4. Formal Analysis of X.25

In order to prove or otherwise that an implementation of a communications protocol is correct, it is necessary to do two things with it:

Test it against a pre-existing implementation of known soundness, and

State the protocol formally in a way that allows errors to be seen.

A protocol implementation may satisfy item (1) but it may still be incorrect in subtle ways. Item (2) is the stage that allows the implementation to matched against the protocol as specified in the original specification document.

The X.25 specification is rather poor in detailing its operation in formal terms. The specification of LAPB is purely prose based apart from diagrams that explain the frame structure, which does not affect the actual protocol operation. As with anything that is prose based, it is subject to misinterpretation and ambiguities, and LAPB is no exception. It would appear that the X.25 specification committee were intent on destroying the English language with such opaque phrases as “the global significance of this is that it has only local significance”.

The operation of the Packet Layer, like LAPB, is relatively straightforward although like any real life protocol it has some interesting areas. However the specification for the Packet Layer confuses the reader. It includes diagrams of the frame structures and it even includes some state diagrams and that is where the problems start. The sign of good engineering (and of good science) is to convert a complex problem into the simplest possible solution. The sign of the X.25 specification is to convert a simple problem into a complex solution !

As stated earlier the X.25 specification splits the operation of X.25 into DCE and DTE parts, even when the protocol is quite clearly identical for both, this is especially true for the Packet Layer. Each published state machine is symmetrical because of the inclusion of two states one for the DCE and one for the DTE which represent the same results of the same actions. To muddy the waters more the name of the packets change depending on whether they are travelling from the DTE to DCE or vice versa, even though they are identical. It is by carefully understanding the published protocol and by removing such duplication that a more reasonable model of the protocol is produced, and a much simpler and reliable protocol implementation ensues.

All communications protocols are based on the concept of a state machine, this has been shown in previous sections. In a state machine the code that implements the protocol will have a number of defined states that it may be in at any given moment. It may only be in one state at any time, and the transition to another state is triggered by some external event, in a communications protocol this may be the arrival of a packet, a timer expiring or instructions from a higher layer. The transition from one state to another (or the same) state is said to be atomic, it cannot be interrupted.

To help visualise the state machines, use has been made of one of the formal methods available for specifying communications protocols. Like program definition, there are essentially two methods to producing specifications, there is the pseudo-code method and the graphical method. Both methods employ the mathematical concept of the Extended Finite State Machine (EFSM) as its model of a protocol. The term state machine on its own is too loose to be accepted in any formal method.

The basis of the EFSM is the Finite State Machine (FSM) which has the concept of states and transitions triggered by events and capable of producing outputs and changes of state.

The differences between an FSM and EFSM (with respect to this usage) is:

an EFSM can maintain internal variables, such as flags, sequence counters and lists,

timers may be set. The expiration of a timer at a later time generates an input signal to trigger the machine to execute a specific set of operations. Timers may be stopped before they expire,

internal queues may be maintained. The queues are used to retain input signals (or other information) for processing at a later time.

With this definition of an EFSM it is just a matter of choosing one of the formal methods to express an EFSM in a manner that is easy to understand and manipulate. For this project I have chosen the flow chart based method known as State Description Language SDL.

�
4.1 Introduction to SDL

State Description Language (SDL) has been designed by the CCITT as the “official” method of formally specifying a communications protocol. SDL has been published by the CCITT as recommendation Z.100. Superficially SDL appears very much like a conventional flowchart, but like any structured analysis system there are strict rules as to the meaning of the symbols.

Each state of the protocol has a set of actions that may occur depending on an external event, a packet arriving, a timer expiring, etc. Once that action has been started, it cannot be interrupted i.e. it is atomic. The actions are ended by a terminal symbol that also indicates which state the EFSM is now in, which may be different from the original state. The symbols used within SDL are shown below:

�

The state symbol denotes the resting states of the EFSM, each state is numbered and is given a name. The number of the state is simply an indication of the order in which the states were drawn in SDL and do not carry any other significance. All the permitted sequence of operations from a given state originate below the corresponding state symbol.

Input signal reception symbols have notches on either the left or right side. Inputs with the notch on the left are from a higher layer while inputs with the notch on the right are from a lower layer. The name of the input primitive is labelled within the symbol. In addition, the left notch input signal symbol is used for timer expiration, the name of the expired timer is written inside the symbol. All the timers are numbered with names starting with “T” and then a three digit number, the hundreds digit indicates the ISO level number at which the state machine resides, for example, T2xx timers are link layer timers, T3xx are network layer timers, etc.

Output signal reception symbols have pointers on either the left or right side, symbols that point to the left are outputs to a higher layer, and those to the right are to a lower layer. The name of the output primitive are printed within the symbol.

Internal signal symbols are used to push items onto queues if they point to the left, and to trigger the state machine when something is waiting on the queue to be popped off if the notch is to the left. Each internal signal has a description label identifying which queue is involved, and what is being pushed and popped. The save symbol is used to indicate that a particular input event does not cause operations to be done in the present state. Instead that particular event is “saved” until the state machine has reached a new and different state, triggered by another event.

The processing description symbols contain within them a description of internal actions executed by the state machine, examples include the starting and stopping of timers and setting values into variables. The test symbol is used for branching, the text within the symbol is posed as a question and the appropriate branch taken depending on the answer.

The subroutine symbol is used to encapsulate frequently used sequences of steps, the name of the subroutine is printed within the symbol. The expansion of the subroutine is listed after the main body of the SDL description for the state. Subroutine expressions begin with a subroutine state symbol, flow down the page through the specified sequence of operations, and end with the return-from-subroutine symbol. Note that subroutines are not permitted to contain states, nor are they allowed to branch into different return legs. Each subroutine has a single point of return.

The use of flowcharts has been deprecated in both academia and industry for a number of years. The arguments against their use has been one of structure, a flowchart is very difficult to convert into structured program code without much effort. The same criticism could be levelled at SDL, but in its defence it should be stated that the purpose of SDL is to describe the operation of the protocol, not how to write the program that implements it. It is very difficult to write a communication protocol in a manner that is structured since its form is determined by external factors, the programmer is not free to change the structure appreciably.

�PAGE �

�PAGE �18�

State

Signal Reception

Signal Generation

Processing Description

Subroutine Call

establish

data

link

stop T1

start T3

SABM

I

command

(P=1)

DL

Data

Indication

DL

Release

Request

push on

I frame

queue

I frame

pops

off queue

Internal Signal

Generation & Reception

Save a signal until a new

state is reached

3

Connected

start

trans-

mitter

Subroutine Start

Return from Subroutine

peer

receiver
