ASyou can see, arow must contain at least the label name and opcode, or the execution will print an error
message on the server's standard error and return no response to the client in the socket.

If the dispatch table contains not a label but a simple function reference for some name, the rest of the row is not even
parsed, the function gets called without any arguments. If the exit is implemented as a function in the dispatch table, the
following would also work:

exit
The datais sent back to the client through buffering. To send some datato aclient, use

&out Buf ($id, S$text);

The $i d isthe unique id of the client. How do you find, what is the id of the client you want to send the data to? When
aninput lineis processed, the main loop knows, from what client it was received. It putstheid of that client in the global
variable$Tri ceps: : X:: Si npl eServer: : cur_cli.Youcantakeitfrom thereand remember. If you want to reply
to the current client, you don't need to bother yourself with theid at all, just call

&out Cur Buf ($t ext);

If you remember anid for the future use, and the client disconnects before you call out Buf () , the call will have no effect.
Inany case, if aclient has disconnected, the further processing of its requests should usually be stopped, and thus checking
if the client is still connected is agood idea anyway:

if (exists $clients{$id}) {

# ... prepare the data for it
&out Buf ($id, S$text);
} else {
# ... stop sending the data to this client

}

The client ids are not reused, so this check is always safe.

Once some output is buffered to send to a client, the further input from that client stops being accepted until the output
buffer drains. But the processing in the Triceps unit scheduler keeps running until it runs out of things to do before it
returns to the main loop. All this time the output buffer keeps collecting data without sending it to the client. Also, the
input buffer might happen to already contain multiple lines. Then all these lines will be processed before the data from the
output buffer starts being sent to the client. If arequest produces alarge amount of data, all this datawill be buffered first.

58 Scheduling



It'sasimplification but really the commercial CEP systems aren't doing awhole lot better: when asked for the contents of a
table/window/materliaized view, Coral8 and Aleri and Sybase (don't know about StreamBase but it might be not different
either) would make a copy of it first before sending the data. In some cases the copy is more efficient because it references
the rows rather than copying the whole byte data, but in the grand scheme of thingsit's all the same.

Internally the information about the client sockets and their buffersis kept in the global hashes %€ i ent s, % nbuf s,
%out buf s. It could be done aasingle hash of objects but thiswas simpler.

The loop exits when the global variable $Tri ceps: : X: : Si npl eServer: : srv_exit getsset (synchronoudly, i.e.
by one of the label handlers) to 1 and all the clients disconnect. The requirement for disconnection of all the clients makes
sure that all the output buffers get flushed before exit, and that was the easiest way to achieve this goal.

mai nLoop() relies on the listening socket being already created, bound and given to it as a parameter. The creation of
the socket and forking of a separate server process is wrapped in another function:

The server start function that creates the server socket,
renenbers its port nunber, then forks and

starts the main loop in the child process. The parent
process then returns the pair (port nunber, child PID).

@aram port - the port nunber to use; 0 will cause a unique free
port nunber to be auto-assigned
@aram | abel s - reference to the | abel hash, to be passed to nai nLoop()
@eturn - pair (port nunber, child PID) that can then be used to connect
to and control the server in the child process
ub startServer # ($port, $% abel s)

O HHHHHH R HHFHR

ny $port = shift;
ny $l abels = shift;

ny $srvsock = 1O : Socket:: | NET->new
Proto => "tcp",
Local Port => $port,
Li sten => 10,
) or confess "socket failed: $!'";
# Read back the port, since the port 0 will cause a free port
# to be auto-assigned.
$port = $srvsock->sockport() or confess "sockport failed: $'";
my $pid = fork();
confess "fork failed: $!" unless defined $pid,;
if ($pid) {
# parent
$srvsock->cl ose();
} else {
# child
&mai nLoop( $srvsock, $l abel s);
exit(0);
}
return ($port, $pid);
}

Y ou can specify the server port 0 to request that the OS bind it to arandum unused port. The port number isthen read back
withsockport () . The pair of the port numer and the server's child processid is then returned as the result. The process
where the server runsisin this case just a child process, it's not properly daemonized.

For a simple complete example, let's make an echo server that would print back the rows it receives, as found in't /
xQuery.t:

our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded

Main loop with a socket 59



price => "fl oat 64",
size => "float64", # nunber of shares traded

);
use Triceps:: X :SinpleServer gwm:all);
ny $uEcho = Triceps:: Unit->new"uEcho");

ny $l bEcho = $uEcho- >nekelLabel ($rt Trade, "echo", undef, sub {
&out CurBuf ($_[ 1] ->printP() . "\n");

1)
ny $l bEcho2 = $uEcho- >nakelLabel ($rt Trade, "echo2", undef, sub {
&out Cur Buf (join(",", "echo", &Triceps::opcodeString($_[1]->get Opcode()),
$ [1]->getRow()->toArray()) . "\n");
1)

ny $l bExit = $uEcho->nekelLabel ($rtTrade, "exit", undef, sub {
$Triceps:: X :SinpleServer::srv_exit = 1;

1)

ny %di spatch;

$di spat ch{"echo"} = $Il bEcho;
$di spat ch{"echo2"} = $l bEcho2;
$di spatch{"exit"} = $l bExit;

ny ($port, $pid) = &Triceps:: X :SinpleServer::startServer(0, \%li spatch);
print STDERR "port=$port pid=$pid\n";

wai t pi d($pi d, 0);

exit(0);

It starts the server and waits for it to exit. wai t pi d() isused herein asimplified way too, it should properly be donein
aloop until it succeeds or an error other than El NTRis returned.

$rt Tr ade isthe row type for the expected data. Two labels, “echo” and “echo2” differ in the way they print the data
back: “echo” printsit in the symbolic form while “echo2” printsin CSV. Thelabel “exit” setsthe exit flag. Hereisasmall
session log from the client side (46651 is the port that got picked at random and printed by the server on the start):

$ telnet |ocal host 46651
Trying 127.0.0.1...
Connected to | ocal host.
Escape character is '""]'.
echo, OP_I NSERT, 1, a, 2, 3. 4
echo OP_I NSERT id="1" synbol ="a" price="2" size="3.4"
echo2, OP_INSERT, 1, a, 2, 3.4
echo, OP_I NSERT, 1, a, 2, 3. 4
exit, OP_NOP

"]

telnet> q

Connection cl osed.

The names in the dispatch table don't have to be the same as the names of the labels. It's often convenient to have them
the same but not mandatory.

The exit label was created manually in this example but SimpleServer also provides the functions that create an exit label
or an exit function, either of which can be placed into a dispatch table:

# A dispatch function, sending anything to which will exit the server.
# The server will not flush the outputs before exit.

#

# Use |ike:

#  $dispatch{"exit"} = \&Triceps:: X :SinpleServer::exitFunc;

#

# In this way the input line doesn't have to contain the opcode.

# The alternative way is through nmakeExitLabel ().

60 Scheduling



sub exitFunc # ($line)

{

$srv_exit = 1;

—

Create a | abel, sending anything to which will exit the server.
The server will not flush the outputs before exit.

Use |ike:
$di spatch{"exit"} = &Triceps:: X :SinpleServer:: makeExitLabel ($uTrades, "exit");

In this way the input line has to contain at |east the opcode.
The alternative way is through exitFunc().

@aramunit - the unit in which to create the | abel
@ar am name - the |abel nane

@eturn - the newy created | abel object

ub nmakeExitLabel # ($unit, $nane)

O HHHHHHFHHHHHFHR

ny $unit = shift;
ny $nanme = shift;
return 3$unit->makelLabel ($unit->get Enpt yRowType(), $nanme, undef, sub {
$srv_exit = 1;
1)
}

nmakeExi t Label () isquite smple, it creates alabel with hardcoded function of setting the flag $srv_exi t . Evenits
row typeis hardcoded to the empty rows. exi t Func() setsthe same flag directly.

There is also a function for making the labels that output their rows to the client in CSV format (as usual, no commasin
the values, the same as is expected by the socket server):

Create a label that will print the data in CSV format to the server output
(to the current client).

@aram fronmLabel - the new | abel will be chained to this one and get the
data fromit

@aram printNane - if present, overrides the |abel name printed

@eturn - the newy created | abel object

ub nmakeServer Qut Label # ($fronmliabel [, $printNane])

O H R HHHHFH

warni ngs; # or in tests prints a |lot of warnings about undefs
$from_abel = shift;

$printNane = shift;

$unit = $fronlLabel ->getUnit();

$f romNanme = $f ronlLabel - >get Nane() ;

(! $printName) {

$print Name = $f romNane;

-33333

—

ny $l bQut = $unit->makelLabel ($fronlabel - >get Type(),
$fromNane . ".serverQut", undef, sub {
&out Cur Buf (join(",", $printName,
&Triceps::opcodeString($_[ 1] - >get Opcode()),
$ [1]->getRowm)->toArray()) . "\n");
1)
$f r onlLabel - >chai n( $l bQut ) ;
return $l bQut;

}

makeSer ver Qut Label () findsthe unit and row type from the parent label, creates the printing label and chainsit off
the parent label. The newly created label is returned. The return value can be kept in avariable or immediately discarded;

Main loop with a socket 61



since the created label is already chained, it won't disappear. Tha name of the new label is produced from the name of the
parent label by appending “.serverOut” to it.

Running the automated tests of the servers requires the clients to be started automatically too, feed the input, receive the
results, and then compare them to the expected results. The package Triceps::X::DumbClient from | i b/ Tri ceps/ X/
Dunbd i ent . pmdoes exactly that. The server code gets created as usual, only instead of starting the server, the dispatch
tableis given to the DumbClient method that takes care of starting the server, feeding the input, collecting the results, and
waiting for the server to stop.

For example, the same echo example is run like this with DumbClient:
use Triceps:: X :SinmpleServer gw:all);
ny $uEcho = Triceps:: Unit->new"uEcho");

ny $l bEcho = $uEcho- >nmakelLabel ($rt Trade, "echo", undef, sub {
&out CurBuf ($_[1] ->printP() . "\n");

1)
ny $l bEcho2 = $uEcho- >makelLabel ($rt Trade, "echo2", undef, sub {
&out Cur Buf (join(",", "echo", &Triceps::opcodeString($_[1]->get Opcode()),
$ [1]->getRow()->toArray()) . "\n");
1)

ny $l bExit = $uEcho->nakelLabel ($rtTrade, "exit", undef, sub {
$Triceps:: X :SinpleServer::srv_exit = 1;
1)

ny %di spat ch;

$di spat ch{"echo"} = $I bEcho;
$di spat ch{"echo2"} = $l bEcho2;
$di spatch{"exit"} = $| bExit;

nmy @nput Query = (
"echo, OP_I NSERT, 1, a, 2, 3.4\ n",

"echo2, OP_I NSERT, 1, a, 2, 3. 4\ n",
);
my $expect Query =
' > echo, OP_I NSERT,

1,a,2,3.4
> echo2, OP_INSERT, 1,4a, 2,3.4
echo OP_I NSERT id="1" synbol ="a" price="2" size="3.4"
4

echo, OP_I NSERT, 1, a, 2, 3.

Triceps:: X : Test Feed: : set | nput Li nes( @ nput Query);
Triceps:: X :DunmbClient::run(\%i spatch);

ok( &Triceps:: X: : Test Feed: : get Resul tLi nes(), $expect Query);
DumbClient works in symbiosis with the TestFeed module that handles the recorded inputs and outputs. Note that the
“exit” lineis not there, DumbClient adds it implicitly at the end of the input.

The input lines are also included by TestFeed in the output with the “> " prepended to them. DumbClient feeds all the
inputsfirst and then reads all the results, relying on the TCP buffering to avoid deadlocking on the flow control. Thisworks
only for the small amounts of input but is good enough for the small tests.

And the implementation of DumbClient isfairly small, there is only one method:
sub run # (3%l abel s)
ny $l abels = shift;

ny ($port, $pid) = Triceps:: X :SinpleServer::startServer(0, $labels);

62 Scheduling



ny $sock = 1O : Socket: : | NET->new

Proto => "tcp",

Peer Addr => "l ocal host ",

Peer Port => $port,
) or confess "socket failed: $!'";
whi |l e(& readLi ne) {

$sock->print ($);

$sock->fl ush();
}
$sock->print("exit, OP_I NSERT\n");
$sock->fl ush();
$sock- >shut down(1); # SHUT_WR
whi | e(<$sock>) {

& send($);

}
wai t pi d($pi d, 0);
}

As mentioned before in Section 4.8: “The Perl libraries and examples’ (p. 25) , the methods r eadLi ne and send are
imported from the TestFeed module.

7.10. Tracing the execution

When devel oping the CEP models, there always comes the question: WTF had just happened? How did it manage get this
result? Followed by subscribing to many intermediate results and trying to piece together the execution order.

Triceps providestwo solutionsfor thissituation: First, the procedural approach should makethelogic much easier tofollow.
Second, it has a ready way to trace the execution and then read the trace in one piece. It can aso be used to analyze any
variables on the fly, and possibly stop the execution and enter some manua mode.

The idea hereis simple: provide the Unit with amethod that will be called:

before alabel executes,

* before the chained |abels execute,
+ after the chained labels execute,

* after the label executes,

 beforethelabel'sframeisdrained (and thus the forked rowops execute, see the details of that in Section 7.11: “ The gritty
details of Triceps scheduling” (p. 69) ),

 dfter the frameisdrained.

The calls around the chaining and around the draining are done only if there are the chained labelsto call or forked rowops
to drain accordingly. Otherwise these pairs are skipped.

The tracing calls happen in the order shown above. The call after the label executes goes after the chained calls (if any),
enveloping them. However the draining calls happen after that (and no matter how many rowops were forked onto that
frame, there will be only one after-draining call per frame, still referring to the original 1abel).

For the simple tracing, a small ssimple tracer is provided. It actually executes directly as compiled in C++ so it's quite
efficient:

$tracer = Triceps::UnitTracerStringNane(option => $value, ...);

The arguments are specified as the option name-value pairs.

Tracing the execution 63



The only option supported is“verbose”’, which may be 0 (default) or non-0. If it's 0 (false), the tracer will record amessage
only before executing each label. If true, it will record amessage on each stage. The classis named UnitTracerStringName
because it records the execution trace in the string format, including the names of the labels. The tracer is set into the unit:

$uni t->set Tracer ($tracer);
The unit's current tracer can also be read back:
$ol dTracer = $unit->get Tracer();

If no tracer was previoudly set, get Tr acer () will return undef . And undef can also be used as an argument of
set Tracer (), to cancel any previously set tracing.

The tracer references can be compared for whether they refer to the same underlying object:
$result = $tracerl->sane($tracer?2);

There are multiple kinds of tracer objects, and sane() can be caled safely for either kind of tracer, including mixing
them together. Of course, the tracers of different kinds definitely would not be the same tracer object.

Asthe unit runs, the tracing information gets collected in the tracer object. It can be extracted back with:
$data = S$tracer->print();

This does not reset the trace. To reset it, use:

$tracer->clearBuffer();

Here is a code sequence designed to produce afairly involved trace:

$sntr = Triceps::UnitTracerStringName- >new( verbose => 1);
$ul- >set Tracer ($sntr);

$c_labl = $ul->makeDummylLabel ($rt1, "labl");
$c_lab2 = $ul->makeDummylLabel ($rt1, "l ab2");
$c_l ab3 = $ul->makeDummylLabel ($rt1, "lab3");
$c_opl = $c_| abl- >makeRowop( &Tri ceps: : OP_I NSERT, $rowl);
$c_op2 = $c_| abl- >makeRowop( &Tri ceps: : OP_DELETE, $rowl);

$c_l abl- >chai n($c_l ab2);
$c_I abl- >chai n($c_I| ab3);
$c_I ab2- >chai n($c_I ab3);

$ul->schedul e($c_opl);
$ul->schedul e( $c_op2);

$ul->drai nFrame();

Thetraceis:

unit 'ul' before label 'labl" op OP_I NSERT {

unit 'ul' before-chained | abel 'labl" op OP_I NSERT ({

unit 'ul' before label 'lab2' (chain 'labl') op OP_I NSERT {

unit 'ul' before-chained | abel 'lab2' (chain 'labl') op OP_I NSERT {
unit 'ul' before label 'lab3" (chain 'lab2') op OP_I NSERT {

unit 'ul' after label 'lab3" (chain 'lab2') op OP_I NSERT }

unit 'ul' after-chained |abel 'lab2'" (chain 'labl') op OP_I NSERT }
unit 'ul' after label 'lab2'" (chain 'labl') op OP_I NSERT }

unit 'ul' before label 'lab3" (chain 'labl') op OP_I NSERT {

unit 'ul' after label 'lab3" (chain 'labl') op OP_I NSERT }

unit 'ul' after-chained |abel 'labl" op OP_I NSERT }

unit 'ul' after label 'labl" op OP_I NSERT }

64 Scheduling



unit 'ul' before |label 'labl" op OP_DELETE {

unit 'ul' before-chained | abel 'labl" op OP_DELETE ({

unit 'ul' before label 'lab2' (chain 'labl') op OP_DELETE {

unit 'ul' before-chained | abel 'lab2' (chain 'labl') op OP_DELETE {
unit 'ul' before label 'lab3" (chain 'lab2') op OP_DELETE {

unit 'ul' after label 'lab3" (chain 'lab2') op OP_DELETE }

unit 'ul' after-chained |abel 'lab2" (chain 'labl') op OP_DELETE }
unit 'ul' after label 'lab2'" (chain 'labl') op OP_DELETE }

unit 'ul' before label 'lab3" (chain 'labl') op OP_DELETE {

unit 'ul' after label 'lab3" (chain 'labl') op OP_DELETE }

unit 'ul' after-chained |abel 'labl" op OP_DELETE }

unit 'ul' after label 'labl" op OP_DELETE }

The print-out is not indented because the execution of real models tends to involve some quite long call chains, which
would result in some extremely wide indenting. Instead the curly braces at the end of each line help to find the matching
pair. You can always use thevi command %to jump to the matching brace, or asimilar feature in the other editors.

In non-verbose mode the same trace would be:

unit 'ul' before label 'labl" op OP_I NSERT

unit 'ul' before label 'lab2' (chain 'labl') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'lab2') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'labl') op OP_I NSERT
unit 'ul' before label 'labl' op OP_DELETE

unit 'ul' before label 'lab2' (chain 'labl') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'lab2') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'labl') op OP_DELETE

The non-verbose trace doesn't have the curly braces because there are no matching pairs of lines.

The actual contents of the rowsisnot printed in either case. Thisisbasically because the tracer isimplemented in C++, and
I've been trying to keep the knowledge of the meaning of the simple data types out of the C++ code as much as possible
for now. But it can be implemented with a Per| tracer.

A Perl tracer is created with:
$tracer = Triceps::UnitTracerPerl->new( $sub, @rgs);

The arguments are areference to a function, and optionally arguments for it. The resulting tracer can be used in the unit's
set Tracer () asusua. A source code string may be used instead of the function reference, see Section 4.4: “Code
references and snippets’ (p. 21) .

The function of the Perl tracer gets called as:

&Bsub($uni t, $l abel, $fronlabel, $rowop, $when, @rgs)
The arguments are:

* $uni t istheusua unit reference.

e $l abel isthe current label being traced.

» $f romLabel istheparentlabel inthe chaining (would beundef if thecurrent label iscalled directly, without chaining
from anything).

» $r owop isthe current row operation.

 $when is an integer constant showing the point when the tracer is being cdled. It's value
may be one of &Triceps:: TWBEFORE, &Triceps:: TWAFTER, &Triceps:: TW BEFORE DRAI N,
&Tri ceps: : TWAFTER DRAI N, &Tri ceps: : TW BEFORE_CHAI NED, &Tri ceps: : TW AFTER_CHAI NED;
the prefix TWstands for “tracer when”.

Tracing the execution 65



e @r gs arethe extra arguments passed from the tracer creation.

The TW * constants can as usual be converted to and from strings with the calls

$string = &Triceps::tracerVWenString($val ue);
$val ue = &Triceps::stringTracerWen($string);
$string = &Triceps::tracer\WenStringSaf e($val ue);
$val ue = &Triceps::stringTracerWenSafe($string);

There aso are the conversion functions with strings more suitable for the human-readable messages: “before”, “after”,
“before-chained”, “after-chained”, “before-drain”, “after-drain”. These are actually the conversions used in the UnitTrac-
erStringName. The functions for them are:

$string = &Triceps::tracerWienHumanSt ri ng( $val ue);
$val ue = &Triceps::humanStringTracer When($string);
$string = &Triceps::tracerWienHumanSt ri ngSaf e( $val ue) ;
$val ue = &Triceps::humanStringTracer WhienSaf e( $string);

Now that the constants have been mentioned, the order of tracing calls for a single executing rowop on asingle labdl is:

TW BEFORE
TW BEFORE_CHAI NED
TW AFTER_CHAI NED
TW AFTER

TW BEFORE_DRAI N
TW AFTER DRAI N

Thereisaso agenera way tofind, if the $when refersto a“before” or “after” situation:

$resul t
$resul t

&Tri ceps: : tracerWienl sBef or e( $when) ;
&Tri ceps: :tracerWienl sAft er ($when);

Their typical usage in atrace function, to append an opening or closing brace, looks like:

if (Triceps::tracerWenl sBefore($when)) {

$rTBg = " {u :
} elsif (Triceps::tracerWenlsAfter($when)) {
$rTBg . = " }II .

}

More trace pointsthat are neither “before” or “after” could get added in the future, so agood practiceisto use an elsif with
both conditions rather than a simple if/el se with one condition.

The Perl tracers allow to execute any arbitrary actions when tracing. They can act as breakpoints by looking for certain
conditions and opening a debugging session when those are met.

For an example of a Perl tracer, let's start with a tracer function that works like UnitTracerStringName:

sub tracerCbh() # unit, label, froniLabel, rop, when, extra
{

ny ($unit, $label, $from S$rop, $when, @xtra) = @;

our $history;

ny $nsg = "unit '" . $unit->get Nane()
Triceps::tracerWenHumanStri ng($when) . " | abe
$l abel - >get Nanme() "

if (defined $froniLabel) {

$nsg .= "(chain '" . $fronlLabel ->getNanme() . "')
}
$nsg .= "op " . Triceps::opcodeString($rop->get Opcode());
if (Triceps::tracerWenl sBefore($when)) {

$meg .= " {";

66 Scheduling



}

} elsif (Triceps::tracerWenlsAfter($when)) {
$meg .= "}

}

$msg .= "\n";

$history .= $nsQ;

undef $history;
$ptr = Triceps::UnitTracerPerl->new(\ & racerCh);
$ul- >set Tracer ($ptr);

It'sdlightly different, in the way that it always produces the verbose trace, and that it collectsthe tracein the global variable

$hi st or y. But the resulting text is the same as with UnitTracerStringName.

Now let'simprove on it by printing the whole rowop contentstoo. In a*proper” way this advanced tracer would be defined
as a class constructing the tracer objects. But to reduce the amount of code let's just make it a standalone function to be
used with the Perl tracer constructor.

And for something different let's make the result indented, with two spaces per indenting level. As mentioned before, the
indenting is actually not such agreat idea. But for the small short examplesit works well. The function would take 3 extra
arguments:

Verbosity, a boolean value.

Reference to an array variable where to append the text of the trace. This is more flexible than the fixed $hi st ory.
The array will contain the lines of the trace as its elements. And appending to an array should be more efficient than

appending to the end of a potentially very long string.

Reference to ascalar variable that would be used to keep the indenting level. The value of that variable will be updated

asthe tracing happens. Itsinitial value will determine theinitial indenting level.

sub traceStri ngRowop

{

}

my ($unit, $label, $fronLabel, $rowop, $when,
$verbose, $rlog, $rnest) = @;

if ($verbose) {

${$rnest}-- if (Triceps::tracerWenl sAfter($when));
} else {

return if ($when !'= &Triceps:: TWBEFORE);
}

ny $nsg = "unit '" . $unit->get Name()
Triceps::tracerWenHumanStri ng($when) . " | abel
$l abel - >get Nanme()

if (defined $froniLabel) {

$nsg .= "(chain '" . $fronlLabel ->getNane() . "') "
}
ny $tail =""
if (Triceps::tracerWenl sBefore($when)) {

$tail =" {";

} elsif (Triceps::tracerWenlsAfter($when)) {
$tail =" }";

}
push (@%rlog}, (" " x ${$rnest}) . $msg . "op "
$rowop->printP() . $tail);

if ($verbose) {

${$rnest}++ if (Triceps::tracerWenl sBefore($when));

}

Tracing the execution

67



undef @i story;

ny $tnest = O0; # keeps track of the tracing nesting | eve

$ptr = Triceps::UnitTracerPerl->new(\ & raceStri ngRowop, 1, \@istory, \S$tnest);
$ul- >set Tracer ($ptr);

For the same call sequence as before, the output will be asfollows (I've tried to wrap the long linesin alogically consistent
way but it still spoils the effect of indenting a bit):

unit 'ul' before label 'labl" op |labl OP_I NSERT a="123" b="456"
c="789" d="3.14" e="text" {
unit 'ul' before-chained |abel 'labl' op |abl OP_I NSERT a="123"
b="456" c="789" d="3.14" e="text" {
unit 'ul' before label 'lab2' (chain 'labl') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" ({
unit 'ul' before-chained |abel 'lab2' (chain 'labl') op labl
OP_I NSERT a="123" b="456" c¢="789" d="3.14" e="text" {
unit 'ul' before label 'lab3" (chain 'lab2') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' after label 'lab3" (chain 'lab2') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained label 'lab2' (chain 'labl') op |abl
OP_I NSERT a="123" b="456" c¢="789" d="3.14" e="text" }
unit 'ul' after label 'lab2' (chain 'labl') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' before label 'lab3" (chain 'labl') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" ({
unit 'ul' after label 'lab3" (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained label 'labl" op |abl OP_I NSERT a="123"
b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'labl'" op |abl OP_I NSERT a="123" b="456" c="789"
d="3. 14" e="text" }
unit 'ul' before label 'labl" op |l abl OP_DELETE a="123" b="456"
c="789" d="3.14" e="text" ({
unit 'ul' before-chained |abel 'labl' op | abl OP_DELETE a="123"
b="456" c="789" d="3.14" e="text" {
unit 'ul' before label 'lab2' (chain 'labl") op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' before-chained | abel 'lab2' (chain 'labl') op labl
OP_DELETE a="123" b="456" c¢="789" d="3.14" e="text" {
unit 'ul' before label 'lab3" (chain 'lab2') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' after label 'lab3" (chain 'lab2') op |l abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained label 'lab2' (chain 'labl') op |abl
OP_DELETE a="123" b="456" c¢="789" d="3.14" e="text" }
unit 'ul' after label 'lab2' (chain 'labl') op |l abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' before label 'lab3" (chain 'labl"') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' after label 'lab3" (chain 'labl') op |l abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained |abel 'labl" op |l abl OP_DELETE a="123"
b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'labl' op |abl OP_DELETE a="123" b="456" c="789"
d="3. 14" e="text" }

As mentioned before, each label produces two levels of indenting: one for everything after “before”, another one for the
nested |abels.

Eventually this tracing should become another standard classin Triceps.

68 Scheduling



7.11. The gritty details of Triceps scheduling

There are four ways of executing arowop in Triceps:
Cal:

Execute the label right now, including all the nested calls. When the call returns, the execution is completed. Thisis
the most typical way, and the only one described in detail so far.

Schedule:
Execute the label after everything else is done.
Fork:

Execute the label after the current label returns but before its caller gets the control back or anything else is done.
Obvioudly, if multiple labels are forked, they will execute in the order they were forked. The forked labels can be seen
as“little siblings’ of the current label. Forking is currently not used much, other than for the special case of looping.

Loop:

Execute the label asthe start of the next iteration of the topological loop, after the current iteration is fully completed.
Thisisaspecial case of fork, essentially forking at the level of the loop's first label.

The common term encompassing all of themis*“enqueue’. “ Enqueue’ isan ugly word but since I've already used the word
“schedule” for a specific purpose, | needed another word to name all these operations together. Hence “ enqueug’”.

The meaning is kind of intuitively straightforward but the details might sometimes be a bit surprising. So let us look in
detail at how it works inside on an example of afairly convoluted scheduling sequence.

A scheduler in the execution unit keeps not just asingle queue but astack of queuesthat contain the rowopsto be executed.
The rowops get into the queues when they are forked or looped or scheduled. Each queue is essentially a stack frame, so
I'll be using the terms queue and frame interchangeably. The stack always contains at least one queue, which is called the
outermost stack frame.

When the new rowops arrive from the outside world, they can be added with the method schedul e() tothat stack frame.
That'swhat schedul e() does: always adds rowops to the outermost stack frame, no matter how many frames might be
pushed on top of it. If rowops 1, 2 and 3 are added, the stack looks like this (the brackets denote a stack frame):

[1, 2, 3]

The unit method dr ai nFr ane() isthen used to run the scheduler and process the rowops. It makes the unit call each
rowop on the innermost frame (which isinitially the same as outermost frame, since there is only one frame) in order.

First it callsthe rowop 1. It's removed from the queue, then a new frame is pushed onto the stack:

[ 1 ~1
[2, 3]

This new frame is the rowop 1's frame, which is marked on the diagram by “~1". The diagram shows the most recently
pushed, innermost, frame on top, and the oldest, outermost frame on the bottom. The concepts of “innermost” and “ outer-
most” come from the nested calls: the most recent call is nested the deepest in the middle and is the innermost one.

Then the rowop 1 executes. If it calls rowop 4, another frame is pushed onto the stack for it:

[ ] ~4
[ 1 -1

The gritty details of Triceps scheduling 69



[2, 3]

Then the rowop 4 executes. The rowop 4 never gets onto any of the queues. The call just pushes a new frame and executes
the rowop right away. The identity of rowop being processed is kept in the call context. A call also involves a direct C++
call on the thread stack, and if any Perl code isinvolved, a Perl call too. Because of this, if you nest the calls too deeply,
you may run out of the thread stack space and get it to crash.

After the rowop 4 isfinished (not calling any other rowops), the innermost empty frame is popped before the execution of
rowop 1 continues. The queue stack reverts to the previous state.

[ ] -1
[2, 3]

Suppose then rowop 1 forks rowops 5 and 6 by calling the Unit method f or k() . They are appended to the innermost
frame in the order they are forked.

[5, 6] ~1
[2, 3]

If rowop 1 then calls rowop 7, again aframe is pushed onto the stack before it executes:

[ 1 ~7
[5, 6] ~1
[2, 3]

The rowops 5 and 6 still don't execute, they keep sitting on the queue until the rowop 1 would return. After the call of
rowop 7 completes, the scheduler stack returns to the previous state.

Suppose how the execution of rowop 1 completes. But its stack frame can not be popped yet, because it is not empty. Now
is the time to execute the rowops from it. It's aso called “frame draining” but if works somewhat differently in the case
of the forked rowops. The first rowop gets picked from the frame and called, but in a special way. It doesn't get its own
frame. Instead, it takes over the frame of its parent rowop. The frame that was marked “~1" now changes its marking to
“~5” because of that take-over:

[6] ~5
[2, 3]

If the rowop 5 forks rowop 8, the stack becomes:

[6, 8 -5
[2, 3]

Since the frame was inherited from the parent rowop 1, the rowop 8 just gets appended to the end of it after rowop 6.
The rowops forked in the same frame are executed in the order they were forked. Unlike the calls, there is no nesting
involved in forking.

When the execution of rowop 5 returns, the execution of the forked rowops from the innermost frame continues. The rowop
6 gets picked from the front of the frame and takes over the frame ownership:

[8] ~6
[2, 3]

Suppose the rowop 6 doesn't call or fork anything else and returns. Then the rowop 8 starts executing and takes over the
frame:

[ 1 -8
[2, 3]

Suppose rowop 8 callsschedul e() of rowop 9. Rowop 9 is then added to the outermost queue:

[ 1 -8

70 Scheduling



[2, 3, 9]
Rowop 8 then returns, its queue is empty, so it's popped and its call compl etes.
[2, 3, 9]

The method dr ai nFr ane() keepsrunning on the outermost frame, now taking the rowop 2 and executing it, and so on,
until the outermost queue becomes empty, and dr ai nFrane() returns.

Aninteresting question is, what happenswith the chained labels? Where do they fit in the order of execution? They turn out
tobesimilartoaf or k() . The presence of chaining gets checked after the original label completesits execution but before
executing any of theforked labelsfromitsframe. If any chained labelsare found, they are called one by one. They take over
the frame of the parent, just like the forked labels. Any of the chained labels may also call f or k() , adding more labelsto
the frame. The next forked label (if any) gets executed only after all the labels chained from the current one are done.

What would happen if dr ai nFranme() iscalled not from outside the model but from inside some label handler? It will
drain the innermost frame. Suppose that the queue stack was in the following state, with rowop 5 executing:

[6, 8 -5
[2, 3]

If the label handler of the rowop 5 callsdr ai nFr ame() now, dr ai nFrame() will doitsusual job: pick the rowops
one by one from the innermost frame, create the nested frames for them and execute. So first it will pick up the rowop 6:

[ ] ~6
[8] ~5
[2, 3]

After the rowop 6 completes, its frame gets popped:

[8] ~5
[2, 3]

But dr ai nFrame() continues running, and now picks the rowop 8:
[ ] -8
[ 1 -5
[2, 3]
After the rowop 8 completes, its frame gets al so popped:

[ 1 ~5
[2, 3]

At this point the innermost frame becomes empty and dr ai nFr ame() returns. The label handler of rowop 5 continues
its execution.

If you haven't forked anything, the innermost frame will be empty, and dr ai nFr arme() will do nothing. If you did fork
some rowops, dr ai nFr ame() looks like a convenient way to call them now and then continue. However note that in
this case the semanticsis different from the normal forking. The rowops from the frame will be called in the nested frames,
not taking over the original frame. So if say rowop 6 refers to the same label as rowop 5, this nested execution will be
considered arecursive call of the same label. Thusdr ai nFr ame() is best used only with the outermost frame.

What if the rowop 1 weren't scheduled and then drained but was just directly called? The outermost frame will remain
empty, while anew frame will be pushed for the rowop 1 as usual:

[ ] -1
[ ]

If the rowop 1 executed the same code as before, after the call it will leave the rowop 9 scheduled on the outermost frame:

The gritty details of Triceps scheduling 71



[9]
To executetherowop 9, call dr ai nFrame() , or it will be stuck there forever.

Note that the execution order differs depending on whether the incoming rowops were scheduled or directly called, and
onwhen thedr ai nFrame() iscaled. If the three rowops were scheduled and then drained, the execution order will be
1, 2, 3, 9. If they were called directly with draining the frame after each one, the order will be 1, 9, 2, 3. And if they were
called directly but with draining only after the last one, it would be again 1, 2, 3, 9.

The loop scheduling is awhole big separate subject that will be discussed in the next section.

7.12. The gritty details of Triceps loop
scheduling

Now it'stimeto look at what is really going on when atopological loop gets executed. Let's continue looking at the loop
exampl e that was aready shown in Figure 7.1 (page 46) .

If the loop were handled simple-mindedly, with all the execution done by calls, it could use alot of stack space. Suppose
some rowop X1 is scheduled for label X, and causes the loop to be executed twice, with rowops X1, A2, B3, C4, A5,
B6, C7, Y8. If each operation isdoneasacal | (), the stack grows like this: It starts with X1 called, creating its own
execution frame (marked as such for clarity):

[ 1 ~XL
[]

Which then calls A2:

[ ] ~A2
[ ] X1
[ ]

Which then continues the calls in sequence. By the time the execution comesto Y 8, the stack looks like this:

~Y8
~C7
~B6
~A5
~C4
~B3
~A2
~X1

— — — —— — ———
[ S S S O Sy Sy S

The loop has been converted into recursion, and the whole length of execution is the depth of the recursion. If the loop
executes amillion times, the stack will be three million levels deep. Worse yet, it's not just the Triceps scheduler stack that
grows, it's also the process (C++ and Perl) stack.

Which is why this kind of recursive calls is forbidden by default in Triceps. If you try to do it, on the first recursive call
the execution will die with an error. You can enable the recursion but this only lets the stack grow and doesn't prevent
the growth.

Would things be better with f or k() instead of cal | () used throughout the loop? It starts the same way:
[ X1]
Then X1 executes, getsits own frame and forks A2:

[A2] ~X1

72 Scheduling



[ ]

Then A2 inherits the stack frame and executes, forks B3:

On each step the frame will be inherited by the next label, and if Y8 is aso eventually forked, at the end the stack will be:

[ 1 ~Y8
[ ]

Problem solved, no matter how many iterations were done by the loop, the stack will stay limited.

The catch though is that every operation inside the loop must be done with a f or k() . If there is even one cal | ()
occuring in the loop, the stack will grow by aframe for each cal | () and may become quite deep again. The problem is
that cal | () ishardcoded in many primitives, such as Tables, and is fairly typically used in the templates as well. The
historic solution for that was to specify for each table, how it should handle its results, call them or fork them or even
schedule them. And the templates could use a similar approach.

The practice had quickly showed that not only all this explicit choice is quite cumbersome and easy to miss, but also the
semantics of f or k() isdifferent fromcal | () inavery annoying way. If some label wantsto do something, call some
other label, then do something more using the result of the call, doing it with cal | () is simple: just execute al this
proceduraly in sequence. After cal | () returns, itswork is guaranteed to be done and any global state to be updated. Not
sowith f or k() that just puts the rowop onto a queue, there just isn't any way to get the second half of the original label's
code to execute only after all the effects from the forked rowop had propagated. (Historically f or k() worked differently
in Triceps 1.0 and did allow to reproduce the call semantics through some minor contortions but then it kept growing the
stack on every fork, just as the calls do).

The solution, even back in the version 1.0 days, was to add a special method for the loop scheduling.

It starts with the concept of the frame mark. A frame mark is a token object, completely opaque to the program. It can
be used only in two operations:

» set Mar k() remembersthe position in the frame stack, just outside the current frame.
* | oopAt () enqueuesarowop at the marked frame.

Then the loop wold have its mark object M. The label A will execute set Mar k(M , and the label C will execute
| oopAt (M rowop(A)). Therest of the execution canaswell usecal | (), asshowninFigure7.1.

call call call call
X —» A —» B —» C (—» Y
setMark
loopAt

Figure7.2. Proper callsin aloop.

When the label A executesthe rowop A2, first thingsit doesis calling setMark(M). After that the stack will look like this:

[ 1 ~A2, mark M
[ 1 X1
[]

The gritty details of Triceps loop scheduling 73




The mark M remembers the current frame. The stack at the end of C4, after it hascalled | oopAt (M A5) ,is:

[ ] ~C4
[ 1 ~-B3
[A5] ~A2, mark M
[ ] ~-X1

[ ]
The stack then unwinds until A5 starts its execution:

[ 1T ~A5, mark M
[ ] X1
[ ]

When A5 inherits the stack frame from A2, the mark M stays put. The label A would normally call set Mar k( M) again
anyway, but it will just put the mark onto the same frame, so effectively it's a no-operation.

Thus each iteration starts with a fresh stack, and the stack depth is limited to one iteration. The nested loops can also be
properly executed.

After Y8 completes, the stack will unroll back, and X1 can continue its execution:

[ ] X1
[ ]

To reiterate, when the control returns back to X1, the whole loop is done.

What happens after the stack unwinds past the mark? The mark gets unset. When someone calls| oopAt () with an unset
mark, the rowop is enqueued in the outermost frame, having the same effect asschedul e() .

It's possible to use this handling of an unset mark to some creative effects. It allows the loops to take a pause in the middle.
Suppose the label B finds that it can't process the rowop B3 until some other data has arrived. What it can do then is
remember B3 somewhere in the thread state and return. The loop has not completed but it can't progress either, so the call
unrolls until it becomes empty. In this case the code of label X must be prepared to find that the loop hadn't completed yet
after the call of A2 returns. Since the frame of X1 is popped off the stack, the mark M gets unset. The knowledge that the
loop needs to be continued stays remembered in the state.

After sometime that awaited data arrives, as some other rowop. When that rowop gets processed, it will find that remem-
bered state with B3 and will make it continue, maybe by calling cal | ( B3) again. So now thelogic in B finds all the data
it needs and continues with the loop, calling C4. C4 will doitsjob and call | oopAt (M A5) . But the mark M has been
unset a while ago! Scheduling A5 at the outermost frame seems to be a logical thing to do at this point. Then whatever
current processing will complete and unwind, and the loop will continue after it. When the rowop A5 gets executed, the
label A will call set Mar k(M again, thus setting the mark on its new frame, and making the loop run as far as it can
before executing any other scheduled rowops.

Overdl, pausing and then restarting a loop like this is not such a good idea. The caller of the loop normally expects that
it can wait for the loop to complete, and that when the loop returns, it's all done. If aloop may decide to bail out now and
continue later, the effects may be quite unexpected.

7.13. Recursion control

Historically, the recursive calls (when alabel calsitself, directly or indirectly) have been forbidden in Triceps. Mind you,
the recursive calling could still be done even then with the help of trays and forking. And it's probably the best way too
from the standpoint of correctness. However it's not the most straightforward way, and the real recursion still comes handy
onceinawhile.

Now the recursion is alowed in its direct way. Especially that it doesn't have to be all-or-nothing, it can be done in a
piecemeal and controlled fashion.

74 Scheduling



It's controlled per-unit. Each unit has two adjustable limits:

Maximal stack depth:
Limits the total depth of the unit's call stack. That's the maximal length of the call chain, whether it goes straight or
inloops.

Maximal recursion depth:
Limitsthe number of times each particular |abel may appear on the call stack. Soif you have arecursive code fragment
(asimple-minded loop or arecursive streaming function), thisisthe limit on its recursive reentrances.

Both these limits accept the 0 and negative values to mean “unlimited”.

The default isasit has been before: unlimited stack depth, recursion depth of 1 (which means that each label may be called
once but it may not call itself). But now you can change them with the calls:

$uni t - >set MaxSt ackDept h( $n) ;
$uni t - >set MaxRecur si onDept h( $n) ;

Y ou can change them at any time, even when the unit is running (but they will be enforced only on the next attempt to
execute arowop).

Y ou can aso read the current values:

$n
$n

$uni t - >maxSt ackDept h() ;
$uni t - >maxRecur si onDept h() ;

Another thing about the limits is that even if you set them to “unlimited” or to some very large values, there till are the
system limits. The calls use the C++ process (or thread) stack and the Perl stack, and if you make too many of them, the
stack will overflow and the whole process will crash and possibly dump core. Keeping the call depths within reason is
till agood idea.

Now you can do the direct recursion. However as with the procedural code, not all the labels are reentrant. Some of them
may work with the static data structures that can't be modified in a nested fashion. Think for example of atable: when you
modify atable, it sends rowopsto its“pre” and “out” labels. Y ou can connect the other labels there, and react to the table
modifications. However these labels can't attempt to modify the same table, because the table is already in the middle of
amodification, and it's not reentrant.

Thetable still hasaseparate |ogic to check for non-reentrance, and no matter what isthe unit'sgeneral recursion depth limit,
for the table it always stays at 1. Moreover, the table enforces it across both the input label interface and the procedural
interface.

If you make your own non-reentrant labels, Triceps can make this check for you. Just mark the first label of the non-
reentrant sequence with

$l abel - >set NonReentrant () ;

It will have its own private recursion limit of 1. Any time it's attempted to execute recursively, it will confess. There is
no way to unset this flag: when alabel is known to be non-reentrant, it can not suddenly become reentrant until its code
is rewritten.

Y ou can read this flag with

$val = $l abel - >i sNonReentrant () ;

Recursion control 75



76



Chapter 8. Memory Management

8.1. Reference cycles

Remember that the Triceps memory management uses the reference counting, which does not like the reference cycles, as
has been mentioned in Section 4.3: “Memory management fundamentals’ (p. 20) . The reference cycles cause the objects
to be never freed. It's no big deal if the data structures exist until the program exit anyway but it becomes a memory leak
if they keep being created and deleted dynamically.

The problems come not with the data that goes through the models but with the models themselves. The data gets refer-
ence-counted without any issues. The reference cycles can get formed only between the elements of the models: labels,
tables etc. If you don't need them destroyed until the program exits (or more exactly, until the Perl interpreter instance
exits), there is no problem. The leaks could happen only if the model elements get created and destroyed as the program
runs, such as if you use them to parse and process the short-lived ad-hoc queries.

These leaks are pretty hard to diagnose. There are some packages, like Devel::Cycle, but they won't detect the loops that
involve a reference at C++ level. And when the Perl interpreter exits, it clears up all the variables used, even the ones
involved in theloops, so if you runit under valgrind, valgrind doesn't show any leaks. Thereisapackage Devel::LeakTrace
that should be able to detect all these left-over variables. However | can't tell for sure yet, so far | haven't had enough
patience to build all the dependencies for it.

One possibility isto use the weak references (using the module Scalar::Util). But the problem is that you need to not forget
weakening the references manually. Too much work, too much attention, too easy to forget.

The mechanism used in Tricepsworks by breaking up the reference cycleswhen the data needsto be cleared. The execution
unit keeps track of all its labels, and when it gets destoryed, clears them up, breaking up the cycles. It's also possible to
clear the labelsindividually, by amanual call.

The clearing of alabel clears all the chainings. The chained labels get cleared too in their turn, and eventually the whole
chain clears up. This removes the links in the forward direction, and if any cycles were present, they become open. More
on the details of label clearing in the Section 8.2: “Clearing of the labels’ (p. 78) .

Another potential for reference cyclesis between the execution unit and thelabels. A unit keepsareferenceto all itslabels.
So the labels can not keep a reference to the unit. And they don't. Internally they have a plain C++ pointer to the unit.
However the Perl level may present a problem.

In many cases the labels have a Perl reference to the template object where they belong. And that object islikely to havea
Per| reference to the unit. It's one more opportunity for the reference cycle. This code usually looks like this:

package MyTenpl at e;

sub new # ($class, $unit, $nane, $rowlype, ...)
{

ny $class = shift;

ny $unit = shift;

ny $nanme = shift;

ny $rowlype = shift;

ny $self = {};

$sel f->{unit} = $Sunit;
$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $name . ".in",
sub { ... }, sub { ... }, $self);

77



bl ess $sel f, $cl ass;
return $sel f;

}

So the unit refers to the label at the C++ level, the label has a $sel f reference to the Perl object that owns it, and the
object's$sel f->{uni t} refersback to the unit. Once the label clearing happens, the link from the unit will disappear
and the cyclewould unroll. But the clearing would not happen by itself because the unit can't get automatically defererenced
and destroyed.

Because of this, the unit provides an explicit way to trigger the clearing:

$uni t - >cl ear Label s();

If you want to get rid of an execution unit with all its components without exiting the whole program, use this call. It will
start the chain reaction of destruction. Of course, don't forget to undefine all the other references in your program to these
objects being destroyed.

Thereisaso away to trigger this chain reaction automatically. It's done with a helper object that is created as follows:

nmy $clearUnit = $unit->nmaked earingTrigger();

When the referenceto $cl ear Uni t gets destroyed, it will call $uni t - >cl ear Label s() and trigger the destruction
of the whole unit. Obviously, don't copy the $cl ear Uni t variable, keep it on one place.

If you put it into a block variable, the unit will get destroyed on exiting the block. If you put it into a global variable in
athread, the unit will get destroyed when the thread exits (though I'm a bit hazy on the Perl memoery management with
threads yet, it might get all cleared by itself without any special tricks too).

8.2. Clearing of the labels

To remind, alabel that executes the Perl code is created with:

$l abel = $unit->nmakelLabel ($rowType, "nane", \&cl ear Sub,
\ &execSub, @rgs);

The function cl ear Sub deals with the destruction.

The clearing of alabel dropsall the referencesto execSub, cl ear Sub and arguments, and clears al the chainings. And
of course the chained labels get cleared too. But before anything else is done, cl ear Sub gets a chance to execute and
clear any application-level data. It gets as its arguments al the arguments from the label constructor, same as exec Sub:

cl ear Sub( $l abel , @rgs)
A typical caseisto keep the state of a stateful element in a hash:
package MyTenpl at e;

sub new # ($class, $unit, $nane, $rowlype, ...)
{

ny $class = shift;

ny $unit = shift;

ny $nanme = shift;

ny $rowlype = shift;

ny $self = {};

78 Memory Management



$sel f->{unit} = $unit;
$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $nane .
\ &l ear, \ &handle, $self);

.in",

bl ess $sel f, $cl ass;
return $sel f;

}

These elements may end up pointing to the other elements. It's fairly common to keep the pointers to the other elements
(especially tables) that provide inputs to this one. In general, these references “up” should be safe because the clearing of
the labels would destroy the references “down” and open the cycles. But the way things get connected in the heat of the
moment, you never know. It's better to be safe than sorry. To be on the safe side, the clearing function can wipe out the
whole state of the element by undefining its hash:

sub clear # (%l abel, $self)

{
ny ($label, $self) = @;
undef %sel f;

}

The whole contents of the hash becomes lost, all the refrences from it disappear. And if you use this approach in every
object, the complete destruction reigns and everything is nicely laid to waste.

Writing these clear methods for each class quickly becomes tedious and easy to forget. Tricepsis a step ahead: it provides
aready function Tri ceps: : cl ear Args() that doesall thisdestruction. It can undefine the contents of various things
passed as its arguments, and then al so undefines these arguments themselves. Just reuse it:

$sel f->{i nput Label } = $unit->makelLabel ($rowType, $name . ".in",
\ &Triceps::clearArgs, \&andl e, $self);

But that's not all. Tricepsisactually two steps ahead. If thecl ear Sub isspecified asundef , Triceps automatically treats
ittobeTri ceps: : cl ear Args() . Thelast snippet and the following one are equivalent:

$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $name . ".in",
undef, \&handle, $self);

No need to think, the default will do the right thing for you. Of course, if by some reason you don't want this destruction
to happen, you'd have to override it with an empty function “sub {}”.

8.3. The clearing labels

Some templates don't have their own input labels, instead they just combine and tie together a few internal objects, and
use the input labels of some of these internal objects as their inputs. Among the templates included with Triceps, JoinTwo
is one of them, it just combines two LookupJoins. Without an input label, there would be no clearing, and the template
object would never get undefined.

This can be solved by creating an artificial label that isnot connected anywhere and has no code to execute. Itsonly purpose
in life would be to clear the object when told so. To make life easier, rather than abusing makelLabel (), thereisaway
to create the special clearing-only labels:

$l b = $uni t->maked eari ngLabel ("nane", @rgs);
The arguments would be the references to the objects that need clearing, usually $sel f . For a concrete usage example,
here is how JoinTwo usesiit:

$sel f->{cl eari ngLabel} = $sel f->{unit}->maked eari nglLabel (

The clearing labels 79



$sel f->{nane} . ".clear", $self);

Since this call “should never fail”, on any errors it will confess. There is no need to check the result. The result can be
saved in avariable or can be simply ignored. If you throw away the result, you won't be able to access that |abel from the
Perl code but it won't be lost: it will be still referenced from the unit, until the unit gets cleared.

Note how the clearing label doesn't havearow type. Inreality every label doeshow arow type, just it would besilly to abuse
the random row typesto create the clearing-only labels. Because of this, the clearing label s are created with aspecial empty
row typethat has no fieldsinit. If you ever want to use thisrow type for any other purposes, you can get it with the method

$rt = $unit - >get Enpt yRowType();

Under the hood, the clearing label is the same as a normal label with Perl code, only with the specia default values used
for its construction. The normal Perl label methods would work on it like on anormal label.

80 Memory Management



Chapter 9. Tables
9.1. Hello, tables!

The tables are the fundamental elements of state-keeping in Triceps. Let's start with a basic example:

ny $hwunit = Triceps::Unit->new("hwnit");
ny $rtCount = Triceps:: RowType- >new
address => "string",

count => "int32",

)

ny $ttCount = Triceps:: Tabl eType- >new( $rt Count)
- >addSubl ndex( " byAddr ess",
Triceps:: | ndexType- >newHashed(key => [ "address" ])

)
$ttCount->initialize();
ny $t Count = $hwunit->nmakeTabl e($tt Count, "t Count");

whi | e(<STDI N>) {
chonp;
ny @ata = split(/\W/);

# the common part: find if there already is a count for this address
ny $rhFound = $t Count ->fi ndBy(
address => $dat a[ 1]
)
ny $cnt = 0;
if (!$rhFound->isNull()) {
$cnt = $rhFound- >get Row( ) - >get ("count ") ;
}

if ($data[0] =~ /~hello$/i) {
ny $new = $rt Count - >makeRowHash(
address => $data[ 1],
count => $cnt +1,
)
$t Count - >i nsert ($new) ;
} elsif ($data[0] =~ /~count$/i) ({
print("Received '", $data[1], "' ", $cnt + 0, " tines\n");
} else {
print("Unknown conmand ' $data[0]'\n");
}

}

What happens here? The main loop reads the lines from standard input, splits into words and uses the first word as a
command and the second word as a key. Note that it's not CSV format, it's words with the non-alphanumeric characters
separating thewords. “Hello, table!”, “helloworld”, “count world” are examples of thevalid inputs. For someting different,

the commands are compared with their case ignored (but the case matters for the key).

The example counts, how many times each key has been hel | 0-ed, and prints this count back on the command count .

Hereisasample, with theinput lines printed in bold:

Hel | o, table!
Hel | o, worl d!
Hel | o, table!

81



count world
Received "world' 1 tines
Count table
Received 'table' 2 tines

In this example the table is read and modified using the direct procedural calls. Asyou can see, there isn't even any need
for unit scheduling and such. There is a scheduler-based interface to the tables too, it will be shown soon. But in many
cases the direct access is easier. Indeed, this particular example could have been implemented with the plain Perl hashes.
Nothing wrong with that either. Well, the Perl tables provide many more intersting ways of indexing the data. But if you
don't need them, they don't matter. And at some future point the tables will be supporting the on-disk persistence, but no
reason to bother much about that now: things are likely to change a dozen times yet before that happens. Feel free to just
use the Perl data structuresif they make the code easier.

A table is created through atable type. This allows to stamp out duplicate tables of the same type, which can get handy
when the multithreading will be added. A tableislocal to athread. A table type can be shared between threads. To look
up something in another thread's table, you'd either have to ask it through a request-reply protocol or to keep alocal copy
of the table. Such a copy can be easily done by creating a copy table from the same type.

In reality, right now all the business with table types separated from the tables is more pain than gain. It not only adds
extra steps but also makes difficult to define a template that acts on a table by defining extra features on it. Something
will be done about it, | have afew ideas.

The table type gets first created and configured, then initialized. After atable type isinitialized, it can not be changed any
more. That'sthe point of theinitialization call: tell thetypethat all the configuration has been done, and it can go immutable
now. Fundamentally, configuting a table type just makes it collect bits and pieces. Nothing but the most gross errors can
be detected at that point. At initialization time everything comes together and everything gets checked for consistency. A
table type must be fully initialized in one thread before it can be shared with other threads. The historic reason for this API
isthat it mirrors the C++ API, which has turned out not to look that good in Perl. It's another candidate for a change.

A table type getsthe row type and at |east oneindex. Here it's a Hashed index by the key field addr ess. "Hashed" means
that you can look up the rows by the key value but there are no promises about any specific row order. And the hashing
is used to make the key comparisons more efficient. The key of a Hashed index may consist of multiple fields. Another
index type, Ordered, is similar to Hashed but also keeps the human-readable order.

Thetable isthen created from the table type, and given a name.

The rows can then be inserted into the table (and removed too, not shown in this example yet). The default behavior of the
Hashed index is to replace the old row if a new row with the same key isinserted.

The search in the table is done by the method f i ndBy () with the key fields of the index. Which returns a RowHandle
object. A RowHandleis essentially an iterator in the table. Even if the row is not found, a RowHandle will be still returned
but it will be NULL, which is checked for by $r h- >i sNul | () .

No matter which command will be used, it's always useful to look up the previous row for the key: its contents would be
either printed or provide the previous value for the increase. So the model does it first and gets the count from it. If it's
not found, then the count is set to O.

Then it looks at the command and does what it's been told. Updating the count amounts to creating a new row with the
new values and inserting it into the table. It replaces the previous one.

Thisisjust thetip of theiceberg. The tablesin Triceps have alot more features.

9.2. Tables and labels

A table does not have to be operated in a procedural way. It can be plugged into the the scheduler machinery. Whenever
atableiscreated, three labels are created with it.

82 Tables



e Theinput label is for sending the modification rowops to the table. The table provides the handler for it that applies
the incoming rowops to the table.

e The output label propagates the modifications done to the table. It is a dummy label, and does nothing by itsdlf. It's
there for chaining the other labels to it. The output rowop comes quite handy to propagate the table's modifications to
therest of the state.

e The pre-modification label is also a dummy label, for chaining other labels to it. It sends the rowops right before they
are applied to the table. This comes very handy for the elements that need to act depending on the previous state of the
table, such as joins. The pre-modification label doesn't ssimply mirror the input label. The rows received on the input
|abel may trigger the automatic changesto the table, such asan old row being deleted when anew row with the same key
isinserted. All these modifications, be they automatic or explicit, will be reported to the pre-modification label. Since
the pre-modification label isused relatively rarely, it contains aspecial optimization: if thereisno label chained toit, no
rowop will be sent to it in the first place. Don't be surprised if you enable the tracing and don't see it in the trace.

Again, the rowops coming through these labels aren't necessarily the same. If a DELETE rowop comes to the input label,
referring to arow that isnot in the table, it will not propagate anywhere. If an INSERT rowop comesin and causes another
row to be replaced, the replaced row will be sent to the pre-modification and output labels as a DELETE rowop first.

Anf of course the table may be modified through the procedural interface. These modifications also produce rowops on
the pre-modification and output labels.

The labels of the table have names. They are produced by adding suffixes to the table name. They are "tablename.in”,
"tablename.pre” and "tablename.out".

In the “no bundling” spirit, a rowop is sent to the pre-modification label right before it's applied to the table, and to the
output label right after it's applied. If the labels executed from there need to read the table, they can, and will find the table
in the exact state with no intervening modifications. However, they can't modify the table neither directly nor by calling
its input label. When these labels are called, the table is in the middle of a modification and it can't accept another one.
Such attempts are treated as recursive modifications, forbidden, and the program will die on them. If you need to modify
the table, use schedul e() or | oopAt () to have the next modification done later. However there are no guarantees
about other modifications getting done in between. When the looped rowop executes, it might need to check the state of
the table again and decide if its operation still makes sense.

So, let's make a version of “Hello, table” example that passes the modification regquests as rowops through the labels. It
will print the information about the updates to the table as they happen, so there is no more use having a separate command
for that. But for another demonstration let's add a command that would clear the counter of hellos. Hereisits code:

ny $hwunit = Triceps:: Unit->new("hwnit");
ny $rtCount = Triceps:: RowType- >new(
address => "string",
count => "int32",

)

ny $ttCount = Triceps:: Tabl eType- >new( $rt Count)
- >addSubl ndex( " byAddr ess",
Triceps:: | ndexType- >newHashed(key => [ "address" ])

. )

étt@unt->i nitialize();

nmy $t Count = $hwunit->makeTabl e( $tt Count, "tCount");

ny $I bPri nt Count = $hwunit - >makeLabel ( $t Count - >get RowType(),

"1 bPrint Count", undef, sub { # (label, rowop)
ny ($l abel, $rowop) = @;

Tables and labels 83



ny $row = $rowop->get Row() ;
print (&Triceps::opcodeString($rowop->get Opcode), " "'",

$r ow >get (" address"), , count ", $row >get("count"), "\n");

P
$t Count - >get Qut put Label () - >chai n($l bPri nt Count);

# the updates will be sent here, for the tables to process
ny $l bTabl el nput = $t Count - >get | nput Label () ;

whi | e(<STDI N>) {
chonp;
ny @ata = split(/\W/);

# the common part: find if there already is a count for this address
ny $rhFound = $t Count - >fi ndBy(
address => $dat a[ 1]
)
ny $cnt = 0;
if (!$rhFound->isNull()) {
$cnt = $rhFound- >get Row( ) - >get ("count");
}

if ($data[0] =~ /"hello$/i) {
$hwuni t - >makeHashSchedul e($! bTabl el nput, "OP_I NSERT",
address => $data[ 1],
count => $cnt +1,
)
} elsif ($data[0] =~ /~clear$/i) {
$hwuni t - >makeHashSchedul e( $I bTabl el nput, "OP_DELETE",
address => $dat a[ 1]
)
} else {
print("Unknown conmand ' $data[0]'\n");
}

$hwuni t - >dr ai nFranme() ;

}

Thetable creation is the same as last time. The row finding in the table is also the same.

The printing of the modifications to the table is done with $I bPr i nt Count , which is connected to the table's output
label. It prints the opcode, the address of the greeting, and the count of greetings. It will show us what is happening to
the table as soon as it happens. An unit trace could be used instead but a custom printout contains less noise. The pre-
modification label is of no interest here, so it's not used.

The references to the labels of atable are gotten with:

$l abel = $t abl e->get | nput Label ();
$l abel = $t abl e- >get PreLabel ();
$l abel = $t abl e- >get Qut put Label ();

The deletion does not require an exact row to be sent in. All it needs is a row with the keys for deletion, the rest of the
fieldsinit areignored. So the “clear” command puts only the key field in it.

Here is an example of input (in bold) and output:

Hel | o, tabl e!
OP_I NSERT 'table', count 1
Hel | o, worl d!
OP_I NSERT 'world', count 1
Hel | o, tabl e!

OP_DELETE 'table', count 1

84 Tables



OP_I NSERT 'table', count 2
clear, table
OP_DELETE 'table', count 2
Hel | o, tabl e!
OP_I NSERT 'table', count 1

An interesting thing happens after the second “Hello, table!”: the code send only an OP_I NSERT but the output shows an
OP_DELETE and OP_| NSERT. The OP_DELETE for the old row gets automatically generated when arow with repeated
key isinserted. Now, depending on what you want, just sending in the first place the consequent inserts of rows with the
same keys, and relying on the table's internal consistency to turn them into updates, might be a good thing or not. Overall
it's adirty way to write but sometimes it comes convenient. The clean way is to send the explicit deletes first. When the
data goes through the table, it gets automatically cleaned. The subscribers to the table's output and pre-modification labels
get the clean and consistent picture: arow never gets simply replaced, they always see an OP_DELETE first and only then
an OP_I| NSERT.

9.3. Basic iteration through the table

Let's add a dump of the table contents to the "Hello, table" example, either version of it. For that, the code needs to go
through every record in the table:

el sif ($data[0] =~ /~dunp$/i) {
for (ny $rhi = $tCount->begin(); !$rhi->isNull(); $rhi = $rhi->next()) {
print($rhi->getRow>printP(), "\n");
}
}

As you can see, the row handle works kind of like an STL iterator. Only the end of iteration is detected by receiving a
NULL row handle. Calling next () onaNULL row handleis OK but it would just return another NULL handle. And
there is no decrementing the iterator, you can only go forward with next () . The backwards iteration is in the plans but
not implemented yet.

An example of this fragment's output would be:

Hel | o, table!

Hel | o, worl d!

Hel | o, table!

count world

Received '"world" 1 tines

Count table
Received 'table' 2 tines
dunp

address="wor | d" coun

t=
address="t abl " count=

wqn
" on

The order of the rows in the printout is the same as the order of rows in the table's index. Which is no particular order,
sinceit'saHashed index. Aslong as you stay with the same 64-bit AM D64 architecture (with LSB-first byte order), it will
stay the same on consecutive runs. But switching to a 32-bit machine or to an MSB-first byte order (such as a SPARC, if
you can still find one) will change the hash calculation, and with it the resulting row order. There are the ordered indexes
aswell, they will be described later.

9.4. Deleting a row

Deleting a row from a table through the input label is smple: send a rowop with OP_DELETE, it will find the row
with the matching key and delete it, as was shown above. In the procedural way the same can be done with the method
del et eRow( ) . The added row deletion code for the main loop of “Hello, table” (either version, but particularly relevant
for the one from Section 9.1: “Hello, tables!” (p. 81) ) is:

Basic iteration through the table 85



elsif ($data[0] =~ /"delete$/i) {
ny $res = $t Count - >del et eRow( $rt Count - >makeRowHash(
address => $data[ 1],

). o

print("Address , $data[1l], "' is not found\n") unless $res;

}

The result allows to differentiate between the situations when the row was found and deleted and the row was not found.
On any error the call confesses.

However we aready find the row handle in advance in $r hFound. For this case a more efficient form is available, and
it can be added to the example as:

elsif ($data[0] =~ /~renove$/i) {
if (!$rhFound->i sNull()) {
$t Count - >r enove( $r hFound) ;
} else {
print("Address '", $data[1], "' is not found\n");
}

}

It removes a specific row handle from the table. In whichever way you find it, you can remove it. An attempt to remove
aNULL handle would be an error and cause a confession.

The reason why r enove() is more efficient than del et eRow( ) isthat del et eRow() amounts to finding the row
handle by key and then removing it. And the OP_DEL ETE rowop sent to the input label callsdel et eRow() .

del et eRow( ) never deletes more than one row, even if multiple rows match (yes, the indexes don't have to be unique).
There isn't any method to delete multiple rows at once. Every row has to be deleted by itself. As an example, here is the
implementation of the command “clear” for “Hello, table” that clears all the table contents by iterating through it:

elsif ($data[0] =~ /"clear$/i) {
nmy $rhi = $t Count - >begi n();
while (!'$rhi->isNull()) {
ny $rhnext = $rhi->next();
$t Count - >r enove( $rhi);
$rhi = $rhnext;
}
}

After ahandleisremoved from the table, it continuesto exist, aslong as there are referencesto it. It could even beinserted
back into the table. However until (and unless) it'sinserted back, it can not be used for iteration any more. Calling next ()
on a handle that is not in the table would just return a NULL handle. So the next row has to be found before removing
the current one.

9.5. A closer look at the RowHandles

A few uses of the RowHandles have been shown by now. So, what is a RowHandle? As Captain Obvious would say,
RowHandleis a class (or package, in Perl terms) implementing arow handle.

A row handle keeps a tabl€e's service information (including the index data) for a single data row, including of course a
reference to the row itself. Each row is stored in the table through its handle. The row handle is also an iterator in the
table, and a specia one: it's an iterator for all the tabl€e's indexes at once. For you SQLY people, an iterator is essentially
acursor on an index. For you Java people, an iterator can be used to do more than step sequentially through rows. So far
only the table types with one index have been shown, but in reality multiple indexes are supported, potentially with quite
complicated arrangements. More on the indexes later, for now just keep it in mind. A row handle can be found through

86 Tables



one index and then used to iterate through another one. Or you can iterate through oneindex, find a certain row handle and
continue iterating through another index starting from that handle. If you remember areference on aparticular row handle,
you can always continue iteration from that point later. (unless the row handle gets removed from the table).

A RowHandle always belongs to a particular table, the RowHandles can not be shared nor moved between two tables,
even if the tables are of the same type. Since the tables are single-threaded, obviously the RowHandles may not be shared
between the threads either.

However a RowHandle may exist without being inserted into atable. In this case it still has a spiritual connection to that
table but is not included in the index (the iteration attempts with it would just return “end of the index”), and will be
destroyed as soon as all the references to it disappear.

Theinsertion of arow into atable actually happens in two steps:
1. A RowHandleis created for arow.
2. Thisnew handleisinserted into the table.

Thisis done with the following code:

$rh = $t abl e- >makeRowHandl e( $r ow) ;
$t abl e- >i nsert ($rh);

Only it just so happens that to make life easier, the method i nsert () has been made to accept either a row handle or
directly arow. If it finds a row, it makes a handle for it behind the curtains and then proceeds with the insertion of that
handle. Passing arow directly isalso more efficient (if you don't have ahandle already created for it for some other reason)
because the row handle creation then happens entirely in the C++ code, without surfacing into Perl.

A handle can be created for any row of atype matching the table's row type. For awhile it was accepting only equal types
but that was not consistent with what the labels are doing, so I've changed it.

Themethodi nsert () hasareturnvalue. It's often ignored but occasionally comes handy. 1 meansthat the row has been
inserted successfully, and O means that the row has been rejected. On errors it confesses. An attempt to insert a NULL
handle or a handle that is already in the table will cause argjection, not an error. Also the tabl€e's index may reject arow
with duplicate key (though right now this option is not implemented, and the hash index silently replaces the old row with
the new one).

Thereisamethod to find out if arow handleisin the table or not:
$result = $rh->islnTable();
Though it's used mostly for debugging, when some strange things start going on.

The searching for rows in the table by key has been previously shown with the method f i ndBy () . Which happensto be
awrapper over amore general method f i nd( ) : it constructs arow from its argument fields and then callsf i nd() with
that row as a sample of datato find. The method f i nd() issimilartoi nsert () inthe handling of its arguments: the
“proper” way isto giveit arow handle argument, but the more efficient way isto giveit arow argument, and it will create
the handle for it as needed before performing a search.

Now you might wonder: huh, f i nd() takesarow handle and returns a row handle? What's the point? Why not just use
the first row handle? Well, those are different handles:

» Theargument handleis normally not in thetable. It's created brand new from arow that contains the keys that you want
to find, just for the purpose of searching.

e Thereturned handle is always in the table (of course, unlessit's NULL). It can be further used to extract back the row
data, and/or for iteration.

A closer look at the RowHandles 87



Though nothing really prevents you from searching for a handle that is already in the table. You'll just get back the same
handle, after gratuitously spending some CPU time. (There are exceptionsto this, with the more complex indexes that will
be described |ater).

Why do you need to create new arow handle just for the search? Due to the internal mechanics of the implementation. A
handle stores the helper information for the index. For example, the hash index calculates the hash value of all the row's
key fieldsonce and storesit in therow handle. Despiteit being called ahash index, it really storesthe datain atree, with the
hash value used to speed up the comparisons for the tree order. It's much easier to make both thei nsert () andfi nd()
work with the hash value and row reference stored in the same way in ahandle than to implement them differently. Because
of this, f i nd() usesthe exactly same row handle argument format asi nsert ().

Can you create multiple row handles referring to the same row? Sure, knock yourself out. From the table's perspectiveit's
the same thing as multiple row handlesfor multiple copies of the row with the same valuesin them, only using lessmemory.

There is more to the row handles than has been touched upon yet. It will al be revealed when more of the table features
aredescribed. Theinterna structure of the row handles will be described in the Section 9.11: “Theindex tree” (p. 101) .

9.6. A window is a FIFO

A fairly typical situation in the CEPworld iswhen amodel needsto keep alimited history of events. For asimple example,
let's discuss, how to remember the last two trades per stock symbol. The size of two has been chosen to keep the sample
input and outputs small.

Thisis normally called awindow logic, with asliding window. Y ou can think of it in a mechanical analogy: as the trades
become available, they get printed on a long tape. However the tape is covered with a masking plate. The plate has a
window cut in it that lets you see only the last two trades.

Some CEP systems have the special data structures that implement thislogic, that are called windows. Triceps has afeature
on atable instead that makes a table work as a window. It's not unique in this department: for example Coral8 does the
opposite, calls everything awindow, even if some windows are really tablesin every regard but name.

Here is a Triceps example of keeping the window for the last two trades and iteration over it:

our $uTrades = Triceps::Unit->new "uTrades");
our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => [ "synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

$ttWndow >initialize();
our $t Wndow = $uTrades- >makeTabl e( $tt W ndow, "t W ndow');

# renenber the index type by synmbol, for searching on it

our $itSynbol = $ttW ndow >fi ndSubl ndex("bySynbol ");

# renenber the FIFO index, for finding the start of the group
our $itlLast2 = $itSynbol ->findSubl ndex("l ast2");

# print out the changes to the table as they happen

88 Tables



our $l bW ndowPrint = $uTrades->nakelLabel ($rt Trade, "| bW ndowPrint",
undef, sub { # (label, rowop)
print($_[1]->printP(), "“\n"); # print the change
1)
$t W ndow >get Qut put Label () - >chai n($l bW ndowPri nt) ;

whi | e(<STDI N>) {

chonp;

ny $rTrade = $rtTrade- >makeRowArray(split(/,/));

ny $rhTrade = $t W ndow >nakeRowHandl e( $r Tr ade) ;

$t W ndow >i nsert ($rhTr ade) ;

# There are two ways to find the first record for this

# synmbol . Use one way for the synmbol AAA and the other for the rest.

ny $rhFirst;

if (%rTrade->get("synbol") eq "AAA") {
$rhFirst = $t Wndow >findl dx($i t Synbol, $rTrade);

} else {
# $rhTrade is nowin the table but it's the last record
$rhFirst = $rhTrade->first Of Groupl dx($itLast?2);

}
ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);
print("New contents:\n");
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");
}
}

This example reads the trade records in CSV format, inserts them into the table, and then prints the actual modifications
reported by the table and the new state of the window for this symbol. And hereisasamplelog, with theinput linesin bold:

1, AAA 10, 10
t W ndow. out OP_I NSERT i d="1" synbol =" AAA" price="10" size="10"
New cont ent s:
id="1" synbol =" AAA" price="10" size="10"
2, BBB, 100, 100
t W ndow. out OP_I NSERT i d="2" symnbol ="BBB" price="100" size="100"
New cont ent s:
id="2" synbol ="BBB" price="100" size="100"
3, AAA 20, 20
t W ndow. out OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"
New cont ent s:
id="1" synbol
i d="3" synbol
4, BBB, 200, 200
t W ndow. out OP_I NSERT i d="4" synbol ="BBB" price="200" size="200"
New cont ent s:

"AAA" price="10" size="10"
"AAA" price="20" size="20"

id="2" synbol ="BBB" price="100" size="100"
i d="4" synbol ="BBB" price="200" size="200"
5, AAA, 30, 30

t W ndow. out OP_DELETE id="1" synbol
t W ndow. out OP_I NSERT i d="5" synbol
New cont ent s:
id="3" synbol
i d="5" synbol
6, BBB, 300, 300
t W ndow. out OP_DELETE id="2" synbol
t W ndow. out OP_I NSERT i d="6" synbol
New cont ent s:
i d="4" synbol
i d="6" synbol

="AAA" price="10" size="10"
="AAA" price="30" size="30"
="AAA" price="20" size="20"
="AAA" price="30" size="30"
="BBB" price="100" size="100"
="BBB" price="300" size="300"
price="200" size="200"

=" BBB"
="BBB" price="300" size="300"

A window is a FIFO 89



Y ou can see that the window logic works: at no time is there more than two rows in each group. As more rows are inserted,
the oldest rows get deleted.

Now let'sdig into the code. Thefirst thing to noticeisthat the table type has two indexes (strictly speaking, index types, but
most of the time they can be called indexes without creating a confusion) in it. Unlike your typical database, the indexes
in this example are nested.

Tabl eType
+- 1 ndexType Hash "bySynbol "
+- 1 ndexType Fifo "l ast2"

If you follow the nesting, you can see, that the first call addSubl ndex () adds an index type to the table type, while the
textually second addSubl ndex () adds an index to the previous index.

The same can also be written out in multiple separate calls, with the intermediate results stored in the variables:

$itLast2 = Triceps::|ndexType->newrifo(limt => 2);

$it Synbol = Triceps::|ndexType->newHashed(key => [ "synbol" ]);
$i t Synbol - >addSubl ndex("| ast 2", $itlLast2);

$tt Wndow = Triceps:: Tabl eType- >new( $rt Tr ade) ;

$t t W ndow >addSubl ndex( " bySynbol ", $it Synbol);

I'm not perfectly happy with the way the table types are constructed with the index types right now, since the parenthesis
levels have turned out a bit hard to track. This is another example of following the C++ APl in Perl that didn't work out
too well, and it will change in the future. But for now please bear with it.

The index nesting is kind of intuitively clear, but the details may take some time to get your head wrapped around them.
Y ou can think of it asthe inner index type creating the miniature tables that hold the rows, and then the outer index holding
not individual rows but those miniature tables. So, to find the rows in the table you go through two levels of indexes: first
through the outer index, and then through the inner one. The table takes care of these details and makes them transparent,
unless you want to stop your search at an intermediate level: such as, to find all the transactions with a given symbol, you
need to do a search in the outer index, but then from that point iterate through all rows in the found inner index. For this
you obviously have to tell the table, where do you want to stop in the search.

The outer index is the hash index that we've seen before, the inner index is a FIFO index. A FIFO index doesn't have any
key, it just keeps the rowsin the order they were inserted. Y ou can search in aFIFO index but most of the timeit's not the
best idea: sinceit has no keys, it searcheslinearly through al itsrows until it finds an exact match (or runs out of rows). It's
areasonable last-resort way but it's not fast and in many cases not what you want. This also sends afew ripples through the
row deletion. Remember that the method del et eRow() and sending the OP_DELETE to the table's input label invoke
find(),whichwould cause the linear search on the FIFO indexes. So when you use a FIFO index, it's usually better to
find the row handle you want to deletein some other way and then call r enmove() onit, or use another approach that will
be shown later. Or just keep inserting the rows and never delete them, like this example does.

A FIFO index may contain multiple copies of an exact same row. It doesn't care, it just keeps whatever rows were given
to it in whatever order they were given.

By default a FIFO index just keeps whatever rows come to it. However it may have a few options. Setting the option
i mt limitsthe number of rows stored in the index (not per the whole table but per one of those “miniature tables").
When you try to insert one row too many, the oldest row gets thrown out, and the limit stays unbroken. That's what creates
the window behavior: keep the most recent N rows.

If you look at the sample output, you can see that inserting the rows with ids 1-4 generates only the insert events on the
table. But the rows 5 and 6 start overflowing their FIFO indexes, and cause the oldest row to be automatically deleted
before completing the insert of the new one.

A FIFO index doesn't have to be nested inside a hash index. If you put a FIFO index at the top level, it will control the
whole table. So it would be not two last record per key but two last records inserted in the whole table.

90 Tables



Continuing with the example, the table gets created, and then the index types get extracted back from the table type.
Now, why not just write out the table type creation with intermediate variables as shown above and remember the index
references? At some point in the past this actually would have worked but not any more. It has to do with the way the table
type and its index types are connected. It's occasionally convenient to create one index type and then reuse it in multiple
tabletypes. However for the whole thing to work, the index type must betied to its particul ar table type. Thistying together
happens when the table type is initialized. If you put the same index type into two table types, then when the first table
type is initialized, the index type will get tied to it. The second table type would then fail to initialize because an index
initisalready tied elsewhere. To get around this dilemma, now when you call addSubl ndex( ) , it doesn't connect the
original index type, instead it makes a copy of it. That copy then gets tied with the table type and later gets returned back
with f i ndSubl ndex() .

The table methods that take an index type argument absolutely require that the index type must be tied to that tabl€'s type.
If you try to pass a seemingly the same index type that has not been tied, or has been tied to a different table type, that
isan error.

One last note on this subject: there is no interdependency between the methodsnmakeTabl e() andf i ndSubl ndex(),
they can be donein either order.

The exampl e output comes from two sources. The running updates on the table's modifications (the lineswith OP_| NSERT
and OP_DELETE) are printed fromthelabel $I bW ndowPr i nt . The new window contentsis printed from the main loop.

The main loop reads the trade records in the simple CSV format without the opcode, and for simplicity inserts directly into
the table with the procedural API, bypassing the scheduler. After the row is inserted, the contents of itsindex group (that
“miniaturetable”) gets printed. Theinsertion could as well have been done with passing directly the row reference, without
explicitly creating a handle. But that handle will be used to demonstrate an interesting point.

To print the contents of an index group, we need to find its boundaries. In Triceps these boundaries are expressed as the
first row handle of the group, and as the row handle right after the group. There is an internal logic to that, and it will be
explained later, but for now just take it on faith.

With the information we have, there are two ways to find the first row of the group:

» With the table's method f i ndl dx() . It's very much like f i nd() , only it has an extra argument of a specific index
type. If the index type given has no further nesting in it, f i ndl dx() works exactly likefi nd() . Infact, fi nd()
is exactly such a special case of fi ndl dx() with an automatically chosen index type. If you use an index type with
further nesting under it, f i ndl dx() will return the handle of the first row in the group under it (or the usual NULL
row handle if not found).

« If we create the row handle explicitly before inserting it into the table, as was done in the example, that will be the
exact row handle inserted into the table. Not a copy or anything but this particular row handle. After arow handle gets
inserted into the table, it knows its position in the indexes. It knows, in which group it is. And we still have areference
to it. So then we can use this knowledge to navigate within the group, jump to the first row handle in the group with
firstOf Goupl dx().Italsotakesanindex type but in this caseit'sthe type that controls the group, the FIFO index
in out case.

The example shows both ways. As a demonstration, it uses the first way if the symbol is“AAA” and the second way for
all the other symbols.

The end boundary isfound by calling next G- oupl dx() onthefirst row's handle. The handle of the newly inserted row
could have also been used for next G oupl dx () , or any other handlein the group. For any handle belonging to the same
group, theresult is exactly the same.

Andfinally, after theiteration boundaries have been found, theiteration on the group can run. The end condition comparison
is done with sane( ) , to compare the row handle references and not just their Perl-level wrappers. The stepping is done
with next | dx() , withisexactly like next () but according to a particular index, the FIFO one. This has actually been

A window is a FIFO 91



done purely to show off this method. In this particular case the result produced by next (), next 1 dx() on the FIFO
index type and next | dx() on the outer hash index type is exactly the same. We'll come to the reasons of that yet.

Looking forward, as you iterate through the group, you could do some manual aggregation along the way. For example,
find the average price of the last two trades, and then do something useful with it.

There isaso a piece of information that you can find without iteration: the size of the group.
$si ze = $tabl e- >groupSi zel dx($i dxType, $row or_rh);

This information is important for the joins, and iterating every time through the group is inefficient if all you want to get
is the group size. Since when you need this data you usually have the row and not the row handle, this operation accepts
either and implicitly performsaf i ndl dx() ontherow to find the row handle. Moreover, even if it receives the argument
of arow handle that is not in the table, it will also automatically perform af i ndl dx() on it (though calling it for arow
handle in the table is more efficient because the group would not need to be looked up first).

If there is no such group in the table, the result will be O.

The $i dxType argument is the non-leaf parent index of the group. (Using aleaf index typeis not an error but it always
returns O, because there are no groups under it). It's basically the same index type as you would use in f i ndl dx() to
find the first row of thegroup orinfi r st Of G oupl dx() or next Groupl dx() to find the boundaries of thr group.
Remember, a non-leaf index type defines the groups, and the nested index types under it define the order in those groups
(and possibly further break them down into sub-groups).

It'sabit confusing, so let's recap with another example. If you have a table type defined as:

our $ttPosition = Triceps:: Tabl eType->new $rt Position)
- >addSubl ndex (" pri mary",
Triceps:: | ndexType- >newHashed(key => [ "date", "custoner", "synbol" ])

- >addSubl ndex("currencyLookup", # for joining with currency conversion
Triceps:: | ndexType- >newHashed(key => [ "date", "currency" ])
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newrifo())

)
- >addSubl ndex("byDate", # for cleaning by date

Triceps:: | ndexType- >newOr dered(key => [ "date" ])

- >addSubl ndex(" groupi ng", Triceps::|ndexType->newrifo())
)

1

thenit would make sensetocal gr oupSi zel dx() ,fi rst OF Groupl dx() andnext Gr oupl dx() withtheindexes
“currencyLookup” or “byDate” but not with “primary”, “ currencyL ookup/grouping” nor “byDate/grouping”. Y ou can call
findl dx() with any index, but for “currencyLookup” or “byDate” it would return the first row of the group while
for “primary”, “currencyL ookup/grouping” or “byDate/grouping” it would return the only matching row. On the other
hand, for iteration in a group, it makes sense to call next |1 dx() only on “primary”, “currencyL ookup/grouping” or
“byDate/grouping”. Calling next | dx() on the non-leaf index typesis not an error but it would in effect resolve to the

same thing as using their first leaf sub-indexes.

9.7. Secondary indexes

Thelast example dealt only with the row inserts, because it could not handle the del etions that well. What if the trades may
get cancelled and have to be removed from the table? There is a solution to this problem: add one more index. Only this
time not nested but in parallel. The indexes in the table type become tree-formed:

Tabl eType

+- I ndexType Hash "byld" (id)

+- I ndexType Hash "bySynbol " (synbol)
+- 1 ndexType Fifo "l ast2"

92 Tables



It'svery much like the common relational databases where you can define multiple indexes on the same table. Both indexes
byl d and by Synbol (together with its nested sub-index) refer to the same set of rows stored in the table. Only byl d
allowsto easily find the records by the uniqueid, while by Synbol isresponsible for keeping then grouped by the symboal,
in FIFO order. It could be said that by d isthe primary index (since it has a unique key) and by Synbol isasecondary
one (since it does the grouping) but from the Triceps'es standpoint they are pretty much equal and parallel to each other.

Toillustrate the point, hereisamodified version of the previous example. Not only doesit manage the deletes but also com-
putes the average price of the collected transactions as it iterates through the group, thus performing a manual aggregation.

our $uTrades = Triceps::Unit->new "uTrades");
our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new( $rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => [ "id" ])

)
- >addSubl ndex( " bySynbol ",
Triceps:: I ndexType->newHashed(key => [ "synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

$ttWndow >initialize();
our $t Wndow = $uTrades- >makeTabl e( $tt W ndow, "t W ndow') ;

# renenber the index type by synmbol, for searching on it

our $itSynbol = $ttW ndow >fi ndSubl ndex("bySynbol ");

# renenber the FIFO index, for finding the start of the group
our $itlLast2 = $itSynbol ->findSubl ndex("l ast2");

# renenber, which was the last row nodified
our $rLast Mod;
our $l bRenenber Last Mod = $uTr ades- >nakelLabel ($rt Trade, "I bRenenber Last Mbd",
undef, sub { # (label, rowop)
$rLastMod = $_[1] ->get Row() ;
1)
$t W ndow >get Qut put Label () - >chai n( $l bRemenber Last Mod) ;

# Print the average price of the synbol in the last nodified row
sub printAverage # (row
{
return unl ess defined $rLast Mod;
ny $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);
ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);
print("Contents:\n");
ny $avg;
ny ($sum $count);
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");
$count ++;
$sum += $r hi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;

Secondary indexes 93



}
print("Average price: ", (defined $avg? $avg: "Undefined"), "\n");
}

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
&pri nt Aver age();
undef $rlLastMd; # clear for the next iteration
$uTrades->drai nFrane(); # just in case, for conpleteness

}
And an example of its work, with the input lines shown in bold:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
Aver age price: 10
OP_I NSERT, 2, BBB, 100, 100
Cont ent s:
id="2" synbol ="BBB" price="100" size="100"
Aver age price: 100
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol ="AAA" price="10" size="10"
i d="3" synbol ="AAA" price="20" size="20"
Aver age price: 15
OP_I NSERT, 4, BBB, 200, 200
Cont ent s:
id="2" synbol ="BBB" price="100" size="100"
i d="4" synbol ="BBB" price="200" size="200"
Average price: 150
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:
i d="3" synbol ="AAA" price="20" size="20"
i d="5" synbol =" AAA" price="30" size="30"
Aver age price: 25
OP_I NSERT, 6, BBB, 300, 300
Cont ent s:
i d="4" synbol ="BBB" price="200" size="200"
i d="6" synbol ="BBB" price="300" size="300"
Aver age price: 250
OP_DELETE, 3
Cont ent s:
i d="5" synbol =" AAA" price="30" size="30"
Aver age price: 30
OP_DELETE, 5
Cont ent s:
Aver age price: Undefined

Theinput has changed: now an extra column is prepended to it, containing the opcode for the row. The updatesto the table
are not printed any more, but the calculated average price is printed after the new contents of the group.

In the code, the first obvious addition is the extraindex in the table type. The label that used to print the updates is gone,
and replaced with another one, that remembers the last modified row in aglobal variable.

That last modified row isthen used in thefunction pr i nt Aver age() tofind the group for iteration. Why? Could not we
just remember the symbol from theinput data? Not always. Asyou can see from the last two input rowswith OP_DELETE,
thetrade id isthe only field required to find and delete arow using the index by d. So these trade cancellation rows take
a shortcut and only provide the trade id, not the rest of the fields. If we try to remember the symbol fields from them,

94 Tables



we'd remember an undef . Can we just look up the row by id after the incoming rowop has been processed? Not after the
deletion. If we try to find the symbol by looking up the row after the deletion, we will find nothing, because the row will
already be deleted. We could look up the row in the table before the del etion, and remember it, and afterwards do the look-
up of the group by it. But since on deletion the row with will come to the tabl€'s output label anyway, we can just ride the
wave and remember it instead of doing the manual look-up. And this also spares the need of creating arow with the last
symbol for searching: we get aready pre-made row with the right symboal in it.

Note that in this example, unlike the previous one, there are no two ways of finding the group any more: after deletion
the row handle will not be in the table any more, and could not be used to jump directly to the beginning of its group.
findl dx() hasto beused to find the group.

By thetimepri nt Aver age() executes, it could happen that all the rows with that symbol will be gone, and the group
will disappear. This situation is handled nicely in an automatic way: f i ndl dx() will return a NULL row handle, for
which then next G oupl dx () will aso returnaNULL row handle. The for-loop will immediately satisfy the condition
of $r hi - >sane( $r hEnd) , it will make no iterations, the $count and $avg will be left undefined. In result no rows
will be printed and the average value will be printed as “Undefined”, as you can see in the reaction to the last input row
in the sample output.

The main loop becomes reduced to reading theinput, splitting the line, separating the opcode, calling the table'sinput |abel,
and printing the average. The auto-conversion from the opcode name is used when constructing the rowop. Normally it's
not a good practice, since the program will dieif it finds a bad rowop in the input, but good enough for a small example.
Thedirect use of $uTr ades- >cal | () guaranteesthat by thetimeit returns, the last modified row will be remembered
in$r Last Mod, availablefor pri nt Aver age() touse.

After the averageiscalculated, $r Last Mod isreset to prevent it from accidentally affecting the next row. If the next row
isan attempt to delete atrade id that is not in the table any more, the DEL TE operation will have no effect on the table, and
nothing will be sent from the table's output label. $r Last Mod will stay undefined, and pri nt Aver age() will check
it and immediately return. An attempt to pass an undef argumenttofi ndl dx() would be an error.

The final $uTr ades- >dr ai nFrane() is there purely for completeness. In this case we know that nothing will be
scheduled by the labels downstream from the table, and there will be nothing to drain.

Now, an interesting question is: how does the table know, that to delete a row, it has to find it using the field i d? Or,
since the deletion internally uses f i nd( ) , the more precise question is; how doesfi nd() know that it has to use the
index byl d? It doesn't use any magic. It smply goes by the first index defined in the table. That's why the index byl d
has been very carefully placed before by Synbol . The same principle appliesto all the other functionslike next () , that
use an index but don't receive one as an argument: the first index is always the default index. There is a bit more detail
to it, but that's the rough principle.

9.8. Ordered index

The Ordered index works very similarly to the Hashed index but it keeps the records in the sorted order, similar to the SQL
statement ORDER BY . Depending on the types of the fields involved, it can be almost as fast as the Hashed index on the
integer fields, and a good deal slower on the string fields (but it's smart enough to compare the strings according to the
locale settings). It is created very similarly to a Hashed index:

$it = Triceps::|IndexType->newOrdered(key => [ @ields ])

To specify that some key field must be ordered in the descending order, its name needs to be prepended with a“!”. So, to
order by the date ascending and customer descending, use:

$it = Triceps::IndexType->newOr dered(key => [ "date", "!customer" ])

9.9. Sorted index

The Ordered index is arelatively recent addition to Triceps, the previous way to order the rows in a particular order was
to use the Sorted index implemented in Perl. The Sorted index might still be useful if you want to implement some very

Ordered index 95



custom sorting. It's much slower than the indexes implemented in the compiled code, but sometimes the flexibility might
be worth the overhead.

The sorted index is created with:

$it = Triceps::|ndexType->newPer| Sort ed($sort Nane,
$i ni t Func, $conpareFunc, @rgs);

The sorting order is specified as a Perl comparison function.

$sor t Nane isjust asymbolic name for printouts. It'sused whenyou call $i t - >pri nt () (directly or asarecursivecall
from thetabletype print) to let you know what kind of index typeit is, sinceit can't print the compiled comparison function.
It is aso used in the error messages if something dies inside the comparison function: the comparison is executed from
deep inside the C++ code, and by that time the $sor t Narre isthe only way to identify the source of the problems. It's not
the same name as used to connect the index type into the table type hierarchy with addSubl ndex( ) . Asusual, an index
type may be reused in multiple hierarchies, with different names, but in al casesit will also keep the same $sor t Nane.
Thismay be easier to show with an example:

$rtl = Triceps:: RowType- >new(
a => "int32",
b => "string",

);

$itl Triceps: : | ndexType->newPer| Sort ed("basic", undef, \&conpBasic);

$ttl = Triceps:: Tabl eType->new( $rt 1)
->addSubl ndex("primary", $it1l)

1

$tt2 = Triceps:: Tabl eType->new( $rt 1)
->addSubl ndex("first", $itl)

1

print $ttl->print(), "\n";
print $tt2->print(), "\n";

The print callsin it will produce:

table (

row {
int32 a,
string b,

}
)
|

}
table (
row {
int32 a,
string b,

ndex Perl Sortedl ndex(basic) prinary,

}
)

|
}

ndex Perl Sortedl ndex(basic) first,

Both the name of the index type in the table type and the name of the sorted index type are printed, but in different spots.

The $i ni t Func and/or $conpar eFunc function references (or, as usual, they may be specified as source code strings)
specify the sorting order. One of them may be left undefined but not both. @r gs are the optional arguments that will
be passed to both functions.

96 Tables



The easiest but |east flexible way isto just use the $conpar eFunc. It gets two Rows (not RowHandles!) as arguments,
plus whatever is specified in @r gs. It returns the usual Perl-style “<=>" result. For example:

sub conmpBasic # ($rowl, $row?)

{
return $ [0]->get("a") <=> $_[1]->get("a");

}

Don't forget to use “<=>" for the numbers and “cmp” for the strings. The typical Perl idiom for sorting by more than one
field isto connect them by “||".

Or, if we want to specify the field names as arguments, we could define a sort function that sorts first by a numeric field
in ascending order, then by a string field in descending order:

sub conpAscDesc # ($rowl, $row2, $nuntl dAsc, $strFl dDesc)

{
ny ($rowl, $row2, $nunf, $strf) = @;
return $rowl->get ($nunf) <=> $row2->get ( $nunf)
|| $row2->get ($strf) cnp $rowl->get ($strf); # backwards for descending

}

ny $sit = Triceps::|IndexType->newPer| Sorted("by_a_b", undef,
\ &onpAscDesc, "a", "b");

This assumes that the row type will have a numeric field “a’ and a string field “b”. If it doesn't then this will not be
discovered until you create a table and try to insert some rows into it, which will finally call the comparison function. At
which point the attempt to get a non-existing field will confess, thiserror will be caught by the table and set the sticky error
in it. The insert operation will confess with this error, and any future operations on the table will also confess with this
error (thisisthe meaning of “sticky”), the table will become unusable.

The $i ni t Func provides away to do that check and more up front. It is called at the table type initialization time. By
this time all this extra information is known, and it gets the references to the table type, index type (itself, but with the
class stripped back to Triceps::IndexType), row type, and whatever extra arguments that were passed. It can do all the
checks once.

Theinit function's return value iskind of backwards to everything else: on successit returnsundef , on error it returnsthe
error message. It could dietoo, but simply returning an error message is somewhat nicer. The returned error messages may
contain multiple lines separated by “\n”, so it should try to collect all the error information it can.

Theinit function that would check the arguments for the last example can be defined as:

sub initNuntr # ($tabt, $idxt, $row, @rgs)

{
ny ($tabt, $idxt, $rowt, @rgs) = @;
my %def = $rowt->getdef(); # the field definition
ny $errors; # collect as nany errors as possible

ny $t;
if ($#args '= 1) {

$errors .= "Received " . ($#args + 1) . " argunents, nust be 2.\n"
} else {

$t = $def{Pargs[0]};
if ($t '~ /int32%]int64$|float64$/) {
$errors .= "Field '" . $args[0] . "' is not of nuneric type.\n"

}
$t = $def {S$args[1]};
if ($t '~ /string$luint8/) {
$errors .= "Field '" . $args[1] . "' is not of string type.\n"

}

Sorted index 97



}

if (defined $errors) {
# help with diagnostics, append the row type to the error listing

$errors .= "the row type is:\n";
$errors .= $rowt->print();

}

return $errors;

}

ny $sit = Triceps::|ndexType->newPerl| Sorted("by_a_b", \& nitNunStr,
\ &onpAscDesc, "a", "b");

Theinit function can do even better: it can create and set the comparison function. It's done with:
$i dxt - >set Conpar at or ($conpar eFunc) ;

When theinit function sets the comparator, the compare function argument innewPer | Sor t ed() can beleft undefined,
because set Conpar at or () would override it anyway. But one way or the other, the compare function must be set, or
theindex type initiaization and with it the table type initialization will fail.

By the way, the sorted index type init function is not of the same kind as the aggregator type init function. The aggregator
type could use an init function of this kind too, but at the time it looked like too much extra complexity. It probably will
be added in the future. But more about aggregators later.

A fancier example of the init function will be shown in the next section.

Internally the implementation of the sorted index shares much with the hashed index. They both are implemented as trees
but they compare the rows in different ways. The hashed index is aimed for speed, the sorted index for flexibility. The
common implementation means that they share certain traits. Both kinds have the unigque keys, there can not be two rows
with the same key in an index of either kind. Both kinds allow to nest other indexesin them.

The handling of the fatal errors (asin di e() ) in the initialization and especially comparison functions is an interesting
subject. The errors propagate properly through the table, and the table operations confess with the Perl handler's error
message. But since an error in the comparison function means that things are going very, very wrong, after that the table
becomes inoperative and will die on all the subsequent operations as well. Y ou need to be very careful in writing these
functions.

9.10. SimpleOrdered index

The SimpleOrdered index was the older analog of the modern Ordered index, specifying the sorting order in amore SQL -
like fashion. There is not much reason to use it any more other than if you want to look at how the indexes work inside
without digging into the C++ code, and maybe to use it as a base for some custom index implementation. If you're not up
toit, feel free to skip over this section.

The SimpleOrdered index isimplemented on top of Sorted index, and itsinternals show off two concepts: theinitialization
function of the Sorted index, and the template with code generation on the fly.

First, how to create a SimpleOrdered index:
$it = Triceps:: SinpleOderedl ndex- >new $fi el dNane => $order, ...);

Theargumentsarethekey fields. $or der isoneof " ASC" for ascendingand" DESC" for descending. Hereisan example
of atable with thisindex:

ny $tabType = Triceps:: Tabl eType- >new( $r owType)
- >addSubl ndex("sorted",
Triceps:: Si npl eOr der edl ndex- >new(

98 Tables



a => "ASC',

b => "DESC',
)
)

When it gets translated into a Sorted index, the comparison function gets generated automatically. It's smart enough to
generate the string comparisons for the st r i ng and ui nt 8 fields, and the numeric comparisons for the numeric fields.
It's not smart enough to do the local e-specific comparisons for the strings and locale-agnostic for the ui nt 8, it just uses
whatever you have set up in cnp for both. It treats the NULL field values as numeric O or empty strings. It doesn't handle
the array fields at all but can at least detect such attempts and flag them as errors.

A weird artifact of the boundary between C++ and Perl is that when you get the index type back from the table type like

$sortldx = $tabType->fi ndSubl ndex("sorted");

the reference stored in $sor t | dx will be of the base type Triceps::IndexType. That's because the C++ internals of the
TableType object know nothing about any derived Perl types. But it's no big deal, since there are no other useful methods
for SimpleOrderedindex anyway. For the future, | have an idea of aworkaround, but it hasto wait for the future.

If youcall $sort | dx->pri nt (), itwill giveyou anideaof how it was constructed:
Per| Sort edl ndex(Si npl eOrder a ASC, b DESC, )

The contents of the parenthesis is a sort name from the Sorted index'es standpoint. It's an arbitrary string. But when the
SimpleOrdered index prepares this string to pass to the Sorted index, it putsits argumentsinto it.

Now the interesting part, | want to show the implementation of the SimpleOrdered index. It's not too big and it shows the
flexibility and the extensibility of Triceps:

package Triceps:: Si npl eOr der edl ndex;
our @SA = gw(Triceps::|ndexType);

# Create a new ordered index. The order is specified
# as pairs of (fieldNane, direction) where direction is a string
# "ASC' or "DESC'.
sub new # ($cl ass, $fiel dName => $direction...)
{
ny $class = shift;
ny @rgs = @; # save a copy

# build a descriptive sortNane
ny $sortNanme = 'SinpleOder ';
while ($#_ >= 0) {

ny $fld = shift;

ny $dir shift;

$sort Nane .= quot enet a( $f | d)

quoteneta($dir) . ', ';
}

$sel f = Triceps::|ndexType->newPer| Sort ed(
$sort Narme, ' &Triceps:: SinpleOderedlndex::init(@)', undef, @rgs
)
bl ess $sel f, $cl ass;
return $sel f;

}

# The initialization function that actually parses the args.
sub init # ($tabt, $idxt, $rowt, @rgs)
{

my ($tabt, $idxt, $rowmt, @rgs) = @;

my %ef = $rowt->getdef(); # the field definition

SimpleOrdered index 99



ny $errors; # collect as nany errors as possible
ny $conpare = ""; # the generated conparison function
ny $connector = "return"; # what goes between the conpari son operators

while ($#args >= 0) {
ny $f = shift @rgs;
ny $dir = uc(shift @rgs);

ny ($left, $right); # order the operands dependi ng on sorting direction
if ($dir eq "ASC') {

$left = 0; $right =1
} elsif ($dir eq "DESC') {

$left = 1; $right = 0;

} else {
$errors .= "unknown direction '$dir' for field '$f', use "ASC or 'DESC\n";
# keep going, may find nore errors

}

ny $type = $def {$f};

if (!defined $type) {
$errors .= "no field "$f' in the row type\n";
next ;

}

ny $cnp = "<=>"; # the conparison operator
if ($type eq "string"
|| $type =~ /"uint8.*/) {
$cnmp = "cnp"; # string version
} elsif($type =~ /\1%/) {

$errors .= "can not order by the field "$f', it has an array type '$type', not
supported yet\n";
next ;
}
ny $getter = "->get(\"" . quoteneta($f) . "\")";
$conmpare .= " S$connector \$_[$left] $getter $cnp \$_[$right] $getter\n”;
$connector = "||";
}
$conpare .= " ;\n";

if (defined $errors) {
# help with diagnostics, append the row type to the error listing

$errors .= "the row type is:\n";
$errors .= $rowt->print();
} else {

# set the conparison as source code

#print STDERR "DEBUG Triceps:: Sinpl eOrderedl ndex::init: conparison function:\n$conpare
\nn;

$i dxt - >set Conpar at or ($conpare) ;

}

return $errors;

}

The class constructor simply builds the sort name from the arguments and offloads the rest of logic to the init function. It
can't really do much more: when the index type object is constructed, it doesn't know yet, where it will be used and what
row type it will get. It tries to enquote nicely the weird characters in the arguments when they go into the sort name. Not
that much useis coming from it at the moment: the C++ code that prints the table type information doesn't do the same, so
there still is a chance of mishalanced quotes in the result. But perhaps the C++ code will be fixed at some point too.

100 Tables



The init function is called at the table type initialization time with all the needed information. It goes through all the
arguments, looks up the fields in the row type, and checks them for correctness. It tries to collect as much of the error
information as possible. The returned error messages may contain multiple lines separated by “\n”, and the SimpleOrdered
index makes use of it. The error messages get propagated back to the table type level, nicely indented and returned from
thetableinitiaization. If theinit function finds any errors, it appendsthe printout of the row type too, to make finding what
went wrong easier. A result of aparticularly bad call to atable type initialization may look like this:

i ndex error:
nested index 1 'sorted':
unknown direction ' XASC for field 'z', use 'ASC or 'DESC
no field 'z' in the row type
can not order by the field 'd', it has an array type 'float64[]', not supported yet
the row type is:
row {
uint8 a,
uint8[] b,
int64 c,
float64[] d,
string e,

}

Also astheinit goes through the arguments, it constructs the text of the compare function in the variable $conpar e. Here
the use of quot enet a() for the user-supplied strings isimportant to avoid the syntax errorsin the generated code. If no
errors are found in the arguments, the compare function gets compiled with eval . There should not be any errors, but it's
always better to check. Finally the compiled compare function is set in the sorted index with

$i dxt - >set Conpar at or ( $cnpf unc)

If you uncomment the debugging printout line (and run “rmake”, and maybe “nmake i nst al | ” afterwards), you can see
the auto-generated code printed on stderr when you use the SimpleOrdered index. It will look somewhat like this:

sub {
return $_[0]-&gt;get("a") cnp $_[1]-&gt;get("a")
[ $_[1]-&gt;get("c") &l t;=&gt; $_[0]-&gt;get("c")
[l $_[0]-&gt;get("b") cnp $_[1]-&gt;get("b")

}

That's it! An entirely new piece of functionality added in a smallish Perl snippet. Thisis your typical Triceps template:
collect the arguments, use them to build Perl code, and compile it. Of course, if you don't want to deal with the code
generation and compilation, you can just call your class methods and whatnot to interpret the arguments. But if the code
will be reused, the compilation is more efficient.

9.11. The index tree

The index typesin atable type can form a pretty much arbitrary tree. Following the common tree terminology, the index
types that have no other index types nested in them, are called the leaf index types. Since there seems to be no good one-
word naming for the index types that have more index types nested in them (“inner"? "nested" is too confusing), | simply
call them non-leaf.

At the moment the Hashed, Ordered, Sorted and SimpleOrdered index types can be used in both |eaf and non-leaf positions.
The FIFO index types must always be in the leaf position, they don't allow the further nesting.

Now isthe timeto look deeper into what is going on inside atable. Note that I've been very carefully talking about “index
types’” and not “indexes’. In this section the difference matters. The index types are in the table type, the indexes are in
the table. One index type may generate multiple indexes.

Thiswill become clearer after you see the illustrations. First, the legend in the Figure 9.1 .

The index tree 101



TableType

IndexType

Index

Position in an Index

Reference to a Row

Index Iterator in a RowHandle

\RARARN

Reference to a Row in a RowHandle

Figure9.1. Drawings legend.

The nodes belonging to the table type are shown in red, the nodes belonging to the table are shown in blue, and the contents
of the RowHandleis shown separately in yellow. The lines on the drawings represent not exactly pointers as such but more
of the logical connections that may be more complicated than the simple pointers.

The lines in the RowHandle don't mean anything at all, they just show that the parts go together. In reality a RowHandle
is a chunk of memory, with various elements placed in that memory. As far as indexes are concerned, the RowHandle
contains an iterator for every index where it belongs. Thisletsit know its position in the table, to iterate along every index,
and, most importantly, to be removed quickly from every index. A RowHandle belongs to one index of each index type,
and contains the matching number of iteratorsin it.

The table type is shown as a normal flat tree. But the table itself is more complex and becomes 3-dimensional. Its “view
from above’ matches the table type's tree but the data grows “up” in the third dimension.

102 Tables




Let's start with the simplest case: a table type with only one index type. Whether the index type is hash or FIFO, doesn't
matter here.

Tabl eType
+- 1 ndexType "A"

Figure 9.2 shows the table structure.

A
<o—a@»

root A
O——T D

NNNNN

A
row handle <>_E

Figure9.2. Oneindex type.

The table here always contains exactly one index, matching the one defined index type, and the root index. The root index
isvery dumb, its only purpose isto tie together the multiple top-level indexesinto atree.

The only index of type A provides an ordering of the records, and this ordering is used for the iteration on the table.

For the next example let'slook at the straight nesting in Figure 9.3 .

Tabl eType
+- I ndexType "A"
+- 1 ndexType "B"

The index tree 103




root A

|

A B
row handle <<+ 7

Figure 9.3. Straight nesting.

The stack of row referencesis shown visually divided to match the indexing, but in reality thereisno specia division. This
was done purely to make the picture easier to read.

Thereis still only one index of type A. And this is always the case with the top-level indexes, there is only one of them.
Thisindex divides the rows into 3 groups. Just like the rows in a leaf index, the groups in a non-leaf index are ordered
in some index-specific way.

Each group then has its own second-level index of type B. Which then defines an order for the rowsin it. To reiterate; the
index of type A splits the rows by groups, then the group'sindex of type B defines the order of the rows in the group.

So what happens when we iterate through the table and ask for the next row handle? The current row handle contains the
iterators in the indexes of types A and B. The easy thing is to advance the iterator of type B. Yeah, but in which index?
The Figure 9.3 shows three indexes of type B, let's call them B1, B2 and B3. Theiterator of type B in the row handletells
the relative position in the index, but it doesn't tell, which index it is. We need to step back and look at the index type A.
It'sthe top-level index type, so thereis always only oneindex for it. Then we take the iterator of type A and find thisrow's
group in the index A. The group contains the index of type B, say B1. We can then take thisindex B1, take the iterator of
type B from the row handle, and advance thisiterator in thisindex. If the advance succeeded, then great, we've got the next
row handle. But if the current row was the last row in B1, we need to step back to the index A again, advance the current
row handle's iterator of type A there, find itsindex B2, and pick the first row handle of B2.

Thisprocessiswhat happenswhenwe use $r h- >next | dx( $i t B) . Theiteration goesby theleaf index type B, however
it relieson all the index typesin the path from the table type to B. If we do $r h- >next () , the result is the same because
the first leaf index type is used as the default index type for the iteration.

If we do $r h- >next ($i t A), the semanticsis till the same: return the next row handle (not the next group). Thereis
no way to get to the row handle without going all the way through aleaf index. So when a non-leaf index typeis used for
the iteration, it getsimplicitly extended to itsfirst nested |leaf index type.

What would happen if anew row getsinserted, and theindex type A determinesthat it does not belong to any of the existing
groups? A new group will be created and inserted in the appropriate positionin A'sorder. This group will have anew index
of type B created, and the new row inserted in that index.

What would happen if both rowsin B1 are removed? B1 will become empty and will be collapsed. Theindex A will delete
the B1's group and B1 itself, and will remain with only two groups. The effect propagates upwards: if all the rows are

104 Tables




removed, the last index of type B will collapse, then theindex A will become empty and also collapse and be deleted. The
only thing left will be the root index that stays in the existence no matter what.

When atable is first created, it has only the root index. The rest of the indexes pop into the existence as the rows get
inserted. If you wonder, yes, this does apply to atable type with only one index type as well. Just this point has not been
brought up until now.

Among all this froth of creation and collapse the iterators stay stable. Once arow isinserted, the indexes leading to it are
not going anywhere (at least until that row gets removed). But since other rows and groups may be inserted around it, the
notion of what row is next, will change over time.

Let's go through how the other index-related operations work.

The iteration through the whole table starts with begi n() or begi nl dx(), the first being a form of the second that
always uses the first leaf index type. begi nl dx () isfairly straightforward: it just follows the path from the root to the
leaf, picking the first position in each index along the way, until it hits the RowHandle, as is shown in Figure 9.4 . That
found RowHandle becomes its result. If the tableis empty, it returns the NULL row handle.

A B
<OoO—a@» a»

===

root A
=

A B
row handle <<+ 7

Figure9.4. begi n(), begi nl dx($i t A) and begi nl dx( $i t B) work the samefor thistable.

Thenext pair isfi nd() andfi ndl dx() (andfi ndBy() andfi ndl dxBy() arewrappersaround those). As usual,
find() isthesamethingasfi ndl dx() onthetable'sfirst leaf index type. It also follows the path from the root to the
target index type. On each step it tries to find a matching position in the current index. If the position could not be found,
the search failsand aNULL row handleis returned. If found, it is used to progress to the next index.

As has been mentioned in Section 9.5: “A closer look at the RowHandles’” (p. 86) the search aways works internally

on a RowHandle argument. If a plain Row is used as an argument, a new temporary RowHandle will be created for it,
searched, and then freed after the search. Thisworkswell for two reasons. First, the indexes already have the functions for
comparing two row handlesto build their ordering. The same functions are reused for the search. Second, the row handles
contain not only the index iterators but also the cached information from the rows, to make the comparisons faster. The
exact kind of cached information varies by the index type. The FIFO, Ordered, Sorted and SimpleOrdered indexes use
none. The Hashed indexes cal culate a hash of the key field values, that will be used as a quick differentiator for the search.

The index tree 105




Thisinformation gets created when the row handl e gets created. Whether the row handle isthen used to insert into the table
or to search in it, the hash is then used in the same way, to speed up the comparisons.

Infindl dx(), the non-leaf index type arguments behave differently than the leaf ones: up to and including the index of
the target type, the search works as usual. But then at the next level the logic switches to the same asin begi nl dx(),
going for the first row handle of the first leaf sub-index. This lets you find the first row handle of the matching group
under the target index type.

If you use $t abl e- >fi ndl dx($i t A, $rh), onFigure 9.5 it will go through the root index to the index A. There
it will try to find the matching position. If none is found, the search ends and returns aNULL row handle. If the position
is found, the search progresses towards the first leaf sub-index type. Which is the index type B, and which conveniently
sits in this case right under A. The position in the index A determines, which index of type B will be used for the next
step. Suppose it's the second position, so the second index of type B is used. Since we're now past the target index A, the
logic used isthe same asfor begi nl dx() , and thefirst positionin B2 is picked. Which then leads to the first row handle
of the second sub-stack of handles.

A B
<OoO—a@» a»

= /7
—=—=——~~

root A

A B
row handle <>_<>ﬂ

Figure9.5.fi ndl dx($i t A, $rh) goesthrough A and then switchesto thebegi nl dx() logic.

Themethod fi r st OF G oupl dx() allowsto navigate within agroup, to jump from some row somewhere in the group
to the first one, and then from there iterate through the group. The example in Section 9.6: “A window is a FIFO" (p.
88) made use of it.

The Figure 9.6 shows an example of $t abl e- >fi r st Of G oupl dx($i t B, $rh), where $r h is pointing to the
third record in B2. What it needs to do is go back to B2, and then execute the begi n() logic from there on. However,
remember, the row handle does not have a pointer to the indexes in the path, it only has the iterators. So, to find B2, the
method does not really back up from the original row. It has to start all the way back from the root and follow the path
to B2 using the iterators in $r h. Since it uses the ready iterators, this works fast and requires no row comparisons. But
logically it's equivalent to backing up by onelevel, and I'll continue calling it that for simpicity. Once B2 (an index of type
B) isreached, thebegi n() logic goesfor thefirst row in there.

firstOf Goupl dx() works on both leaf and non-leaf index type arguments in the same way: it backs up from the
reference row to the index of that type and executesthe begi n() logic from there. Obvioudly, if you use it on a non-leaf
index type, the begi n() -like part will follow itsfirst leaf index type.

106 Tables




row handle <>_<>ﬂ

Figure9.6.first Of G oupl dx($itB, $rh).

The method next Groupl dx() jumps to the first row of the next group, according to the argument index
type. To do that, it has to retrace one level higher than first Of Groupl dx() . Figure 9.7 shows that $t a-
bl e- >next Gr oupl dx($i t B, $rh) that starts from the same row handle asin Figure 9.6 , has to logically back up
totheindex A, go to the next iterator there, and then follow to the first row of B3.

A B
<OoO—a@» a»

row handle >4/

Figure9.7. next Groupl dx($itB, $rh).

As before, in redlity there is no backing up, just the path is retraced from the root using the iterators in the row handle.
Once the parent of index type B is reached (which is the index of type A), the path follows not the iterator from the row
handle but the next one (yes, copied from the row handle, increased, followed). This givesthe index of type B that contains
the next group. And from there the same begi n() -likelogic findsitsfirst row.

The index tree 107




Sameasfirst O Groupl dx(),next G oupl dx() may beused on both the leaf and non-leaf indexes, with the same
logic.

It's kind of annoying that fi r st OF Gr oupl dx() and next Gr oupl dx() take the index type inside the group while
findl dx() usestakesthe parent index type to act on the same group. But as you can see, each of them follows its own
internal logic, and I'm not sure if they can be reconciled to be more consistent.

At the moment the only navigation is forward. Thereisno matching| ast (), prev() orl ast Gr oupl dx() or pr e-
vG oupl dx() . They areintheplan, but so far they arethevictimsof corner-cutting. Thoughthereisaversionof | ast ()
in the AggregatorContext, since it happens to be particularly important for the aggregation.

Continuing our excursion into the index nesting topologies, the next exampleis of two parallel leaf index types:
Tabl eType

+- I ndexType A

+- 1 ndexType B

Theresulting internal arrangement is shown in Figure 9.8 .

108 Tables



root

A B
row handle <>_<>ﬂ

Figure 9.8. Two top-level index types.

Each index type produces exactly one index under the root (since the top-level index types always produce one index).
Both indexes contain the same number of rows, and exactly the same rows. When arow is added to the table, it's added
to al the leaf index types (one actual index of each type). When arow is deleted from the table, it's deleted from al the
leaf index types. So the total is always the same. However the order of rows in the indexes may differ. The drawing shows
the row references stacked in the same order asthe index A becausetheindex A is of thefirst leaf index type, and as such
isthe default one for the iteration.

The row handle contains the iterators for both paths, A and B. It's pretty normal to find a row through one index type and
then iterate from there using the other index type.

The next examplein Figure 9.9 hasa“primary” index with aunique key and a* secondary” index that groups the records:

Tabl eType
+- I ndexType A

The index tree 109




+- 1 ndexType B
+- I ndexType C

owhande <> <> >

Figure9.9. A “primary” and “secondary” index type.

The index type A still produces one index and references all the rows directly. The index of type B produces the groups,
with each group getting an index of type C. The total set of rows referrable through A and through B is still the same but
through B they are split into multiple groups.

And Figure 9.10 shows two leaf index types nested under one non-leaf.

Tabl eType

+- I ndexType A
+- I ndexType B
+- I ndexType C

110 Tables




A B C
row handle <>+ 7

Figure 9.10. Two index types nested under one.

As usual, there is only one index of type A, and it splits the rows into groups. The new item in this picture is that each
group hastwo indexesin it: one of type B and one of type C. Both indexesin the group contain the same rows. They don't
decide, which rowsthey get. Theindex A decides, which rows go into which group. Then if the group 1 contains two rows,
indexes B1 and C1, would both contain two rows each, the exact same set. The stack of row references has been visually
split by groups to make this point more clear.

Thishappensto be a pretty useful arrangement: for example, B might be ahash index type, or asorted index type, allowing
to find the records by the key (and for the sorted index, to iterate in the order of keys), while C might be a FIFO index,
keeping the insertion order, and maybe keeping the window size limited.

That's pretty much it for the basic index topologies. Some much more complex index trees can be created, but they would
be the combinations of the examples shown. Also, don't forget that every extraindex type adds overhead in both memory
and CPU time, so avoid adding indexes that are not needed.

One more fine point has to do with the replacement policies. Consider that we have a table that contains the rows with
asinglefield:

idint32
And the table type has two indexes:

Tabl eType

The index tree 111




+- 1 ndexType "A" Hashl ndex key=(id)
+- 1 ndexType "B" Fifolndex limt=3

And we send there the rowops:

I NSERT id
I NSERT id
I NSERT id
I NSERT id

N WN P

The last rowop that inserts the row with id=2 for the second time triggers the replacement policy in both index types. In
the index A it is a duplicate key and will cause the removal of the previous row with id=2. In the index B it overflows
the limit and pushes out the oldest row, the one with id=1. If both records get deleted, the resulting table contents will be
2 rows (shown in FIFO order):

i d=3
i d=2

Which is probably not the best outcome. It might be tolerable with a FIFO index and a Hashed index but gets even more
annoying if there are two FIFO index typesin the table: one top-level limiting the total number of rows, another one nested
under a Hashed index, limiting the number of rows per group, and they start conflicting this way with each other.

The Triceps FIFO index is actually smart enough to avoid such problems: it looks at what the preceding indexes have
decided to remove, checksif any of these rows belong to its group, and adjusts its calcul ation accordingly. In this example
theindex B will find out that the row with id=2 is aready displaced by the index A. That leaves only 2 rows in the index
B, so adding a new one will need no displacement. The resulting table contents will be

id=1
id=3
id=2

However here the order of index typesisimportant. If the table were to be defined as
Tabl eType

+- 1 ndexType "B" Fifolndex limt=3

+- 1 ndexType "A" Hashl ndex key=(i d)

then the replacement policy of the index type B would run first, find that nothing has been displaced yet, and displace the
row id=1. After that the replacement policy of theindex type A will run, and being aHashed index, it doesn't have achoice,
it has to replace the row id=2. And both rows end up displaced.

If the situations with automatic replacement of rows by the keyed indexes may arise, always make sure to put the keyed
leaf index types before the FIFO leaf index types. However if you always diligently send a DELETE before the INSERT
of the new version of the recond, then this problem won't occur and the order of index types will not matter.

9.12. Table and index type introspection

A lot of information about atable type and the index typesin it can be read back from them.

$resul t
$resul t

= $tabType->islnitialized();

= $i dxType->islnitialized();

return whether atable or index type hasbeeninitialized. Theindex type getsinitialized when the table type where it belongs
gets initialized. After a table or index type has been initialized, it can not be changed any more, and any methods that
changeit will return an error. When an index type becomes initialized, it becomestied to a particular table type. Thistable
type can be read with:

$t abType
$t abType

$i dxType- >get Tabt ype();
$i dxType- >get Tabt ypeSafe();

112 Tables



The difference between these methods is what happensiif the index type was not set into atable typeyet. get Tabt ype()
would confesswhileget Tabt ypeSaf e() wouldreturnanundef . Which method to use, depends on the circumstances:
if this situation is valid and you're ready to check for it and handle it, use get Tabt ypeSaf e() , otherwise use get -
Tabt ype().

Even though an initialized index type can't be tied to another table, when you add it to another table or index type, a deep
copy with all its sub-indexes will be made automatically, and that copy will be uninitialized. So it will be able to get
initialized and tied to the new table. However if you want to add more sub-indexes to it, do a manual copy first:

$i dxTypeCopy = $i dxType->copy();
The information about the nested indexes can be found with:

$i t Sub $t abType- >f i ndSubl ndex("i ndexNane") ;
$i t Sub $t abType- >f i ndSubl ndexSaf e("i ndexNane") ;
@t Subs = $tabType- >get Subl ndexes();

$i t Sub $i dxType- >f i ndSubl ndex("i ndexNane") ;
$i t Sub $i dxType- >fi ndSubl ndexSaf e("i ndexNane") ;
@t Subs = $i dxType- >get Subl ndexes();

The fi ndSubl ndex() has been aready shown in Section 9.7: “Secondary indexes” (p. 92). It allows to find the
index types on the next level of nesting, starting down from the table, and going recursively into the sub-indexes. The Saf e
versionsreturnundef if theindex isnot found, instead of confessing. get Subl ndexes() returnstheinformation about
the index types of the next level at once, as the name => value pairs. The result array can be placed into a hash but that
would lose the order of the sub-indexes, and the order isimportant for the logic.

Thisfindstheindex types step by step. An easier way to find an index typein atable type by the“ path of the index” iswith

$i dxType = $tabType->fi ndl ndexPat h(\ @ dxNanes) ;

The argumentsin the array form apath of namesin theindex typetree. If the path is not found, the function would confess.

An empty path is also illegal and would cause the same result. Y es, the argument is not an array but areference to array.

This array is used essentially as a path object. For example the index from the Section 9.7: “ Secondary indexes’ (p. 92)
could be found as:

$itLast2 = $tt W ndow >fi ndl ndexPat h([ "bySynbol", "last2" ]);

The key (the set of fields that uniquely identify the rows) of the index type can be found with
@eys = $it->getKey();

It can be used on any kind of index types but actually returns the data only for the Hashed and Ordered index types. On the
other index typesit returns an empty array, though a better support might be available for the Sorted indexes in the future.

A fairly common need is to find an index by its name path, and also all the key fields that are used by all the indexesin
this path. It's used for such purposes as joins, and it allows to treat a nested index pretty much as a composition of all the
indexesin its path. The method

@ields = $indexType->get KeyExpr () ;

The array returned depends on the index type and is an "expression” that can be used to build another instance of the same
index type. For the Hashed index it simply returns the same data as getKey(). For the Ordered index it returns the list of
keyswith indications or order (so the descending field names get prepended with a“!”. For theindexeswith Perl conditions
it currently returns nothing, though in the future might be used to store the condition.

($i dxType, @eys) = $tabType->findl ndexKeyPat h(\ @at h);

solvesthis problem and finds by path an index type that allows the direct look-up by key fields. It requires that every index
typein the path returns anon-empty array of fieldsin get Key() . In practice it meansthat every index in the path must be

Table and index type introspection 113



a Hashed or Ordered index. Otherwise the method confesses. When the Sorted and maybe other index types will support
get Key( ) , they will be usable with this method too.

Besides checking that each index typein the path works by keys, this method builds and returnsthelist of all the key fields
required for alook-up in thisindex. Note that @eys is an actua array and not a reference to array. The return protocol
of this method is alittle weird: it returns an array of values, with the first value being the reference to the index type, and
the rest of them the names of the key fields. If the table type were defined as

$tt = Triceps:: Tabl eType->new($rt)
- >addSubl ndex(" byCcy1",
Triceps:: | ndexType- >newHashed(key => [ "ccyl" ])
- >addSubl ndex(" byCcy12",
Triceps:: | ndexType- >newHashed(key => [ "ccy2" ])
)

)
- >addSubl ndex( " byCcy2",

Triceps:: | ndexType- >newHashed(key => [ "ccy2" ])

- >addSubl ndex(" groupi ng", Triceps::I|ndexType->newrifo())
)

1

then $tt->fi ndl ndexkKeyPath([ "byCcyl", "byCcyl2" 1) would return ($i xtref, "ccyl",
"ccy2"),where$i xtref isthereference to the index type. When assigned to ( $i xt, @eys), $i xtref would
gointo$i xt,and ("ccyl", "ccy2") wouldgointo @eys.

The key field namesin the result go in the order they occurred in the definition, from the outermost to the innermost index.
The key fields must not duplicate. It's possible to define the index types where the key fields duplicate in the path, say:

$tt = Triceps:: Tabl eType->new( $rt)
- >addSubl ndex(" byCcy1",
Triceps:: I ndexType->newHashed(key => [ "ccyl" 1)
- >addSubl ndex("byCcy12",
Triceps:: I ndexType->newHashed(key => [ "ccy2", "ccyl" 1)
)
)

1

And they would even work fine, with just a little extra overhead from duplication. But f i ndl ndexKeyPat h() will
refuse such indexes and confess.

Y et another way to find an index is by the keys. Think of an SQL query: having a WHERE condition, you would want to
find if there is an index on the fields in the condition, allowing to find the records quickly. Tricepsis not quite up to this
level of automatic query planning yet but it does somefor the joins. If you know, by which fields you want to join, it'snice
to find the correct index automatically. The finding of an index by key is done with the method:

@ dxPat h = $t abl eType->fi ndl ndexPat hFor Keys( @eyFi el ds) ;

It returns the array that represents the path to an index type that matches these key fields. And then having the path you
can find the index type as such. The index type and all the types in the path still have to be of the Hashed variety. If the
correct index cannot be found, an empty array isreturned. If you specify thefields that aren't present in the row typein the
first place, thisis simply treated the same as being unable to find an index for these fields. If more that one index would
match, the first one found in the direct order of the index tree walk is returned.

Thekind of the index typeis aso known as the typeid. It can be found for an index type with
$id = $i dxType- >get | ndex! d();
It's an integer constant, matching one of the values:

e &Triceps:: | T_HASHED

114 Tables



e &Triceps::IT_FIFO
o &Triceps:: | T_SORTED
e &Triceps:: | T_ORDERED

There is no different id for the SimpleOrdered index, because it's built on top of the sorted index, and would return
&Tri ceps: : | T_SORTED.

The conversion between the strings and constants for index type ids is done with

$intld = &Triceps::stringlndexld($stringld);
$stringld = &Triceps::indexldString($intld);

If an invalid value is supplied, the conversion functions will return undef .
Thereisaso away to find the first index type of a particular kind. It's called somewhat confusingly
$it Sub = $i dxType- >fi ndSubl ndexBy! d( $i ndexTypel d) ;

where $i ndexTypel d is one of either of Triceps constants or the matching strings "1 T_HASHED', "1 T_FI FO',
"I T_SORTED'," 1 T_ORDERED".

Technically, thereis also IT_ROOT but it's of little use for this situation since it's the root of the index type tree hidden
inside the table type, and would never be a sub-index type. It's possible to iterate through al the possible index type ids as

for ($i = 0; $i < &Triceps::IT_LAST; $i++) { ... }

Thefirst leaf sub-index type, that is the default for iteration, can be found explicitly as

$i t Sub
$i t Sub

$t abType- >get Fi rst Leaf () ;
$i dxType- >get Fi rst Leaf () ;

If anindex isalready aleaf, get Fi r st Leaf () onitwill returnitself. The“leaf-ness’ of anindex type can be found with:
$result = $i dxType->i sLeaf ();

The usual reference comparison methods are:

$result = $tabTypel->sanme($tabType2);
$result = $tabTypel->equal s($tabType?2);
$result = $tabTypel->match($tabType2);
$result = $idxTypel->sanme($i dxType2);
$result = $idxTypel->equal s($i dxType2);
$result = $idxTypel->match($i dxType2);

Two table types are considered equal when they have the equal row types, and exactly the same set of index types, with
the same names.

Two table types are considered matching when they have the matching row types, and matching set of index types, although
the names of the index types may be different.

Two index types are considered equal when they are of the same kind (type id), their type-specific parameters are equal,
they have the same number of sub-indexes, with the same names, and equal pair-wise. They must aso have the equal
aggregators, which will be described in detail in the Chapter 11: “ Aggregation” (p. 143) .

Two index types are considered matching when they are of the same kind, have matching type-specific parameters, they
have the same number of sub-indexes, which are matching pair-wise, and the matching aggregators. The names of the sub-

Table and index type introspection 115



indexes may differ. As far as the type-specific parameters are concerned, it depends on the kind of the index type. The
FIFO type considers any parameters matching. For a Hashed index the key fields must be the same. For an Ordered index
the key fields and their ascending/descending order must be the same. For a Sorted index the sorted condition must also be
the same, and by extension this means the same condition for the SimpleOrdered index.

9.13. The copy tray

The table methodsi nsert (), renpbve() anddel et eRow() have an extra optional argument: the copy tray.

If used, it will put acopy of al the rowops produced during the operation (including the output of the aggregators, which
will be described in Chapter 11: “Aggregation” (p. 143) ) into that tray. The idea here isto use it in cases if you don't
want to connect the output labels of the table directly, but instead collect and process the rows from the tray manually
afterwards. Like this:

$ctr = $unit->makeTray();
$t abl e->i nsert ($row, S$ctr);
foreach nmy $rop ($ctr->toArray()) {

}..

However in redlity it didn't work out so well. The processing loop would have to have al the lengthy if-else sequences
to branch first by the label (if there are any aggregators) and then by opcode. It looks too difficult. Well, it could work in
the simple situations but not more than that.

In the future this feature will likely be deprecated unless it proves itself useful, and | already have a better idea. Because
of this, | see no point in going into the more extended examples.

9.14. Table wrap-up

Not al of thetable'sfeatures have been shown yet. Thetable classisthe cornerstone of Triceps, and everything isconnected
toit. Theaggregatorswork with the tables and are awhol e separate big subject with their own Chapter 11: “ Aggregation” (p.
143) . The features that take advantage of the streaming functions are described in Section 15.7: “ Streaming functions
and tables’ (p. 266) . There aso are many more options and small methods that haven't been touched upon yet. They
are enumerated in the reference chapter, please refer there.

116 Tables



Chapter 10. Templates

10.1. Comparative modularity

The templates are the Triceps term for the reusable program modules. |'ve adopted the term from C++ because that was
my inspiration for flexibility. But the Triceps templates are much more flexible yet. The problem with the C++ templates
isthat you have to writein them likein afunctional language, substituting loops with recursion, with perverse nested calls
for branching, and the result is quite hard to diagnose. Triceps uses the Perl's compilation on the fly to make things easier
and more powerful.

Tricepsis not unique in the desire for modularity. The other CEP systems have it too, but they tend to have it even more
rigid than the C++ templates. Let me show on a simple example.

Coral8 doesn't provide a way to query the windows directly, especially when the CCL is compiled without debugging.
So you're expected to make your own. People at a company where |'ve worked have developed a nice pattern that goes
approximately like this:

/1 some wi ndow that we want to namke queryable
create wi ndow w_ny schema s_ny

keep | ast per key_a per key_ b

keep 1 week;

/1l the streamto send the query requests
/1 (the schema can be shared by all sinple queries)
create schema s_query (

qqq_id string // unique id of the query

create input stream query_ny schema s_query;

/1 the streamto return the results
/1 (all result streanms will inherit a partial schenm)
create schema s_result (
qqq_id string, // returns back the id received in the query
gqq_end boolean, // will be TRUE in the special end indicator record

create output streamresult_ny schema inherits froms_result, s_ny;

/1 now process the query
insert into result_ny

select g.qgq_id, NULL, w*
froms_query as q, w.ny as w,

/1 the end marker

insert into result_ny (qqg_id, qgg_end)
sel ect qqg_id, TRUE

froms_query;

To query the window, a program would select a unique query id, subscribe to result_my with a filter (qgqq_id =
uni que_i d) andsendarecord of (uni que_i d) intoquery_ny. Thenitwould sit and collect theresult rows. Finally
it would get arow with qqgq_end = TRUE and disconnect.

Thisisafairly large amount of code to be repeated for every window. What | would like to to instead isto just write:
create wi ndow w_ny schema s_ny

keep | ast per key_a per key_b

keep 1 week;

make_queryabl e(w_ny);

117



and have the template make_quer yabl e expand into the rest of the code (obviously, the schema definitions would not
need to be expanded repeatedly, they would go into an includefile).

To make things more interesting, it would be nice to have the query filter the results by somefield values. Nothing as fancy
as SQL, just by equality to some fields. Suppose, s my includes the fields field ¢ and field_d, and we want to be able to
filter by them. Then the query can be done as:

create input stream query_mny schema inherits froms_query (
field_c integer,

field_d string

)

/1 result_ny is the sane as before...

/1 query with filtering (in a rather inefficient way)
insert into result_ny
select g.qqq_id, NULL, w*
froms_query as q, w_nny as w
wher e
(g.field_c is null or g.field_c = wfield_c)
and (q.field_d is null or g.field d = wfield_d);

/1 the end marker is as before

insert into result_mny (qqqg_id, qqg_end)
sel ect qqg_id, TRUE

froms_query;

It would be nice then to create this kind of query as atemplate instantiation
nmake_query(w_ny, (field_c, field_d));
Or even better, have the template determine the non-NULL fieldsin the query record and compiletheright query onthefly.

But the Coral8 modules (nor the later Sybase CEP R5) aren't flexible enough to do any of it. A CCL modulerequiresafixed
schemafor all itsinterfaces. The StreamBase language ismoreflexible and allowsto achieve some of theflexibility through
the capture fields, where the “logically unimportant” fields are carried through the modul e as one combined payload field.
But they don't allow the variable lists of fields as parameters either, nor generation of different model topologies depending
on the parameters.

10.2. Template variety

A templatein Tricepsisgenerally afunction or classthat creates afragment of the model based on itsarguments. It provides
the access points used to connect this fragment to the rest of the model.

There are different ways do do this. They can be broadly classified in the order of increasing complexity as:

A function that creates asingle Triceps object and returnsit. The benefit is that the function would automatically choose
some complex object parameters based on the function parameters, thus turning a complex creation into a simple one.

» A classthat similarly creates multiple fixed objects and interconnects them properly. It would a so provide the accessor
methods to export the access points of this sub-model. Since the Perl functions may return multiple values, this func-
tionality sometimes can be conveniently done with a function as well, returning the access pointsin the return array.

» A class or function that creates multiple objects, with their number and connections dependent on the parameters. For
asimple example, atemplate might receive multiple functions/closures as arguments and then create a pipeline of com-
putational labels, each of them computing one function (of course, this really makes sense only when each label runs
in a separate thread).

» A class or function that automatically generates the Perl code that will be used in the created objects. For a smple
example, given the pairs of field names and values, a template can generate the code for afilter label that would pass

118 Templates



only the rows where these fields have these values. The same effect can often be achieved by the interpretation as well:
keep the arguments until the evaluation needs to be done, and then interpret them. But the early code generation with
compilation improves the efficiency of the computation. It's the same idea as in the C++ templates; do more of the hard
work at the compile time and then run faster.

The more complex and flexible is the template, the more difficult it's generally to write and debug, but then it just works,
encapsulating a complex problem with a simpler interface. There is also the problem of user errors: when the user gives
an incorrect argument to a complex template, understanding what exactly went wrong when the error manifests itself,
may be quite difficult. The C++ templates are a good example of this. However the use of Perl, a general programming
language, as a template language in Triceps provides a good solution for this problem: just check the arguments early in
the template and produce the meaningful error messages. It may be a bit cumbersome to write but then easy to use. | also
have plans for improving the automatic error reports, to make tracking through the layers of templates easier with minimal
code additions in the templ ates.

I will show the examples of all the template types by implementing the table querying, the same | have shown in CCL in
Section 10.1: “ Comparative modularity” (p. 117) , only now in Triceps.

10.3. Simple wrapper templates

The SimpleServer package described in Section 7.9: “Main loop with asocket” (p. 54) containstemplatesfor the repeating
tasks. makeExi t Label () createsalabel that will request the server to exit, makeSer ver Qut Label () createsalabel
that will send the rows from some label back into the socket.

Rather than copying the code here again, please refer to the description in Section 7.9: “Main loop with a socket” (p. 54) .

Another similar template that is used throughout the following chapters creates a label that prints the rowop contents. It's
located in the package that wraps the input (e.g. feeding) and output of the tests:

package Triceps:: X : Test Feed,;

# a tenplate to nake a label that prints the data passing through another | abel
sub nmakePrintLabel ($$) # ($print_| abel _nane, $parent_| abel)

{
ny $nane = shift;
ny $l bParent = shift;
ny $l b = $I bParent->get Uni t ()->nmakelLabel ($| bPar ent - >get Type(), $nane,
undef, sub { # (label, rowop)
print($_[1]->printP(), "“\n");
1)
$l bPar ent - >chai n( $l b) ;
return $l b;

}

It works very much the same asmakeSer ver Qut Label (), only printsto a different destination.

10.4. Templates of interconnected components

Let'smoveonto the query template. It will work alittle differently than the CCL version. First, the socket main loop allows
to send the response directly to the same client who issued the request. So there is no need for adding the request id field
in the response and for the client filtering by it. Second, Triceps rows have the opcode field, which can be used to signal
the end of the response. For example, the data rows can be sent with the opcode INSERT and the indication of the end of
response can be sent with the opcode NOP and all fields NULL. The query template can then be made as follows:

package Queryl;

sub new # ($cl ass, $table, $nane)

{
ny $class = shift;

Simple wrapper templates 119



ny $table = shift;
ny $nanme = shift;

ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $self = {};
$sel f->{unit} = $unit;
$sel f - >{nane} = $nane;

$sel f->{tabl e} = $table;
$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
# This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
# The end is signaled by OP_NOP with enpty fields.

$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $uni t->makeDumyLabel ($rt, $nanme . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

sub get | nputLabel # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{out Label };

}

sub get Nane # ($sel f)
ny $self = shift;
return $sel f->{nane};

}

It creates the input label that does the work and the dummy output label that is used to send the result. The logic is easy:
whenever arowop is received on the input label, iterate through the table and send the contents to the output label. The
contents of that received rowop doesn't even matter. The getter methods allow to get the endpoints.

Now this example can be used in a program. Most of it is the example infrastructure: the function to start the server in
background and connect a client to it, the creation of the row type and table type to query, and then finally near the end the
interesting part: the usage of the query template. The general running is enclosed in the package Triceps::X::DumbClient:

package Triceps:: X :DunbCient;
sub run # (%l abel s)
ny $l abels = shift;

ny ($port, $pid) = Triceps:: X :SinpleServer::startServer(0, $labels);
ny $sock = 1O : Socket: : | NET->new

120 Templates



Proto => "tcp",

Peer Addr => "l ocal host",

Peer Port => $port,
) or confess "socket failed: $!'";
whi |l e(& readLi ne) {

$sock->print ($);

$sock->fl ush();
}
$sock->print ("exit, OP_I NSERT\n");
$sock->fl ush();
$sock- >shut down(1); # SHUT_WR
whi | e(<$sock>) {

& send($);

}
wai t pi d($pi d, 0);
}

Thefunctionr un() takes care of making the example easier to run: it starts the server in the background, reads the input
dataand sendsit to the server, then reads the responses and prints them back, and finally waits for the server processto exit.
It also takes care of sending the exit request to the server when the input reaches EOF. The approach with first sending all
the data there and then reading all the responses back is not very good. It works only if either the data gets sent without any
responses, or asmall amount of data (not to overflow the TCP buffers al ong the way) gets sent and then it'sall the responses
coming back. But it'ssimple, and it works good enough for the small examples. And actually many of the commercial CEP
interfaces work exacly like this: they either publish the data to the model or send a small subscription request and print
the data received from the subscription.

Then the actual example makes use of this function:

# The basic table type to be used as tenplate argunent.
our $rtTrade = Triceps:: RowType- >new(

id=>"int32", # trade unique id

synbol => "string", # synmbol traded

price => "fl oat 64",

size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" bySymbol ",
Triceps:: | ndexType- >newOr der ed( key => ["synbol "])
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(limt => 2)
)
)

$tt W ndow >initialize();

ny $uTrades Triceps::Unit->new("uTrades");

ny $t Wndow = $uTrades- >makeTabl e( $tt W ndow, "t W ndow');

ny $query = Queryl->new( $t W ndow, "gW ndow");

ny $srvout = &Triceps:: X :SinpleServer:: makeServer Qut Label ($query->get Qut put Label ());

ny %di spatch;

$di spat ch{ $t W ndow >get Nanme()} = $t W ndow >get | nput Label ();

$di spat ch{ $query- >get Nane()} = $query- >get | nput Label ();

$di spatch{"exit"} = &Triceps:: X :Si npl eServer:: makeExi t Label ($uTrades, "exit");

Triceps:: X :DunmbCient::run(\%i spatch);

The row type and table type have been just copied from some other example. Thereis no particular meaning to why such
fields were selected or why the table has such indexes. They have been selected semi-randomly. The only triucky thing
that affects the result is that this table implements a window with alimit of 2 rows per symbol.

Templates of interconnected components 121



After thetableis created, the template instantiation isasingle call, Quer y1- >new( ) . Then the output label of the query
template gets connected to alabel that sends the output back to the client, and that's it.

Hereis an example of arun, with theinput rows printed as alwaysin bold.

t W ndow, OP_I NSERT, 1, AAA, 10, 10

t W ndow, OP_I NSERT, 3, AAA, 20, 20

gW ndow, OP_I NSERT

gW ndow. out , OP_| NSERT, 1, AAA, 10, 10
gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_NCP, , , ,

t W ndow, OP_I NSERT, 5, AAA, 30, 30

gW ndow, OP_I NSERT

gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_| NSERT, 5, AAA, 30, 30
gW ndow. out, OP_NCP, , , ,

Because of theway r un() works, all theinput rows are printed before the output ones. If it were smarter and knew, when
to expect the responses before sending more inputs, the output would have been:

t W ndow, OP_I NSERT, 1, AAA 10, 10

t W ndow, OP_I| NSERT, 3, AAA, 20, 20

gW ndow, OP_| NSERT

gW ndow. out , OP_I NSERT, 1, AAA 10, 10
gW ndow. out , OP_I NSERT, 3, AAA 20, 20
gW ndow. out , OP_NOPR, , , ,

t W ndow, OP_I| NSERT, 5, AAA, 30, 30

gW ndow, OP_I| NSERT

gW ndow. out , OP_I NSERT, 3, AAA 20, 20
gW ndow. out , OP_I NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NOP, , , ,

Two rows get inserted into the table, then a query is done, then one more row is inserted, then another query sent. When
the third row is inserted, the first row gets thrown away by the window limit, so the second query also returns two rows
albeit different than the first query does.

It is possible to fold the table and the client send label creation into the template as well. It will then be used as follows:

nmy $w ndow = $uTrades- >makeTabl eQuer y2( $tt W ndow, "wi ndow');

ny %di spat ch;

$di spat ch{ $wi ndow >get Nane()} = $w ndow >get | nput Label ();

$di spat ch{$wi ndow >get Quer yLabel ()->get Name()} = $w ndow >get QueryLabel ();
$di spatch{"exit"} = &ServerHel pers:: makeExitLabel ($uTrades, "exit");

The rest of the infrastructure would stay unchanged. Just to show how it can be done, I've even added a factory method
Uni t:: makeTabl eQuery2() . Theimplementation of thistemplateis:

package Tabl eQuery?2;
use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $unit, $tabType, $nane)
{

ny $class = shift;

ny $unit = shift;

ny $tabType = shift;
ny $nanme = shift;
ny
ny

$tabl e = $unit->makeTabl e($t abType, $nane);
$rt = $tabl e- >get RowType();

122 Templates



ny $self = {};

$sel f->{unit} $uni t;
$sel f - >{ nane} $nane;
$sel f->{tabl e} = $table;

$sel f->{gLabel} = $unit->nakeLabel ($rt, $name . ".query", undef, sub {

# This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (; !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f->{resLabel } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
# The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{resLabel}, "OP_NOP");
}, $self);
$sel f->{resLabel } = $unit->makeDumyLabel ($rt, $name . ".response");

$sel f->{sendLabel } = &Triceps:: X: :Sinpl eServer: : nakeServer Qut Label ($sel f->{reslLabel });

bl ess $sel f, $cl ass;
return $sel f;

}

sub get Nane # ($sel f)

ny $self = shift;
return $sel f->{nane};

}
sub get QueryLabel # ($self)

ny $self = shift;
return $sel f->{qglLabel };
}

sub get ResponselLabel # ($self)

ny $self = shift;
return $sel f->{resLabel };

}

sub get SendLabel # ($self)

ny $self = shift;
return $sel f->{sendLabel };

}
sub get Table # ($sel f)

ny $self = shift;
return $sel f->{tabl e};

}

sub get |l nputLabel # ($self)

ny $self = shift;
return $sel f->{tabl e}->get | nputLabel ();
}

sub get Qut put Label # ($self)
{

Templates of interconnected components

123



ny $self = shift;
return $sel f->{tabl e}->get Qut put Label ();
}

sub get PreLabel # ($self)

ny $self = shift;
return $sel f->{tabl e}->get PreLabel ();
}

# add a factory to the Unit type
package Triceps::Unit;

sub makeTabl eQuery2 # ($self, $tabType, $nane)

{
return Tabl eQuery2->new( @) ;

}

The meat of the logic stays the same. The creation of the table and of the client sending label are added around it, as well
as abunch of getter methods to get access to the components.

The output of this exampleisthe same, with the only difference that it expects and sends different 1abel names:

ndow, OP_I NSERT, 1, AAA, 10, 10

ndow, OP_I NSERT, 3, AAA, 20, 20

ndow. query, OP_I NSERT

ndow, OP_I NSERT, 5, AAA, 30, 30

ndow. query, OP_I NSERT

ndow. r esponse, OP_I NSERT, 1, AAA, 10, 10
ndow. r esponse, OP_I NSERT, 3, AAA, 20, 20
ndow. r esponse, OP_NOP, , , ,

ndow. r esponse, OP_I NSERT, 3, AAA, 20, 20
ndow. r esponse, OP_I NSERT, 5, AAA, 30, 30
ndow. r esponse, OP_NOP, , , ,

10.5. Template options

Often the arguments of the template constructor become more convenient to organize in the option name-value pairs. It
becomes particularly useful when there are many arguments and/or when some of them really are optional. For our little
query template this is not the case but it can be written with options nevertheless (a modification of the original version,
without the tablein it):

£ £sssss22s s

package Query3;

sub new # ($cl ass, $opti onName => $optionVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt::parse($class, $self, {
name => [ undef, \&Triceps::Opt::ck_nmandatory ],
table => [ undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],
b@);

ny $nane = $sel f->{nane};
ny $table = $sel f->{table};

ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

124 Templates



$sel f->{unit} $uni t;
$sel f - >{ nane} $nane;
$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
# This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
# The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;

return $self;
}
The getter methods stayed the same, so I've skipped them here. The call has changed:
ny $query = Query3->new(table => $t Wndow, nanme => "qW ndow');
The output stayed the same.

The class Triceps::Opt is used to parse the arguments formatted as options. There is actually a similar option parser in
CPAN but it didn't do everything | wanted, and considering how tiny it is, it's easier to write a new one from scratch than
to extend that one. | aso like to avoid the extra dependencies.

The heart of it is the method Tri ceps: : Opt:: parse(). It's normaly caled from a class constructor to parse the
constructor's options, but can be called from the other functions as well. It does the following:

Checks that al the options are known.

Checks that the values are acceptable.

» Copiesthe valuesinto the instance hash of the calling class.

Provides the default values for the unspecified options.

If anything goes wrong, it confesses with areasonable message. The argumentstell the class name for the messages (since,
remember, it is normally called from the class constructor), the reference to the object instance hash where to copy the
options, the descriptions of the supported options, and the actual key-value pairs.

Attheend of it, if al went well, the query's $sel f will have the values at keys“name” and “table’.

The options descriptions go in pairs of option name and an array reference with description. The array contains the default
value and the checking function, either of which may be undef . The checking function returns if everything went fine or
confesses on any errors. To die happily with a proper message, it gets not only the value to check but more, altogether:

» Thevaueto check.

» The name of the option.

» The name of the class, for error messages.

The object instance ($sel ), justin case.

Template options 125



If you want to do multiple checks, you just make a closure and call all the checksin sequence, passing @ to them all, like
shown here for the option “table”. If more arguments need to be passed to the checking function, just add them after @
(or, if you prefer, beforeit, if you write your checking function that way).

Y ou can create any checking functions, but afew ready ones are provided:
e Triceps::Opt::ck_mandat ory checksthat the valueis defined.

e Triceps:: Opt::ck_ref checksthatthevalueisareferenceto aparticular class, or aclassderived fromit. Just give
the class name as the extra argument. Or, to check that the reference isto array or hash, make the argument " ARRAY"
or "HASH' . Or an empty string " " to check that it's not a reference at all. For the arrays and hashes it can also check
the values contained in them for being references to the correct types: give that type as the second extra argument. But
it doesn't go deeper than that, just one nesting level. It might be extended later, but for now one nesting level has been
enough.

* Triceps:: Opt::ck_refscal ar checks that the value is a reference to a scalar. This is designed to check the
arguments which are used to return data back to the caller, and it would accept any previous value in that scalar: an
actual scalar value, an undef or areference, sinceit's about to be overwritten anyway.

Theck _ref () andck_refscal ar () alow thevalueto be undefined, so they can safely be used on the truly optional
options. When | come up with more of the useful check functions, I'll add them.

Triceps::Opt provides more helper functions to deal with options after they have been parsed. One of them is handl e-

Uni t TypeLabel () that handles a very specific but frequently occuring case: Depending on the usage, sometimes it's
more convenient to give the template theinput row type and unit, and later chain itsinput to another |abel; and sometimesit's
more convenient to giveit another ready label and have the template find out the row type and unit from it, and chainitsin-
put to that label automatically, like Ser ver Hel per s: : nakeSer ver Qut Label () wasshown doingin Section 10.3:
“Simple wrapper templates’ (p. 119) . It's possible if the unit, row type and source label are made the optional options.

Triceps:: Opt:: handl eUnit TypeLabel () takes care of sorting out what information is available, that enough
of it isavailable, that exactly one of row type or source label optionsis specified, and fillsin the unit and row type values
from the source label (specifying the unit option along with the source label is OK aslong asthe unit isthe same). To show
it off, | re-wrote the Ser ver Hel per s: : makeSer ver Qut Label () asaclasswith options:

package Server Qut put;
use Carp;

sub CLONE_SKIP { 1; }

# Sending of rows to the server output.
sub new # ($class, $option => $value, ...)

{

no war ni ngs;

ny $class = shift;
ny $self = {};

&Triceps:: Opt::parse($class, $self, {
name => [ undef, undef ],
unit => [ undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Unit") } ],
rowlType => [ undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::RowType") } 1,
fromLabel => [ undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Label") } ],
@),

&Triceps:: Opt:: handl eUni t TypeLabel (" $cl ass: : new',
unit => \$sel f->{unit},

rowType => \$sel f->{rowType},

fromLabel => \$sel f->{fronlLabel}
)

126 Templates



ny $fronLabel = $sel f->{fronlLabel};

if (!defined $self->{nane}) {
confess "$cl ass::new nust specify at |east one of the options nane and fronliabel"
unl ess (defined $sel f->{fronlabel });
$sel f->{nane} = $fronlabel ->get Nane() . ".serverQut";
}

ny $Ilb = $sel f->{unit}->nmakelLabel ($sel f->{rowType},
$sel f->{nane}, undef, sub {

&Triceps:: X :SinpleServer::outCurBuf (join(",",
$fronlLabel ? $fronlLabel - >get Nane() : $sel f->{nane},
&Triceps: :opcodeString($_[ 1] - >get Opcode()),
$ [1]->getRow()->toArray()) . "\n");

}, $self # $self is not used in the function but used for cleaning
)
$sel f->{inLabel} = $I b;
if (defined $froniLabel) {
$f ronLabel - >chai n( $l b) ;
}

bl ess $sel f, $cl ass;
return $sel f;

}
sub get | nputlLabel () # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

Theargumentsto Tri ceps: : Opt : : handl eUni t TypelLabel () arethecaler function namefor the error messages,
and the pairs of option name and reference to the option value for the unit, row type and the source label.

The new class also hasthe optional option “name”. If it's not specified and “fromLabel” is specified, the nameis generated
by appending a suffix to the name of the source label. The new class can be used in one of two ways, either

nmy $srvout = Server Qut put->new(fronLabel => $query->get Qut put Label ());
or

ny $srvout = Server Qut put - >new(
name => "out",

unit => $uTrades,

rowType => $t W ndow >get RowType(),

)
$quer y- >get Qut put Label () - >chai n( $srvout - >get | nput Label ());

The second form comes handy if you want to create it before creating the query.

The other helper function is Tri ceps: : Opt: : checkMuit ual | yExcl usi ve() . It checks that no more than one
option from the list is specified. The joins use it to alow multiple ways to specify the join condition. For now I'll show a
bit contrived example, rewriting the last example of ServerOutput with it:

package Server Qut put 2;
use Carp;

sub CLONE_SKIP { 1; }

# Sending of rows to the server output.
sub new # ($cl ass, $option => $value, ...)

Template options 127



{

no war ni ngs;

ny $class = shift;
ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [ undef, undef ],

unit => [ undef, sub { &Triceps::Opt::ck_nandatory; &Triceps::Opt::ck_ref(@,
"Triceps::Unit") } 1,

rowType => [ undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Rowlype") } ],

fromLabel => [ undef, sub { &Triceps:: Opt::ck_ref(@, "Triceps::Label") } ]
b @);

ny $fronLabel = $sel f->{fronlLabel};
if (&Triceps::Opt::checkMitual |l yExcl usive("$cl ass::new', 1,
rowType => $sel f->{rowType},
fromLabel => $sel f->{fronlLabel }
) eq "fronlLabel"

) |
$sel f->{rowType} = $fronlabel - >get RowType();
}

if (!defined $self->{nane}) {
confess "$cl ass::new nust specify at |east one of the options nane and fronliabel"
unl ess (defined $sel f->{fronlabel });
$sel f->{nane} = $fronlabel ->get Nane() . ".serverQut";

}

ny $lb = $sel f->{unit}->nmakelLabel ($sel f->{rowType},
$sel f->{nane}, undef, sub {

&Triceps:: X :SinpleServer: :out CurBuf (join(",",
$fronlLabel ? $fronlLabel - >get Nane() : $sel f->{nane},
&Triceps: :opcodeString($_[ 1] - >get Opcode()),
$ [1]->getRow()->toArray()) . "\n");

}, $self # $self is not used in the function but used for cleaning
)
$sel f->{inLabel} = $I b;
if (defined $froniLabel) {
$f ronlLabel - >chai n($l b) ;
}

bl ess $sel f, $cl ass;
return $sel f;

}
sub get | nputlLabel () # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

Theargumentsof theTr i ceps: : Opt : : checkMut ual | yExcl usi ve() arethecaller namefor error messages, flag
whether one of the mutually exclusive options must be specified, and the pairs of option names and values (this time not
references, just values). It returns the name of the only option specified by the user, or undef if none were. If more than
one option was used, or if none were used and the mandatory flag is set, the function will confess.

The way this version of the code works, the option “unit” must be specified in any case, so the use case with the source
label becomes:

ny $srvout = Server Qut put 2- >new(

128 Templates



unit => $uTrades
fronLabel => $query->get Qut put Label ()

)

The use case with the independent creation is the same as with the previous version of the Ser ver Qut put .

10.6. Code generation in the templates

Suppose we want to filter the result of the query by the equality to the fields in the query request row. The list of the fields
would be given to the query template. The query code would check if these fields are not NULL (and since the simplistic
CSV parsing is not good enough to tell between NULL and empty values, not an empty value either), and pass only the
rows that match it. Here we go (skipping the methods that are the same as before):

package Query4,;
use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, S$self, {

name => [ undef, \&Triceps::Opt::ck_nmandatory ],

table => [ undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],

fields => [ undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY') } 1,
b@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};
ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $fields = $sel f->{fields};
if (defined $fields) {
ny %tdef = $rt->getdef();
foreach ny $f (@fields) {
ny $t = $rtdef{$f};
confess "$cl ass::new. unknown field "$f', the row type is:\n"
$rt->print() . " "
unl ess defined $t;

}
}
$sel f->{unit} = $Sunit;
$sel f - >{nane} = $nane;

$sel f->{inLabel} = $unit->nakelLabel ($rt, $name . ".in",
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->{conpare};
ny $rh = $sel f->{tabl e}->begin();
ITER for (; !'$rh->isNull(); $rh = $rh->next()) {
if (defined $self->{fields}) {
ny $data = $rh->get Row();
ny %tdef = $sel f->{tabl e}->get RowType()->getdef();
foreach ny $f (@$self->{fields}}) {
ny $v = $query->get ($f);

undef, sub {

Code generation in the templates 129



# Since the sinplified CSV parsing in the mai nLoop() provides
# no easy way to send NULLs, consider any enpty or 0 val ue
# in the query row equival ent to NULLs.
if ($v
&& (&Triceps::Fields::isStringType($rtdef{$f})

? $query->get ($f) ne $dat a- >get ( $f)

$query- >get ($f) ! = $dat a- >get ( $f)
)

) |
next | TER,
}

}

$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
# The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label }, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}
Used as:

ny $query = Query4->new(table => $t Wndow, nanme => "qW ndow',
fields => ["synmbol", "price"]);

The field names get checked up front for correctness. And then at run time the code iterates through them
and does the checking. Since the comparisons have to be done differently for the string and numeric values,
Triceps::Fields::isStringType() isusedtocheck thetypeof thefields. Triceps::Fieldsisacollection of func-
tionsthat help dealing with fieldsin thetemplates. Another similar functionisTri ceps: : Fi el ds: :i sArrayType()

If the option “fields” is not specified, it would work the same as before and produce the same result. For the filtering by
symbol and price, a sample output is:

t W ndow, OP_I| NSERT, 1, AAA, 10, 10

t W ndow, OP_I| NSERT, 3, AAA, 20, 20

t W ndow, OP_I| NSERT, 4, BBB, 20, 20

gW ndow, OP_| NSERT

gW ndow. out , OP_I NSERT, 1, AAA, 10, 10
gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOP, , , ,

t W ndow, OP_I| NSERT, 5, AAA, 30, 30

gW ndow, OP_I| NSERT, 5, AAA, 0, O

gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NOP, , , ,

gW ndow, OP_| NSERT, 0, , 20,0

gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOP, , , ,

The table data now has one more row of data added to it, with the symbol “BBB”. The first query has no values to filter
init, so it just dumps the whole table as before. The second query filters by the symbol “AAA”. Thefield for priceis0, so
it gets treated as empty and excluded from the comparison. The fields for id and size are not in the fields option, so they
get ignored even if the value of id is 5. The third query filters by the price equal to 20. The symbol field is empty in the
guery, so it does not participate in the filtering.

130 Templates



Looking at the query execution code, now there is a lot more going on in it. And quite a bit of it is static, that could
be computed at the time the query object is created. The next version does that, building and compiling the comparator
function in advance:

package Querys;
use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt::parse($class, $self, {

name => [ undef, \&Triceps::Opt::ck_nmandatory ],

table => [ undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],

fields => [ undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY') } 1,

saveCodeTo => [ undef, \&Triceps:: Opt::ck_refscalar ],

@)
nmy $name = S$sel f->{nanme};

ny $table = $sel f->{table};
ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $fields = $sel f->{fields};
if (defined $fields) {
ny %tdef = $rt->getdef();

# Generate the code of the conparison function by the fields
# Since the sinplified CSV parsing in the mai nLoop() provides
# no easy way to send NULLs, consider any enpty or 0 val ue

# in the query row equival ent to NULLs.

ny $gencnp =
sub # ($query, $data)
{
use strict;
ny ($query, $data) = @;
ny $v;';

foreach ny $f (@fields) {
ny $t = $rtdef{$f};
confess "$cl ass::new. unknown field "$f', the row type is:\n"
$rt->print() . " "
unl ess defined $t;
$gencnp . ="'
$v = $query- >get (
if (sv) {";
if (&Triceps::Fields::isStringType($t)) {
$gencnp . ="'
return 0 if ($v ne $data->get ("' . quotenmeta(S$f) . ""));';
} else {
$gencnp .
return 0 if ($v != $data->get ("' . quotenmeta(S$f) . ""));';
}

$gencnp . =
s

quoteneta($f) . '");

Code generation in the templates 131



$gencnp . =
return 1; # all succeeded

|

${ $sel f - >{saveCodeTo}} = $gencnp if (defined(S$self->{saveCodeTo}));

$sel f->{conpare} = eval $gencnp;

# $@al ready contains an \n at the end

confess("Internal error: $class failed to conpile the conparator:\n$@unction text:\n"

. Triceps::Code::numalign($gencnmp, " ") . "\n")
if $@
}
$sel f->{unit} = $unit;
$sel f - >{nanme} = $nane;

$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->{conpare};
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
if (!defined $cnp || &bcnp($query, $rh->getRow())) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
}
# The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal | ($sel f->{outLabel}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

The code of the anonymous comparison function gets generated in $gencnp and then compiled by using eval .

If the compilation fails (which should never happen, since the generated code should be always correct), it's printed out as
apart of the error message, making the diagnostic easier. The function numal i gn() makes the error messages easier to
match to the code by printing out the line numbers with the code. It's described in detail in Section 19.2: “Code helpers
reference” (p. 363) .

eval returns the pointer to the compiled function which is then used at run time. The generation uses all the same logic
to decide on the string or numeric comparisons, and also effectively unrollsthe loop. When generating the string constants
in functions from the user-supplied values, it's important to enquote them with quot enet a() . Even when we're talking
about the field names, they still could have some funny characters in them. The option “saveCodeTo” can be used to get
the source code of the comparator, it gets saved at the reference after it gets generated.

If thefilter field option is not used, the comparator remains undefined.

The use of this version is the same as of the previous one, but to show the source code of the comparator, I've added its
printout:

ny $cnpcode;
ny $query = Query5->new(table => $t W ndow, nane => "qW ndow"',
fields => ["synbol ", "price"], saveCodeTo => \$cnpcode );

# as a denonstration
print (" Code:\n$cnpcode\n");

This produces the result:

Code:

132 Templates



sub # ($query, $data)

{

}
t W ndow,

t W ndow,
t W ndow,
gW ndow,
gW ndow.
gW ndow.
gW ndow.
gW ndow.
t W ndow,
gW ndow,
gW ndow.
gW ndow.
gW ndow.
gW ndow,
gW ndow.
gW ndow.
gW ndow.

use strict;
ny ($query, $data) = @;
ny $v = $query->get ("synbol");
if ($v) {
return 0 if ($v ne $data->get ("synbol "));

}
ny $v = $query->get ("price");
if ($v) {
return 0 if ($v != $data->get("price"));
}

return 1; # all succeeded

OP_I NSERT, 1, AAA, 10, 10
OP_I NSERT, 3, AAA, 20, 20

OP_I NSERT, 4, BBB, 20, 20

OP_I NSERT

out, OP_I NSERT, 1, AAA, 10, 10
out, OP_I NSERT, 3, AAA, 20, 20
out , OP_I| NSERT, 4, BBB, 20, 20
out, OP_NOP, , ,,

OP_I NSERT, 5, AAA, 30, 30

OP_I NSERT, 5, AAA, 0,0

out, OP_I NSERT, 3, AAA, 20, 20
out, OP_I NSERT, 5, AAA, 30, 30
out, OP_NOP, , ,,

OP_I NSERT, 0, , 20,0

out, OP_I NSERT, 3, AAA, 20, 20
out, OP_I| NSERT, 4, BBB, 20, 20
out, OP_NOP, , ,,

Besides the code printout, the result is the same as last time.

Now, why list the fieldsin an option? Why not just take them all? After all, if the user doesn't want filtering on somefield,
he can always simply not set it in the query row. If the efficiency is a concern, with possibly hundreds of fields in the row
with only few of them used for filtering, we can do better: we can generate and compile the comparison function after we
see the query row. Here goes the next version that does all this:

package

Quer y6;

use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [ undef,

t abl

"Triceps::Table") } 1],
bo@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};
ny $unit = $table->getUnit();

ny $rt

= $t abl e- >get RowType() ;

\ &Triceps:: Opt::ck_nmandatory ],
e => [ undef, sub { &Triceps:: Opt::ck_nandatory(@);

&Triceps:: Opt::ck_ref(@,

Code generation in the templates

133



$sel f->{unit} = $Sunit;
$sel f - >{nane} = $nane;
$sel f->{inLabel} = $unit->nmakeLabel ($rt, $name . ".in", undef,
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->genConpari son($query);
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
if (&cmp($query, $rh->getRow())) {
$sel f->{unit}->call(

sub {

$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
}
# The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}
# Generate the conparison function on the fly fromthe fields in the
# query row.
# Since the sinplified CSV parsing in the mai nLoop() provides
# no easy way to send NULLs, consider any enpty or 0 val ue
# in the query row equival ent to NULLs.
sub genConparison # ($self, $query)
{
ny $self = shift;
ny $query = shift;
ny %hash = $query- >t oHash();
ny %tdef = $sel f->{tabl e}->get RowType()->getdef();
nmy ($f, $v);
ny $gencnp =
sub # ($query, $data)
{

use strict;"';

# the sorting keeps the key order predictable for the tests;
# the can al so be done with Hash::UWil::hash_traversal _mask()
# but woul d not be backwards-conpatibl e
foreach $f (sort keys %ghash) {

$v = $ghash{$f};

next unless($v);

ny $t = $rtdef{$f};

if (&Triceps::Fields::isStringType($t)) {

$gencnp . ="'
return 0 if ($_[0]->get("' . quoteneta($f) . '")
ne $ [1]->get("' . quotemeta($f) . "'"));';
} else {
$gencnp . ="'
return O if ($_[0]->get("' . quoteneta($f) . '")
1= $ [1]->get("" . quotemeta($f) . "'"));';
}
}
$gencnp . ="'
return 1; # all succeeded
134

Templates



I

ny $conpare = eval $gencnp;
# $@al ready contains an \n at the end

confess("Internal error: Query '" . $sel f->{nane}
"' failed to conpile the conparator:\n$@unction text:\n"
. Triceps::Code::numalign($gencnmp, " ") . "\n")
if $@

# for debugging
&Triceps:: X:: Sinpl eServer: : out Cur Buf (" Conpi | ed conparat or:\n$gencnp\n");

return $conpare;

}

Thieoption “fields” isgone, and the code generation has moved into the method genConpar i son( ) , that getscalled for
each query. I've inserted the sending back of the comparison source code at the end of it, to make it easier to understand.
Obvioudly, if this code were used in production, this would have to be commented out, and maybe some better option
added for debugging. An example of the output is:

t W ndow, OP_I NSERT, 1, AAA, 10, 10
t W ndow, OP_I| NSERT, 3, AAA, 20, 20
t W ndow, OP_I| NSERT, 4, BBB, 20, 20
gW ndow, OP_I NSERT

Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return 1; # all succeeded
}
gW ndow. out , OP_| NSERT, 1, AAA 10, 10
gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NCP, , , ,
t W ndow, OP_I| NSERT, 5, AAA, 30, 30
gW ndow, OP_I NSERT, 5, AAA, 0, 0
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return 0 if ($_[0]->get("synbol")
ne $_[1]->get("synbol"));
return O if ($_[0]->get("id")
I'=$_[1]->get("id"));
return 1; # all succeeded
}
gW ndow. out , OP_I| NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NCP, , , ,
gW ndow, OP_| NSERT, 0, , 20,0
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return O if ($_[0]->get("price")
1= $ [1]->get("price"));
return 1; # all succeeded

}
gW ndow. out , OP_I NSERT, 3, AAA, 20, 20

Code generation in the templates 135



gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOPR, , , ,

Thefirst query contains no filter fields, so the function compiles to the constant 1. The second query hasthe fieldsid and
symbol not empty, so the filtering goes by them. The third query has only the price field, and it is used for filtering.

The code generation on the fly is a powerful tool and is used throughout Triceps.

10.7. Result projection in the templates

The other functionality provided by the Triceps::Fields is the filtering of the fields in the result row type, also known as
“projection”. Y ou can select which fields you want and which you don't want, and rename the fields.

To show how it's done, | took the Query3 example from Section 10.5: “ Template options” (p. 124) and added the result
field filtering to it. I've aso changed the format in which it returns the resultsto pr i nt P() , to show the field names and
make the effects of the field renaming visible.

package Query7;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $optionNane => $optionValue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {
name => [ undef, \&Triceps::Opt::ck_mandatory ],
table => [ undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck ref(@,
"Triceps::Table") } 1],
resultFields => [ undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY', ""); } ],
b@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};

ny $unit tabl e->getUnit();
ny $rtin t abl e- >get RowType() ;
ny $rtQut = $rtin;

=%
=%

if (defined $self->{resultFields}) {
ny @nFields = $rtln->getFiel dNanes();
ny @airs = &Triceps::Fields::filterToPairs($class, \@nFields, $self-
>{resul tFields});
($rtQut, $self->{projectFunc}) = &Triceps::Fields::mkeTransl ation(
rowTypes => [ $rtin ],
filterPairs => [ \@airs ],
)
} else {
$sel f->{project Func} = sub {
return $_[0];
}
}

$sel f->{unit} = $unit;

$sel f->{nane} = $nane;

$sel f->{inLabel} = $unit->nakeLabel ($rtIn, $name . ".in", undef, sub {
# This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;

136 Templates



ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT",
&{ $sel f->{proj ect Func}}($rh->getRow())));

}
# The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumryLabel ($rtQut, $nanme . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

sub getl nputLabel # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{out Label };

}

sub get Nane # ($sel f)

ny $self = shift;
return $sel f->{nane};

}
package main

ny $uTrades = Triceps:: Unit->new"uTrades");

ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "tW ndow');

ny $query = Query7->new(table => $t W ndow, nane => "qW ndow"',
resultFields => [ 'lid, 'size/lot_$&, '.*" 1],

)

# print in the tokenized format

ny $srvout = $uTrades->makelLabel ($query- >get Qut put Label () - >get Type(),
$quer y- >get Qut put Label ()->get Name() . ".serverQut", undef, sub {

&Triceps:: X :SinpleServer::outCurBuf ($_[1]->printP() . "\n");

1)

$quer y- >get Qut put Label () ->chai n($srvout);

ny %di spatch;

$di spat ch{$t W ndow >get Nane()} = $t W ndow- >get | nput Label () ;

$di spat ch{$query->get Name()} = $query->getl| nput Label ();

$di spatch{"exit"} = &Triceps:: X :SinpleServer:: makeExitLabel ($uTrades, "exit");

Triceps:: X :DunbCient::run(\%i spatch);

The query now has the new option “resultFields’ that defines the projection. That option accepts a reference to an array
of pattern strings. If present, it gives the patterns of the fields to let through. The patterns may be either the explicit field
names or regular expressions implicitly anchored at both front and back. Thereis also abit of extramodification possible:

I pattern
Skip the fields matching the pattern.

Result projection in the templates 137



pattern / substitution
Pass the matching fields and rename them according to the substitution.

Sointhisexample[ '!'id', 'size/lot_$& , '.*' ] means skipthefield “id", rename the field “size” by
prepending “lot_" to it, and pass through the rest of the fields. In the renaming pattern, $& is the reference to the whole
origina field name. If you use the parenthesised groups, they are referred to as $1, $2 and so on. But if you use any of
those, don't forget to put the pattern into single quotes to prevent the unwanted expansion in the double quotes before the
projection gets a chance to see it.

For an example of why the parenthesised groups can be useful, suppose that the row type has multiple account-related el e-
mentsthat all start with “acct”: acct src,accti nt er nal ,acct ext er nal . Suppose we want to insert an underscore
after “acct”. This can be achieved with the pattern ' acct (. *)/acct _$1' . Asusua in the Perl regexps, the parenthe-
sised groups are numbered left to right, starting with $1.

If a specification element refers to aliteral field, like here “id” and “size”, the projection checks that the field is actually
present in the original row type, catching the typos. For the general regular expressionsit doesn't check whether the pattern
matched anything. It's not difficult to check but that would preclude the reuse of the same patterns on the varying row
types, and I'm not sure yet, what is more important.

The way this whole thing works is that each field gets tested against each pattern in order. The first pattern that matches
determines what happens to this field. If none of the patterns matches, the field gets ignored. An important consequence
about the skipping patterns is that they don't automatically pass through the non-matching fields. You need to add an
explicit positive pattern at the end of the list to pass the fields through. ' . *' servesthis purpose in the example.

A consequenceis that the order of the fields can't be changed by the projection. They are tested in the order they appear in
the original row type, and are inserted into the projected row type in the same order.

Another important point is that the field names in the result must not duplicate. It would be an error. Be careful with the
substitution syntax to avoid creating the duplicate names.

A run example from this version, with the same input as before;

t W ndow, OP_I NSERT, 1, AAA 10, 10

t W ndow, OP_I| NSERT, 3, AAA, 20, 20

gW ndow, OP_| NSERT

gW ndow. out OP_I NSERT synbol =" AAA" price="10" |ot_size="10"
gW ndow. out OP_I NSERT synbol =" AAA" price="20" |ot_size="20"
gW ndow. out OP_NOP

t W ndow, OP_I| NSERT, 5, AAA, 30, 30

gW ndow, OP_| NSERT

gW ndow. out OP_I NSERT synbol =" AAA" price="20" |ot_size="20"
gW ndow. out OP_I NSERT synbol =" AAA" price="30" |ot_size="30"
gW ndow. out OP_NOP

The rows returned are the same, but projected and printed in the pr i nt P() format.
Inside the template the projection worksin three steps:

e Triceps::Fields::filterToPairs() doestheprojection of the field names and returns its result as an array
of names. The namesin thearray go in pairs. the old name and the new name in each pair. Thefieldsthat got skipped do
not get included inthelist. Inthisexamplethearray wouldbe( "synbol ", "synbol ", "price", "price",
"size", "lot_size" ).

e Triceps::Fields::mkeTransl ati on() thentakesthisarray along with the original row type and produces
the result row type and afunction reference that does the projection by converting an original row into the projected one.

» Thetemplate execution then calls this projection function for the result rows.

The split of work betweenfi | t er ToPai rs() and nakeTr ansl ati on() has been done partially historically and
partially because sometimes you may want to just get the pair names array and then use them on your own instead of

138 Templates



caling makeTr ansl ati on() . There is one more function that you may find useful if you do the handling on your
own: filter().Ittakesthe samearguments and doesthe samethingasfi | t er ToPai r s() but returnstheresultina
different format. It's still an array of strings but it contains only the names of the translated field namesinstead of the pairs,
in the order matching the order of the original fields. For the fields that have been skipped it contains an undef . For this
exampleit wouldreturn ( undef, "synbol", "price", "lot_size" ).

Thecallsare:

@ields = &Triceps::Fields::filter(
$caller, \@nFields, \@ranslation);

@airs = &Triceps::Fields::filterToPairs(
$caller, \@nFields, \@ranslation);

($rowType, $projectFunc) = &Triceps:: Fiel ds::makeTransl ati on(
$opt Name => $opt Val ue, ...);

All of them confess on errors, and the argument $cal | er isused for building the error messages. The options of make-
Transl ations() are

“rowTypes’ isareferenceto an array of original row types. “filterPairs’ isareferenceto an array of filter pair arrays. Both
of these options are mandatory. And that'sright, makeTr ansl at i ons() can accept and merge more than one original
row type, with a separate projection specification for each of them. It's not quite asflexible as1'd want it to be, not allowing
to reorder and mix thefieldsfrom different originals (now the fields go in sequence: from thefirst original, from the second
original, and so on), but it's a decent start. When you combine multiple original row types, you need to be particularly
careful with avoiding the duplicate field names in the resullt.

The option “saveCodeTo” aso alows to save the source code of the generated function, same as in the Query5 example
in Section 10.6: “ Code generation in the templates’ (p. 129) .

The general call form of makeTr ansl ati ons() is:

($rowType, $projectFunc) = &Triceps:: Fields::makeTransl ati on(
rowlTypes => [ $rtl1, $rt2, ..., $rtN],
filterPairs => [ \@airsl, \@airs2, ..., \@airsN],
saveCodeTo => \ $codeVar,

)

One of the result type or projection function referece could have a so been returned to a place pointed to by an option, like
“saveCodeTo”, but since Perl supports returning multiple values from a function, that looks simpler and cleaner.

The projection function is then called:
$row = &$proj ect Func($ori gRowl, $ori gRow2, ..., $ori gRowN);
Naturally, makeTr ansl ati ons() isatemplateitself. Let'slook at its source code, it shows a new trick.

package Triceps:: Fields;

use Carp;
use strict;
sub nmakeTransl ation # (opt Name => optValue, ...)
{ ny $opts = {}; # the parsed options
ny $nmyname = "Triceps::Fields::mkeTransl ation";

&Triceps:: Opt::parse("Triceps::Fields", $opts, {
rowlypes => [ undef, sub { &Triceps:: Opt::ck_nandatory(@);
&Triceps::Opt::ck_ref(@, "ARRAY', "Triceps::RowlType") } ],
filterPairs => [ undef, sub { &Triceps::Opt::ck_mandatory(@);
&Triceps:: Opt::ck _ref(@, "ARRAY', "ARRAY") } ],

Result projection in the templates 139



saveCodeTo => [ undef, sub { &Triceps::Opt::ck_refscalar(@) } 1],
@)

# reset the saved source code
${ $opt s- >{ saveCodeTo}} = undef if (defined($opts->{saveCodeTo}));

ny $rts
ny $fps

$opt s- >{rowTypes};
$opt s->{filterPairs};

confess "$nyname: the arrays of row types and filter pairs nust be of the sanme size, got
oL ($#{Srts}+1l) . " and " . ($#{$fps}+l) . " elenents”
unl ess ($#{$rts} == $#{$fps});
ny $gencode =
sub { # (@ ows)
use strict;
use Carp;
confess "tenplate internal error in $nmyname
L ($#{Srts}+1) . ' row args, received " . ($#_+1)
unless ($#_ ==" . $#{$rts} . ');
# $result_rt cones at conpile time from Triceps:: Fields::makeTransl ation
return $result_rt->makeRowArray(';

result translation expected

ny @owdef; # of the result row type
for (my $i = 0; $i <= $#{Prts}; $i++) {
ny %origdef = $rts->[$i]->getdef();
ny @p = @$fps->[$i]}; # copy the array, because it will be shifted
while ($#fp >= 0) {
ny $from= shift @p;
ny $to = shift @p;
ny $type = $origdef{$fron};
confess "$nynane: unknown original field '$from in the original rowtype $i:\n"
$rts->[$i]->print() . " "
unl ess (defined $type);
push( @ owdef, $to, $type);
$gencode . ="
$[' . $i . '"]->get("" . quoteneta($from . '"),';
}

}

$gencode . =
)
s

ny $result_rt = Triceps::w apfess
"$nynane: Invalid result row type specification:",
sub { Triceps:: RowlType->new @ owdef); };

${ $opt s- >{ saveCodeTo}} = $gencode if (defined($opts->{saveCodeTo}));

# conpile the translation function
ny $func = eval $gencode
or confess "$nynane: error in conpilation of the generated function:\n $@unction
text:\n"
Triceps:: Code: : nunal i gn($gencode, " ") . "\n";

return ($result_rt, $func);

}

By now almost all the parts of the implementation should look familiar to you. It builds the result row definition and the
projection function code in parallel by iterating through the originals. An interesting trick is done with passing the result

140 Templates



row type into the projection function. The function needs it to create the result rows. But it can't be easily placed into the
function source code. So the closure property of the projection function is used: whatever outside “my” variables occur
in the function at the time when it's compiled, will have their values compiled hardcoded into the function. So the “my”
variable $resul t _rt is set with the result row type, and then the projection function gets compiled. The projection
function refersto $r esul t _rt , which gets picked up from the parent scope and hardcoded in the closure.

The computation of the $r esul t _rt iswrapped in the enhanced error reporting, more on that below in Section 10.8:
“Error reporting in the templates” (p. 141) .

10.8. Error reporting in the templates

When writing the Triceps templates, it's always good to make them report any usage errors in the terms of the template
(though the extra detail doesn't hurt either). That is, if atemplate builds a construction out of the lower-level primitives,
and one of these primitives fails, the good approach is to not just pass through the error from the primitive but wrap it
into a high-level explanation.

When the errors are reported like the exceptions, which meansin Perl by di e() or conf ess() , thisisnot that easy to do
well. The basic handling is easy, there isjust no need to do anything to let the exception propagate up, but adding the extra
information becomes difficult. First, you've got to explicitly check for these errors by catching them with eval () , and
only then can you add the extrainformation and re-throw. And then thereisthis pesky problem of the stack traces: if there-
throw usesconf ess( ), itwill likely add aduplicate of at least apart of the stack trace that came with theunderlying error,
andif it usesdi e() , the stack trace might be incomplete since the native XS code in Tricepsincludes the stack trace only
tothenearest eval () to prevent the same problem when unrolling the stacks mixed between Perl and Triceps scheduling.

Triceps providesaready solutionfor this, thefunction Tr i ceps: : wr apf ess() that doeseverythingright. Thissolution
is not even limited to Triceps, it can be used with any kind of Perl programs. It has been used in the examples above,
and looks as follows:

ny $result_rt = Triceps::wapfess
"$nynane: Invalid result row type specification:",
sub { Triceps:: Rowlype->new @owdef); };

The function Tri ceps: : wr apf ess() isvery much like the try/catch, only it has the hardcoded catch logic that adds
the extra error information and then re-throws the exception.

Its first argument is the error message that describes the high-level problem. This message will get prepended to the error
report when the error propagates up (and the original error message will get a bit of extra indenting, to nest under that
high-level explanation).

The second argument isthe code that might throw an error, like thetry-block. Theresult from that block gets passed through
astheresult of wr apf ess() .

The full error message might look like this:

Triceps::Fields::makeTransl ation: Invalid result row type specification:
Triceps:: RowType::new. incorrect specification:
duplicate field name 'f1' for fields 3 and 2
duplicate field name 'f2' for fields 4 and 1
Triceps:: RowType: :new. The specification was: {
f2 => int32[]
fl => string
fl => string
f2 => float64[]
} at blib/lib/Triceps/Fields.pmline 209.
Triceps::Fields::__ANON__ called at blib/lib/Triceps.pmline 192
Triceps::wapfess(' Triceps::Fields::mkeTranslation: Invalid result row type spe...",
' CODE(0x1c531e0)') called at blib/lib/Triceps/Fields.pmline 209
Triceps:: Fields::makeTransl ati on(' rowTypes', 'ARRAY(0x1c533d8)', 'filterPairs',
" ARRAY(0x1c53468)') called at t/Fields.t line 186

Error reporting in the templates 141



eval {...} called at t/Fields.t line 185
It contains both the high-level and the detailed description of the error, and the stack trace.

The stack trace doesn't get indented, no matter how many times the message gets wrapped. W apf ess() usesadightly
dirty trick for that: it assumes that the error messages are indented by the spaces while the stack trace from conf ess()
isindented by a single tab character. So the extra spaces of indenting are added only to the linesthat don't start with a tab.

Note also that even though wr apf ess() useseval () ,thereisnoeval aboveitinthe stack trace. That's the other part
of the magic: since that eval is not meaningful, it gets cut from the stack trace, and wr apf ess() aso usesit to find
its own place in the stack trace, the point from which a simple re-confession would dump the duplicate of the stack. So
it cutsthe eval and everything under it in the original stack trace, and then does its own confession, inserting the stack
trace again. This works very well for the traces thrown by the XS code, which actually doesn't write anything below that
eval ; w apf ess() then addsthe missing part of the stack.

Wrapfess() can do a bit more, $message may be either a string or a code reference, or a reference to a scalar variable
containing either. The detauls of that are explained in Section 19.1: “Top-level functions reference” (p. 361) .

142 Templates



Chapter 11. Aggregation
11.1. The ubiquitous VWAP

Every CEP supplier loves an example of VWAP calculation: it's small, it's about that quintessential CEP activity: aggre-

gation, and it sounds like something from the real world.

A quick sidebar: what isthe VWAP? It'sthe Vaue-Weighted Average Price: the average price for the shares traded during
some period of time, usualy a day. If you take the price of every share traded during the day and calculate the average,
you get the VWARP. What is the value-weighted part? The shares don't usually get sold one by one. They're sold in the
variable-sized lots. If you think in the terms of lots and not individual shares, you have to weigh the trade prices (not to be

confused with costs) for the lots proportional to the number of sharesin them.

I'vebeen using VWAPfor trying out the different approachesto the aggregation. There are multiplewaysto doit, from fully
manual, to the aggregator infrastructure with manual computation of the aggregations, to the simple aggregation functions.
The cutest version of VWAP so far isimplemented as a user-defined aggregation function for the SimpleAggregator. Here

ishow it goes:

# VWAP function definition
ny $nyAggFunctions = {
myvwap => {

vars => { sum=> 0, count => 0, size => 0, price => 0 },

step => ' ($%i ze, $%price) = @Yargiter;
"if (defined $%ize && defined $%price)

"{$%ount += $%ize; $¥%um += $%ize * $%rice;}"',

result =>"'($%ount == 0? undef : $%um/ $%ount)',
}s
s

ny $uTrades = Triceps:: Unit->new"uTrades");

# the input data
ny $rtTrade = Triceps:: RowType- >new
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64"
size => "float64", # nunber of shares traded

)

ny $ttWndow = Triceps:: Tabl eType- >new( $rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => [ "id" ])

)

- >addSubl ndex(" bySynbol "
Triceps:: I ndexType->newHashed(key => [ "synbol" 1)
->addSubl ndex("fifo", Triceps::|ndexType->newrifo())

)

# the aggregation result
ny $rtWwap;
ny $conpText; # for debuggi ng

Tri ceps: : Si nmpl eAggr egat or: : nake(
tabType => $tt W ndow,
name => "aggr Vwap",
idxPath => [ "bySynbol", "fifo" ],
result => |

143



symbol => "string", "last", sub {$_[0]->get("synmbol");},
id=>"int32", "last", sub {$_[0]->get("id");},
volunme => "float64", "suni', sub {$_[O]->get("size");},
vwap => "float64", "nyvwap", sub { [$_[O]->get("size"), $_[O]->get("price")];},
1
functions => $nyAggFuncti ons,
saveRowTypeTo => \ $rt VWwap,
saveConput eTo => \ $conpText,

)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "tW ndow');

# label to print the result of aggregation
ny $l bPrint = $uTrades->nmakelLabel ($rtVWwap, "IbPrint",
undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");

1)
$t W ndow >get Aggr egat or Label (" aggr Vwap") - >chai n($! bPrint);

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a string opcode
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
$uTrades->drai nFrane(); # just in case, for conpleteness

}

The aggregators get defined as parts of the table type. Tri ceps: : Si npl eAggr egat or: : make() isakind of a
template that adds an aggregator definition to the table type that is specified in the option “tabType” . An aggeragtor doesn't
livein avacuum, it alwaysworks as a part of the table type. Asthe table gets modified, the aggregator a so re-computesits
aggregation results. The fine distinction isthat the aggregator is a part of the table type, and is common for all the tables of
thistype. But the table stores its aggregation state, and when an aggregator runs on atable, it uses and modifies that state.

The name of the aggregator is how you can find its result later in the table: each aggregator has an output label created for
it, that can befound with $t abl e- >get Aggr egat or Label () . Theoption “idxPath” defines both the grouping of the
rows for this aggregator and their order in the group. The index type at the path determines the order and its parent defines
the groups. In this case the grouping happens by symbol, and the rows in the groups go in the FIFO order. This means that
the aggregation function | ast will be selecting the row that has been inserted last, in the FIFO order.

The option “result” defines both the row type of the result and the rules for its computation. Each field is defined there
with four elements: name, type, aggregation function name, and the function reference to select the value to be aggregated
from the row. Triceps provides a bunch of pre-defined aggregation functionslikefi rst,| ast,sumcount, avg and
so on. But VWAP is not one of them (well, maybe now it should be, but then this example would be less interesting). Not
to worry, the user can add custom aggregation functions, and that's what this example does.

The option “functions’ contains the definitions of such user-defined aggregation functions. Here it defines the function
myvwap. It defines the state variables that will be used to keep the intermediate values for a group, a step computation,
and the result computation. Whenever the group changes, the aggregator will reset the state variables to the default values
and iterate through the new contents of the group. It will perform the step computation for each row and collect the datain
the intermediate variables. After theiteration it will perform the result computation and produce the final value.

The VWAP computation in aweird one, taking two fields as arguments. Thesetwo fields get packed into an array reference
by
sub { [$_[0]->get("size"), $ [0]->get("price")];}

and then the step computation unpacks and handles them. In the aggregator computations the syntax $%mane refers to
the intermediate variables and aso to a few pre-defined ones. $%ar gi t er is the value extracted from the current row
during the iteration.

144 Aggregation



And that's pretty much it: send the rows to the table, the iterator state gets updated to match the table contents, computes
the results and sends them. For example:

OP_I NSERT, 11, abc, 123, 100

t W ndow. aggr Vwap OP_I NSERT synbol ="abc" id="11" vol unme="100"
vwap="123"

OP_I NSERT, 12, abc, 125, 300

t W ndow. aggr Vwap OP_DELETE synbol ="abc" id="11" vol unme="100"
vwap="123"

t W ndow. aggr Vwap OP_I NSERT synbol ="abc" id="12" vol unme="400"
vwap="124. 5"

OP_I NSERT, 13, def, 200, 100

t W ndow. aggr Vwap OP_I NSERT synbol ="def" id="13" vol unme="100"
vwap="200"

OP_I| NSERT, 14, f gh, 1000, 100

t W ndow. aggr Vwap OP_I NSERT synbol ="fgh" id="14" vol unme="100"
vwap="1000"

OP_I NSERT, 15, abc, 128, 300

t W ndow. aggr Vwap OP_DELETE synbol ="abc" id="12" vol unme="400"
vwap="124. 5"

t W ndow. aggr Vwap OP_I NSERT synbol ="abc" id="15" vol unme="700"
vwap="126"

OP_I NSERT, 16, f gh, 1100, 25

t W ndow. aggr Vwap OP_DELETE synbol ="fgh" id="14" vol unme="100"
vwap="1000"

t W ndow. aggr Vwap OP_I NSERT synbol ="fgh" id="16" vol unme="125"
vwap="1020"

OP_I NSERT, 17, def, 202, 100

t W ndow. aggr Vwap OP_DELETE synbol ="def" id="13" vol unme="100"
vwap="200"

t W ndow. aggr Vwap OP_I NSERT synbol ="def" id="17" vol unme="200"
vwap="201"

OP_I| NSERT, 18, def, 192, 1000

t W ndow. aggr Vwap OP_DELETE synbol ="def" id="17" vol unme="200"
vwap="201"

t W ndow. aggr Vwap OP_I NSERT synbol ="def" id="18" vol une="1200"
vwap="193. 5"

When agroup gets modified, the aggregator first sendsa DEL ETE of the old contents, then an INSERT of the new contents.
But when the first row getsinserted in agroup, thereis nothing to delete, and only INSERT is sent. And the opposite, when
the last row is deleted from a group, only the DELETE is sent.

After this highlight, let'slook at the aggregators from the bottom up.

11.2. Manual aggregation

The table exanmple in Section 9.7: “Secondary indexes’ (p. 92) prints the aggregated information (the average price
of two records). This can be fairly easily changed to put the information into the rows and send them on as labels. The
function pri nt Aver age() has morphed into conmput eAver age( ) , while the rest of the example stayed the same
and is omitted:

our $rtAvgPrice = Triceps:: RowType->new

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades

)

# place to send the average: could be a dumy | abel, but to keep the
# code snuller also print the rows here, instead of in a separate | abel
our $l bAverage = $uTrades- >nakelLabel ($rt AvgPrice, "Il bAverage",

Manual aggregation 145



undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");
1)

# Send the average price of the synbol in the last nodified row
sub conput eAverage # (row)

{

}

return unl ess defined $rlLast Mod;
nmy $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);
ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);
print("Contents:\n");
ny $avg = O;
ny ($sum $count);
ny $rhLast;
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {

print(" ", $rhi->getRowm)->printP(), "\n");
$rhLast = $rhi;
$count ++;

$sum += $rhi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;
$uTr ades->cal | ($l bAver age- >makeRowop( &Tri ceps: : OP_I NSERT,
$rt AvgPri ce- >makeRowHash(
synbol => $rhLast - >get Rowm ) - >get (" synbol "),
id => $rhLast->get Row()->get ("id"),
price => $avg
)
));
}

whi | e(<STDI N>) {

}

chonp;

ny @ata = split(/,/);

$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
&conput eAver age() ;

undef $rlLastMd; # clear for the next iteration
$uTrades->drai nFrane(); # just in case, for conpleteness

For the demonstration, the aggregated rows sent to $I bAver age get printed. The rows being aggregated are printed
during theiteration too, indented after “Contents.”. And hereis a sample run'sresult, with the input records shown in bold:

OP_I NSERT, 1, AAA, 10, 10
Content s:

i d="1" synbol =" AAA" price="10" size="10"

| bAver age OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Content s:

i d="1" synbol =" AAA" price="10" size="10"
i d="3" synbol =" AAA" price="20" size="20"

| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Content s:

id="3" synbol =" AAA" price="20" size="20"
i d="5" synbol =" AAA" price="30" size="30"

| bAver age OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3
Content s:

i d="5" synbol =" AAA" price="30" size="30"

146 Aggregation



| bAver age OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5
Cont ent s:

There are a couple of things to notice about it: it produces only the INSERT rowops, no DELETES, and when the last
record of the group is removed, that event produces nothing.

Thefirst itemismildly problematic because the processing downstream from here might not be able to handle the updates
properly without the DELETE rowops. It can be worked around fairly easily by connecting another table to store the ag-
gregation results, with the same primary key asthe aggregation key. That table would automatically transform the repeated
INSERTSs on the same key to a DELETE-INSERT sequence.

The second item is actually pretty bad because it means that the last record deleted gets stuck in the aggregation results.
The Coral8 solution for this situation isto send arow with all non-key fields set to NULL, to reset them (interestingly, it's
arelatively recent addition, that bug took Coral8 years to notice). But with the opcodes available, we can as well send a
DELETE rowop with the key fields filled, the helper table will fill in the rest of the fields, and produce a clean DELETE.

All this can be done by the following changes. Add the table, remember itsinput label in $I bAvgPr i ceHel per . It will
be used to send the aggregated rows instead of $t AvgPr i ce. Then still use $t AvgPr i ce to print the records coming
out, but now connect it after the helper table. Andin conput eAver age() changethe destination label and add the case
for when the group becomes empty ($count == 0). Therest of the example stays the same.

our $rtAvgPrice = Triceps:: RowType->new

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades

)

our $ttAvgPrice = Triceps:: Tabl eType->new $rt AvgPri ce)
- >addSubl ndex( " bySynbol ",
Triceps:: I ndexType->newHashed(key => [ "synbol" 1)
)

$ttAvgPrice->initialize();
our $t AvgPrice = $uTrades->nakeTabl e($tt AvgPrice, "tAvgPrice");
our $l bAvgPri ceHel per = $t AvgPri ce->get | nput Label ();

# place to send the average: could be a dumy | abel, but to keep the
# code snuller also print the rows here, instead of in a separate | abel
our $l bAverage = nakePrintLabel ("I bAverage", $tAvgPrice->get QutputLabel ());

# Send the average price of the synbol in the last nodified row
sub conput eAverage2 # (row)
{

return unl ess defined $rLast Mod;

nmy $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);

ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);

print("Contents:\n");

ny $avg = O;

ny ($sum $count);

ny $rhLast;

for (my $rhi = $rhFirst;

1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {

print(" ", $rhi->getRow()->printP(), "\n");
$rhLast = $rhi;
$count ++;

$sum += $rhi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;
$uTr ades- >makeHashCal | ( $| bAvgPri ceHel per, &Triceps:: OP_I NSERT,

Manual aggregation 147



synbol => $rhLast - >get Rowm ) - >get (" synbol "),

id => $rhLast->get Row()->get ("id"),
price => $avg
)

} else {

$uTr ades- >nakeHashCal | ( $| bAvgPri ceHel per, &Triceps:: OP_DELETE,

synbol => $rlLast Mod- >get ("synbol "),

)
}

}

The change is straightforward. Thelabel $I bAver age now revertsto just printing the rowops going through it, so it can
be created with the template makePr i nt Label () described in Section 10.3: “ Simple wrapper templates’ (p. 119) .

Then the output for the same input becomes:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:

id="1" synbol =" AAA" price="10" size="10"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="1"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:

id="1" synbol =" AAA" price="10" size="10"

id="3" synbol =" AAA" price="20" size="20"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="1"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="3"
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:

id="3" synbol =" AAA" price="20" size="20"

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="3"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5"
OP_DELETE, 3
Cont ent s:

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5"
OP_DELETE, 5
Cont ent s:
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5"

price="10"

price="10"
price="15"

price="15"
price="25"

price="25"
pri ce="30"

pri ce="30"

All fixed, the proper DELETES are coming out. The last line shows the empty group contentsin the table but the DELETE

row is still coming out.

Why should we worry so much about the DELETES? Because without them, relying on just INSERTS for updates, it's
easy to create bugs. The last example still has an issue with handling the row replacement by INSERTS. Can you spot it

from reading the code?

Here is run example that highlights the issue (as usual, the input lines are in bold):

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol ="AAA" price="10" size="10"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="1"
OP_I NSERT, 3, AAA, 20, 20
Content s:
id="1" synbol ="AAA" price="10" size="10"
id="3" synbol =" AAA" price="20" size="20"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="1"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="3"
OP_I NSERT, 5, AAA, 30, 30

price="10"

price="10"
price="15"

148

Aggregation



Contents

i d="3" synbol ="AAA" price="20" size="20"

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="3" price="15"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5" price="25"
OP_I NSERT, 5, BBB, 30, 30
Contents

i d="5" synbol ="BBB" price="30" size="30"
t AvgPri ce. out OP_I NSERT synbol ="BBB" i d="5" price="30"
OP_I NSERT, 7, AAA, 40, 40
Contents

i d="3" synbol ="AAA" price="20" size="20"

id="7" synbol ="AAA" price="40" size="40"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5" price="25"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="7" price="30"

The row with id=5 has been replaced to change the symbol from “AAA” to “BBB”. This act changes both the groups
of “AAA” and of “BBB”, removing the row from the first one and inserting it into the second one. Y et only the output
for “BBB” came out. The printout of the next row with id=7 and symbol="AAA” shows that the row with id=5 has been
indeed removed from the group “AAA”. It even corrects the result. But until that row camein, the average for the symbol
“AAA” remained unchanged and incorrect.

There are multiple ways to fix thisissue but first it had to be noticed. Which requires alot of attention to detail. It's much
better to avoid these bugs in the first place by sending the clean and nice input.

11.3. Introducing the proper aggregation

Since the manual aggregation is error-prone, Triceps can manage it for you and do it right. The only thing you need to do
is do the actud iteration and computation. Here is the rewrite of the same example with a Triceps aggregator:

ny $uTrades = Triceps:: Unit->new"uTrades");

# the input data
ny $rtTrade = Triceps:: RowType- >new
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

# the aggregation result

ny $rtAvgPrice = Triceps:: RowType- >new(

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades

)

# aggregation handler: recal cul ate the average each tine the easy way
sub conput eAveragel # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

# don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

ny $sum= 0

ny $count = O;

for (nmy $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {

Introducing the proper aggregation 149



$count ++;

$sum += $rhi - >get Row() - >get ("price");
}
ny $rlLast = $context->l ast()->get Row();
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),

id => $rLast->get("id"),

price => $avg

)

$cont ext - >send( $opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new( $rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => [ "id" ])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => [ "synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel)
)
)
)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "t W ndow');

# label to print the result of aggregation
ny $l bAverage = nakePrintLabel ("I bAver age",
$t W ndow >get Aggr egat or Label ("aggr AvgPrice"));

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a string opcode
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
$uTrades->drai nFrane(); # just in case, for conpleteness

}

What has changed in this code? The things got rearranged a bit. The aggregator is now defined as a part of the table type,
so the aggregation result row type and its computation function had to be moved up.

The AggregatorType object holds the information about the aggregator. In the table type, the aggregator type gets attached
to anindex typewith set Aggr egat or () . Inthiscase, to the FIFO index type. The parent of that index type determines
the aggregation groups, grouping happening by its combined key fields (that is, al the key fields of all the indexes in
the path starting from the root). For aggregation the working or non-working method get Key() doesn't matter, so any
of the Hashed, Ordered and Sorted/SimpleOrdered index types can be used. The index type where the aggregator typeis
attached determines the order of the rows in the groups. If you use FIFO, the rows will be in the order of arrival. If you
use Ordered or Sorted, the rows will bein the sort order. If you use Hashed, the rows will bein some random order, which
is not particularly useful.

At present an index type may have no more than one aggregator type attached to it. There is no particular reason for
that, other than that it was slightly easier to implement, and that | can't think yet of a real-word situation where multiple
aggregators on the same index would be needed. If this situation will ever occur, this support can be added. However a
table type may have multiple aggregator typesin it, on different indexes. Y ou can save a reference to an aggregator type
in a variable and reuse it in the different table types too (though not multiple times in the same table, since that would
cause a naming conflict).

150 Aggregation



The aggregator type is created with the arguments of

* result row type,

* aggregator name,

* group initialization Perl function (which may be undef , asin this example),

 group computation Perl function or source code snippet,

the optional arguments for the functions.

Note that there is a difference in naming between the aggregator types and index types. an aggregator type knows its name,
while an index type does not. An index type is given a name only in its hierarchy inside the table type, but it does not
know its name.

When atable is created, it finds all the aggregator typesin it, and creates an output label for each of them. The names of
the aggregator types are used as suffixes to the table name. In this exampl e the aggregator will haveits output label named
“tWindow.aggrAvgPrice’. This puts all the aggregator types in the table into the same namespace, so make sure to give
them different names in the same table type. Also avoid the names “in”, “out” and “pre” because these are already taken

by the table's own labels. The aggregator labels in the table can be found with

$agglLabel = $t abl e- >get Aggr egat or Label (" aggNane") ;

The aggregator types are theoretically multithreaded but the way the Perl threads work, the Perl code has to be recompiled
fromthe source codein each thread. So for atabletype with aggregatorsto be exportableto the other threads, the aggregators
must have their logic specified as the Perl source code, not a compiled Perl function.

After thelogic is moved into a managed aggregator, the main loop becomes simpler.

The computation function gets a lot more arguments than it used to. The most interesting and most basic ones are $con-
t ext , $opcode, and $r h. Therest are useful in the more complex cases only.

The aggregator typeis exactly that: atype. It doesn't know, on which table or index, or evenindex typeit will be used. And
indeed, it might be used on multiple tables and index types. But to do the iteration on the rows, the computation function
needs to get this information somehow. And it does, in the form of aggregator context. The manual aggregation used the
last table output row to find, on which exact group to iterate. The managed aggregator gets the last modified row handle as
the argument $r h. But our simple aggregator doesn't even need to consult $r h because the context takes care of finding
the group too: it knows the exact group and exact index that needs to be aggregated (look at the index tree drawings in
Section 9.11: “The index tree” (p. 101) for the difference between an index type and an index).

Thecontext providesitsownbegi n() andnext () methods. They are actually slightly more efficient than the usual table
iteration methods because they take advantage of that exact known index. The most important part, they work differently.

$rhi = $context->next ($rhi);

returns a NULL row handle when it reaches the end of the group. Do not, | repeat, DO NOT use the $r hi - >next ()
in the aggregators, or you'll get some very wrong results.

The context also has a bit more of its own magic.

$rh = $context->last();

returns the last row handle in the group. This comes very handy because in most of the cases you want the data from the
last row to fill the fields that haven't been aggregated as such. This is like the SQL function LAST() . Using the fields
from the argument $r h, unless they are the key fields for this group, is generally not a good idea because it adds an extra
dependency on the order of modificationsto thetable. The FI RST() or LAST() (i.e. thecontext'sbegi n() orl ast())
are much better and not any more expensive.

Introducing the proper aggregation 151



$si ze = $cont ext - >groupSi ze() ;

returns the number of rows in the group. It's your value of COUNT( *) in SQL terms, and if that's al you need, you don't
need to iterate.

$cont ext - >send( $opcode, $row);

constructs a result rowop and sends it to the aggregator's output label. Remember, the aggregator type as such knows
nothing about this label, so the path through the context is the only path. Note also that it takes a row and not a rowop,
because alabel is needed to construct the rowop in the first place.

$rt = $context->resul t Type();

provides the result row type needed to construct the result row. There also are a couple of convenience methods that
combine the row construction and sending, that can be used instead:

$cont ext - >makeHashSend ($opcode, $fiel dName => $fieldValue, ...);
$cont ext - >makeAr r aySend( $opcode, @i el dVval ues);

The final thing about the aggregator context: it works only inside the aggregator computation function. Once the function
returns, all its methods start returning undef . So thereisno point in trying to saveit for later in aglobal variable or such,
don't do that.

Asyou can see, conput eAver age() hasthe same logic as before, only now it uses the aggregation context. And I've
removed the debugging printout of the rows in the group.

Thelast unexplained pieceisthe opcode handling and that comparison to OP_NOP. Basically, the table call s the aggregator
computation every time something changes in its index. It describes the reason for the cal in the argument $aggop
(“aggregation operation”). Depending on how clever an aggregator wantsto be, it may do something useful on all of these
occasions, or only on some of them. The simple aggregator that doesn't try any smart optimizations but just goesand iterates
through the rows every time only needs to react in some of the cases. To make its life easier, Triceps pre-computes the
opcode that should be used for the result and puts it into the argument $opcode. So to ignore the non-interesting calls,
the simple aggregator computation can just return if it sees the opcode OP_NOP.

Why does it also check for the group size being 0? Again, Triceps provides flexibility in the aggregators. Among other
things, it allowsto implement thelogic like Coral 8, when on deletion of the last row in the group the aggregator would send
arow with all non-key fieldsset to NULL (it can takethekey fieldsfrom theargument $r h). So for this specific purposethe
computation function gets called with all rows del eted from the group, and $opcode setto OP_| NSERT. And, by theway,
atrue Coral8-styled aggregator would ignore all the calls where the $opcode isnot OP_I NSERT. But the normal aggre-
gators need to avoid doing this kind of crap, so they have to ignore the calls where $cont ext - >gr oupSi ze() ==0.

And hereis an example of the output from that code (as usual, the input lines are in bold):

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="10"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

Asyou can see, it's exactly the same as from the manual aggregation example with the helper table, minus the debugging
printout of the group contents. However here it's done without the helper table: instead the aggregation function is called
before and after each update.

152 Aggregation



This presents amemory vs CPU compromise: a hel per table uses more memory but requires less CPU for the aggregation
computations (presumably, theinsertion of therow into thetableisless computationally intensive than theiteration through
the original records).

The managed aggregators can be made to work with a helper table too: just chain a helper table to the aggregator's |abel,
and in the aggregator computation add

return if ($opcode == &Triceps:: OP_DELETE
&& $cont ext - >groupSi ze() != 1);

Thiswould skip all the DELETES except for the last one, before the group collapses.

Thereisaso away to optimize thislogic right inside the aggregator: remember the last INSERT row sent, and on DELETE
just resend the same row, as will be shown in Section 11.5: “Optimized DELETES’ (p. 157). This remembered last

state can also be used for the other interesting optimizations that will be shown in Section 11.6: “ Additive aggregation” (p.
159) .

Which approach is better, depends on the particular case. If you need to store the results of aggregation in a table for
the future look-ups anyway, then that table is no extra overhead. That's what the Aleri system does internally: since each
element initsmodel keeps a primary-indexed table (“materialized view”) of the result, that tableis used whenever possible
to generatethe DEL ETEswithout involving any logic. Or the extraoptimizationinsidethe aggregator can seriously improve
the performance on the large groups. Sometimes you may want both.

Now let'slook at the run with the same input that went wrong with the manual aggregation:

OP_I NSERT, 1, AAA, 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="10"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_I NSERT, 5, BBB, 30, 30
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="20"
t W ndow. aggr AvgPri ce OP_I NSERT synbol ="BBB" id="5" price="30"
OP_I NSERT, 7, AAA, 40, 40
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="20"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="7" price="30"

Here it goes right. Triceps recognizes that the second INSERT with id=5 moves the row to another group. So it performs
the aggregation logic for both groups. First for the group where the row gets removed, it updates the aggregator result with
aDELETE and INSERT (note that id became 3, since it's now the last row left in that group). Then for the group where
the row gets added, and since there was nothing in that group before, it generates only an INSERT.

The handling of the fatal errors (asin di e() ) in the aggregator functions is an interesting subject. The errors propagate
properly through the table, and the table operations confess with the Perl handler's error message. But since an error in the
aggregator function means that things are going very, very wrong, after that the table becomes inoperative and will die on
all the subsequ