#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark import since
from pyspark.ml.param import Params
from pyspark.ml.param.shared import HasCheckpointInterval, HasSeed, HasWeightCol, Param, \
TypeConverters, HasMaxIter, HasStepSize, HasValidationIndicatorCol
from pyspark.ml.wrapper import JavaPredictionModel
from pyspark.ml.common import inherit_doc
@inherit_doc
class _DecisionTreeModel(JavaPredictionModel):
"""
Abstraction for Decision Tree models.
.. versionadded:: 1.5.0
"""
@property
@since("1.5.0")
def numNodes(self):
"""Return number of nodes of the decision tree."""
return self._call_java("numNodes")
@property
@since("1.5.0")
def depth(self):
"""Return depth of the decision tree."""
return self._call_java("depth")
@property
@since("2.0.0")
def toDebugString(self):
"""Full description of model."""
return self._call_java("toDebugString")
@since("3.0.0")
def predictLeaf(self, value):
"""
Predict the indices of the leaves corresponding to the feature vector.
"""
return self._call_java("predictLeaf", value)
class _DecisionTreeParams(HasCheckpointInterval, HasSeed, HasWeightCol):
"""
Mixin for Decision Tree parameters.
"""
leafCol = Param(Params._dummy(), "leafCol", "Leaf indices column name. Predicted leaf " +
"index of each instance in each tree by preorder.",
typeConverter=TypeConverters.toString)
maxDepth = Param(Params._dummy(), "maxDepth", "Maximum depth of the tree. (>= 0) E.g., " +
"depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. " +
"Must be in range [0, 30].",
typeConverter=TypeConverters.toInt)
maxBins = Param(Params._dummy(), "maxBins", "Max number of bins for discretizing continuous " +
"features. Must be >=2 and >= number of categories for any categorical " +
"feature.", typeConverter=TypeConverters.toInt)
minInstancesPerNode = Param(Params._dummy(), "minInstancesPerNode", "Minimum number of " +
"instances each child must have after split. If a split causes " +
"the left or right child to have fewer than " +
"minInstancesPerNode, the split will be discarded as invalid. " +
"Should be >= 1.", typeConverter=TypeConverters.toInt)
minWeightFractionPerNode = Param(Params._dummy(), "minWeightFractionPerNode", "Minimum "
"fraction of the weighted sample count that each child "
"must have after split. If a split causes the fraction "
"of the total weight in the left or right child to be "
"less than minWeightFractionPerNode, the split will be "
"discarded as invalid. Should be in interval [0.0, 0.5).",
typeConverter=TypeConverters.toFloat)
minInfoGain = Param(Params._dummy(), "minInfoGain", "Minimum information gain for a split " +
"to be considered at a tree node.", typeConverter=TypeConverters.toFloat)
maxMemoryInMB = Param(Params._dummy(), "maxMemoryInMB", "Maximum memory in MB allocated to " +
"histogram aggregation. If too small, then 1 node will be split per " +
"iteration, and its aggregates may exceed this size.",
typeConverter=TypeConverters.toInt)
cacheNodeIds = Param(Params._dummy(), "cacheNodeIds", "If false, the algorithm will pass " +
"trees to executors to match instances with nodes. If true, the " +
"algorithm will cache node IDs for each instance. Caching can speed " +
"up training of deeper trees. Users can set how often should the cache " +
"be checkpointed or disable it by setting checkpointInterval.",
typeConverter=TypeConverters.toBoolean)
def __init__(self):
super(_DecisionTreeParams, self).__init__()
def setLeafCol(self, value):
"""
Sets the value of :py:attr:`leafCol`.
"""
return self._set(leafCol=value)
def getLeafCol(self):
"""
Gets the value of leafCol or its default value.
"""
return self.getOrDefault(self.leafCol)
def getMaxDepth(self):
"""
Gets the value of maxDepth or its default value.
"""
return self.getOrDefault(self.maxDepth)
def getMaxBins(self):
"""
Gets the value of maxBins or its default value.
"""
return self.getOrDefault(self.maxBins)
def getMinInstancesPerNode(self):
"""
Gets the value of minInstancesPerNode or its default value.
"""
return self.getOrDefault(self.minInstancesPerNode)
def getMinWeightFractionPerNode(self):
"""
Gets the value of minWeightFractionPerNode or its default value.
"""
return self.getOrDefault(self.minWeightFractionPerNode)
def getMinInfoGain(self):
"""
Gets the value of minInfoGain or its default value.
"""
return self.getOrDefault(self.minInfoGain)
def getMaxMemoryInMB(self):
"""
Gets the value of maxMemoryInMB or its default value.
"""
return self.getOrDefault(self.maxMemoryInMB)
def getCacheNodeIds(self):
"""
Gets the value of cacheNodeIds or its default value.
"""
return self.getOrDefault(self.cacheNodeIds)
@inherit_doc
class _TreeEnsembleModel(JavaPredictionModel):
"""
(private abstraction)
Represents a tree ensemble model.
"""
@property
@since("2.0.0")
def trees(self):
"""Trees in this ensemble. Warning: These have null parent Estimators."""
return [_DecisionTreeModel(m) for m in list(self._call_java("trees"))]
@property
@since("2.0.0")
def getNumTrees(self):
"""Number of trees in ensemble."""
return self._call_java("getNumTrees")
@property
@since("1.5.0")
def treeWeights(self):
"""Return the weights for each tree"""
return list(self._call_java("javaTreeWeights"))
@property
@since("2.0.0")
def totalNumNodes(self):
"""Total number of nodes, summed over all trees in the ensemble."""
return self._call_java("totalNumNodes")
@property
@since("2.0.0")
def toDebugString(self):
"""Full description of model."""
return self._call_java("toDebugString")
@since("3.0.0")
def predictLeaf(self, value):
"""
Predict the indices of the leaves corresponding to the feature vector.
"""
return self._call_java("predictLeaf", value)
class _TreeEnsembleParams(_DecisionTreeParams):
"""
Mixin for Decision Tree-based ensemble algorithms parameters.
"""
subsamplingRate = Param(Params._dummy(), "subsamplingRate", "Fraction of the training data " +
"used for learning each decision tree, in range (0, 1].",
typeConverter=TypeConverters.toFloat)
supportedFeatureSubsetStrategies = ["auto", "all", "onethird", "sqrt", "log2"]
featureSubsetStrategy = \
Param(Params._dummy(), "featureSubsetStrategy",
"The number of features to consider for splits at each tree node. Supported " +
"options: 'auto' (choose automatically for task: If numTrees == 1, set to " +
"'all'. If numTrees > 1 (forest), set to 'sqrt' for classification and to " +
"'onethird' for regression), 'all' (use all features), 'onethird' (use " +
"1/3 of the features), 'sqrt' (use sqrt(number of features)), 'log2' (use " +
"log2(number of features)), 'n' (when n is in the range (0, 1.0], use " +
"n * number of features. When n is in the range (1, number of features), use" +
" n features). default = 'auto'", typeConverter=TypeConverters.toString)
def __init__(self):
super(_TreeEnsembleParams, self).__init__()
@since("1.4.0")
def getSubsamplingRate(self):
"""
Gets the value of subsamplingRate or its default value.
"""
return self.getOrDefault(self.subsamplingRate)
@since("1.4.0")
def getFeatureSubsetStrategy(self):
"""
Gets the value of featureSubsetStrategy or its default value.
"""
return self.getOrDefault(self.featureSubsetStrategy)
class _RandomForestParams(_TreeEnsembleParams):
"""
Private class to track supported random forest parameters.
"""
numTrees = Param(Params._dummy(), "numTrees", "Number of trees to train (>= 1).",
typeConverter=TypeConverters.toInt)
bootstrap = Param(Params._dummy(), "bootstrap", "Whether bootstrap samples are used "
"when building trees.", typeConverter=TypeConverters.toBoolean)
def __init__(self):
super(_RandomForestParams, self).__init__()
@since("1.4.0")
def getNumTrees(self):
"""
Gets the value of numTrees or its default value.
"""
return self.getOrDefault(self.numTrees)
@since("3.0.0")
def getBootstrap(self):
"""
Gets the value of bootstrap or its default value.
"""
return self.getOrDefault(self.bootstrap)
class _GBTParams(_TreeEnsembleParams, HasMaxIter, HasStepSize, HasValidationIndicatorCol):
"""
Private class to track supported GBT params.
"""
stepSize = Param(Params._dummy(), "stepSize",
"Step size (a.k.a. learning rate) in interval (0, 1] for shrinking " +
"the contribution of each estimator.",
typeConverter=TypeConverters.toFloat)
validationTol = Param(Params._dummy(), "validationTol",
"Threshold for stopping early when fit with validation is used. " +
"If the error rate on the validation input changes by less than the " +
"validationTol, then learning will stop early (before `maxIter`). " +
"This parameter is ignored when fit without validation is used.",
typeConverter=TypeConverters.toFloat)
@since("3.0.0")
def getValidationTol(self):
"""
Gets the value of validationTol or its default value.
"""
return self.getOrDefault(self.validationTol)
class _HasVarianceImpurity(Params):
"""
Private class to track supported impurity measures.
"""
supportedImpurities = ["variance"]
impurity = Param(Params._dummy(), "impurity",
"Criterion used for information gain calculation (case-insensitive). " +
"Supported options: " +
", ".join(supportedImpurities), typeConverter=TypeConverters.toString)
def __init__(self):
super(_HasVarianceImpurity, self).__init__()
@since("1.4.0")
def getImpurity(self):
"""
Gets the value of impurity or its default value.
"""
return self.getOrDefault(self.impurity)
class _TreeClassifierParams(Params):
"""
Private class to track supported impurity measures.
.. versionadded:: 1.4.0
"""
supportedImpurities = ["entropy", "gini"]
impurity = Param(Params._dummy(), "impurity",
"Criterion used for information gain calculation (case-insensitive). " +
"Supported options: " +
", ".join(supportedImpurities), typeConverter=TypeConverters.toString)
def __init__(self):
super(_TreeClassifierParams, self).__init__()
@since("1.6.0")
def getImpurity(self):
"""
Gets the value of impurity or its default value.
"""
return self.getOrDefault(self.impurity)
class _TreeRegressorParams(_HasVarianceImpurity):
"""
Private class to track supported impurity measures.
"""
pass