
Section Page
1. Introduction . 1 3
2. The character set . 17 10
3. Input and output . 24 13
4. String handling . 37 18
5. On-line and off-line printing . 54 24
6. Reporting errors . 67 29
7. Arithmetic with scaled numbers . 95 38
8. Algebraic and transcendental functions 120 48
9. Packed data . 153 58

10. Dynamic memory allocation . 158 60
11. Memory layout . 175 66
12. The command codes . 186 70
13. The hash table . 200 83
14. Token lists . 214 89
15. Data structures for variables . 228 94
16. Saving and restoring equivalents . 250 104
17. Data structures for paths . 255 106
18. Choosing control points . 269 111
19. Generating discrete moves . 303 124
20. Edge structures . 323 133
21. Subdivision into octants . 386 158
22. Filling a contour . 460 189
23. Polygonal pens . 469 192
24. Filling an envelope . 490 202
25. Elliptical pens . 524 215
26. Direction and intersection times . 538 223
27. Online graphic output . 564 233
28. Dynamic linear equations . 585 240
29. Dynamic nonlinear equations . 618 254
30. Introduction to the syntactic routines . 624 256
31. Input stacks and states . 627 257
32. Maintaining the input stacks . 647 264
33. Getting the next token . 658 267
34. Scanning macro definitions . 683 275
35. Expanding the next token . 706 282
36. Conditional processing . 738 293
37. Iterations . 752 297
38. File names . 766 302
39. Introduction to the parsing routines . 796 311
40. Parsing primary expressions . 823 323
41. Parsing secondary and higher expressions 862 335
42. Doing the operations . 893 347
43. Statements and commands . 989 377
44. Commands . 1020 388
45. Font metric data . 1087 405
46. Generic font file format . 1142 426
47. Shipping characters out . 1149 431
48. Dumping and undumping the tables . 1183 440
49. The main program . 1202 446
50. Debugging . 1212 452
51. System-dependent changes . 1214 454
52. Index . 1215 455

§1 METAFONT PART 1: INTRODUCTION 3

August 12, 2024 at 13:28

1. Introduction. This is METAFONT, a font compiler intended to produce typefaces of high quality.
The Pascal program that follows is the definition of METAFONT84, a standard version of METAFONT that
is designed to be highly portable so that identical output will be obtainable on a great variety of computers.
The conventions of METAFONT84 are the same as those of TEX82.

The main purpose of the following program is to explain the algorithms of METAFONT as clearly as
possible. As a result, the program will not necessarily be very efficient when a particular Pascal compiler has
translated it into a particular machine language. However, the program has been written so that it can be
tuned to run efficiently in a wide variety of operating environments by making comparatively few changes.
Such flexibility is possible because the documentation that follows is written in the WEB language, which is at
a higher level than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the
necessary refinements. Semi-automatic translation to other languages is also feasible, because the program
below does not make extensive use of features that are peculiar to Pascal.

A large piece of software like METAFONT has inherent complexity that cannot be reduced below a certain
level of difficulty, although each individual part is fairly simple by itself. The WEB language is intended to
make the algorithms as readable as possible, by reflecting the way the individual program pieces fit together
and by providing the cross-references that connect different parts. Detailed comments about what is going
on, and about why things were done in certain ways, have been liberally sprinkled throughout the program.
These comments explain features of the implementation, but they rarely attempt to explain the METAFONT

language itself, since the reader is supposed to be familiar with The METAFONT book.

2. The present implementation has a long ancestry, beginning in the spring of 1977, when its author wrote
a prototype set of subroutines and macros that were used to develop the first Computer Modern fonts.
This original proto-METAFONT required the user to recompile a SAIL program whenever any character
was changed, because it was not a “language” for font design; the language was SAIL. After several hundred
characters had been designed in that way, the author developed an interpretable language called METAFONT,
in which it was possible to express the Computer Modern programs less cryptically. A complete METAFONT

processor was designed and coded by the author in 1979. This program, written in SAIL, was adapted for
use with a variety of typesetting equipment and display terminals by Leo Guibas, Lyle Ramshaw, and David
Fuchs. Major improvements to the design of Computer Modern fonts were made in the spring of 1982, after
which it became clear that a new language would better express the needs of letterform designers. Therefore
an entirely new METAFONT language and system were developed in 1984; the present system retains the
name and some of the spirit of METAFONT79, but all of the details have changed.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
METAFONT84 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of METAFONT84 itself,
and the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever METAFONT undergoes any modifications, so that it will be
clear which version of METAFONT might be the guilty party when a problem arises.

If this program is changed, the resulting system should not be called ‘METAFONT’; the official name
‘METAFONT’ by itself is reserved for software systems that are fully compatible with each other. A special
test suite called the “TRAP test” is available for helping to determine whether an implementation deserves to
be known as ‘METAFONT’ [cf. Stanford Computer Science report CS1095, January 1986].

define banner ≡ ´This is METAFONT, Version 2.71828182´ { printed when METAFONT starts }

4 PART 1: INTRODUCTION METAFONT §3

3. Different Pascals have slightly different conventions, and the present program expresses METAFONT in
terms of the Pascal that was available to the author in 1984. Constructions that apply to this particular
compiler, which we shall call Pascal-H, should help the reader see how to make an appropriate interface for
other systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-
10 that was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6
(1976), 29–42. The METAFONT program below is intended to be adaptable, without extensive changes, to
most other versions of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious
effort has been made here to avoid using several idiosyncratic features of standard Pascal itself, so that most
of the code can be translated mechanically into other high-level languages. For example, the ‘with’ and
‘new ’ features are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’
parameters, except in the case of files or in the system-dependent paint row procedure; there are no tag
fields on variant records; there are no real variables; no procedures are declared local to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

4. The program begins with a normal Pascal program heading, whose components will be filled in later,
using the conventions of WEB. For example, the portion of the program called ‘〈Global variables 13 〉’ below
will be replaced by a sequence of variable declarations that starts in §13 of this documentation. In this way,
we are able to define each individual global variable when we are prepared to understand what it means; we
do not have to define all of the globals at once. Cross references in §13, where it says “See also sections 20,
26, . . . ,” also make it possible to look at the set of all global variables, if desired. Similar remarks apply to
the other portions of the program heading.

Actually the heading shown here is not quite normal: The program line does not mention any output
file, because Pascal-H would ask the METAFONT user to specify a file name if output were specified here.

define mtype ≡ t@&y@&p@&e { this is a WEB coding trick: }
format mtype ≡ type { ‘mtype’ will be equivalent to ‘type’ }
format type ≡ true { but ‘type ’ will not be treated as a reserved word }

〈Compiler directives 9 〉
program MF ; { all file names are defined dynamically }

label 〈Labels in the outer block 6 〉
const 〈Constants in the outer block 11 〉
mtype 〈Types in the outer block 18 〉
var 〈Global variables 13 〉
procedure initialize ; { this procedure gets things started properly }

var 〈Local variables for initialization 19 〉
begin 〈Set initial values of key variables 21 〉
end;

〈Basic printing procedures 57 〉
〈Error handling procedures 73 〉

5. The overall METAFONT program begins with the heading just shown, after which comes a bunch of
procedure declarations and function declarations. Finally we will get to the main program, which begins
with the comment ‘start here ’. If you want to skip down to the main program now, you can look up
‘start here ’ in the index. But the author suggests that the best way to understand this program is to
follow pretty much the order of METAFONT’s components as they appear in the WEB description you are
now reading, since the present ordering is intended to combine the advantages of the “bottom up” and “top
down” approaches to the problem of understanding a somewhat complicated system.

§6 METAFONT PART 1: INTRODUCTION 5

6. Three labels must be declared in the main program, so we give them symbolic names.

define start of MF = 1 { go here when METAFONT’s variables are initialized }
define end of MF = 9998 { go here to close files and terminate gracefully }
define final end = 9999 { this label marks the ending of the program }

〈Labels in the outer block 6 〉 ≡
start of MF, end of MF, final end ; { key control points }

This code is used in section 4.

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when METAFONT is being installed or when system wizards are fooling around with METAFONT

without quite knowing what they are doing. Such code will not normally be compiled; it is delimited by the
codewords ‘debug . . .gubed’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘stat . . . tats’ that is intended for use when statistics
are to be kept about METAFONT’s memory usage. The stat . . . tats code also implements special diagnostic
information that is printed when tracingedges > 1.

define debug ≡ @{ { change this to ‘debug ≡ ’ when debugging }
define gubed ≡ @} { change this to ‘gubed ≡ ’ when debugging }
format debug ≡ begin
format gubed ≡ end

define stat ≡ @{ { change this to ‘stat ≡ ’ when gathering usage statistics }
define tats ≡ @} { change this to ‘tats ≡ ’ when gathering usage statistics }
format stat ≡ begin
format tats ≡ end

8. This program has two important variations: (1) There is a long and slow version called INIMF, which
does the extra calculations needed to initialize METAFONT’s internal tables; and (2) there is a shorter and
faster production version, which cuts the initialization to a bare minimum. Parts of the program that are
needed in (1) but not in (2) are delimited by the codewords ‘init . . . tini’.

define init ≡ { change this to ‘init ≡ @{’ in the production version }
define tini ≡ { change this to ‘tini ≡ @}’ in the production version }
format init ≡ begin
format tini ≡ end

9. If the first character of a Pascal comment is a dollar sign, Pascal-H treats the comment as a list of
“compiler directives” that will affect the translation of this program into machine language. The directives
shown below specify full checking and inclusion of the Pascal debugger when METAFONT is being debugged,
but they cause range checking and other redundant code to be eliminated when the production system is
being generated. Arithmetic overflow will be detected in all cases.

〈Compiler directives 9 〉 ≡
@{@&$C−, A+, D−@} {no range check, catch arithmetic overflow, no debug overhead }
debug @{@&$C+, D+@} gubed { but turn everything on when debugging }

This code is used in section 4.

6 PART 1: INTRODUCTION METAFONT §10

10. This METAFONT implementation conforms to the rules of the Pascal User Manual published by Jensen
and Wirth in 1975, except where system-dependent code is necessary to make a useful system program, and
except in another respect where such conformity would unnecessarily obscure the meaning and clutter up
the code: We assume that case statements may include a default case that applies if no matching label is
found. Thus, we shall use constructions like

case x of
1: 〈 code for x = 1 〉;
3: 〈 code for x = 3 〉;
othercases 〈 code for x 6= 1 and x 6= 3 〉
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the Pascal-H compiler allows ‘others :’ as a default label, and other Pascals allow
syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise :’, etc. The definitions of othercases and endcases should
be changed to agree with local conventions. Note that no semicolon appears before endcases in this program,
so the definition of endcases should include a semicolon if the compiler wants one. (Of course, if no default
mechanism is available, the case statements of METAFONT will have to be laboriously extended by listing
all remaining cases. People who are stuck with such Pascals have, in fact, done this, successfully but not
happily!)

define othercases ≡ others : {default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

§11 METAFONT PART 1: INTRODUCTION 7

11. The following parameters can be changed at compile time to extend or reduce METAFONT’s capacity.
They may have different values in INIMF and in production versions of METAFONT.

〈Constants in the outer block 11 〉 ≡
mem max = 30000; { greatest index in METAFONT’s internal mem array; must be strictly less than

max halfword ; must be equal to mem top in INIMF, otherwise ≥ mem top }
max internal = 100; {maximum number of internal quantities }
buf size = 500; {maximum number of characters simultaneously present in current lines of open files;

must not exceed max halfword }
error line = 72; {width of context lines on terminal error messages }
half error line = 42; {width of first lines of contexts in terminal error messages; should be between 30

and error line − 15 }
max print line = 79; {width of longest text lines output; should be at least 60 }
screen width = 768; { number of pixels in each row of screen display }
screen depth = 1024; { number of pixels in each column of screen display }
stack size = 30; {maximum number of simultaneous input sources }
max strings = 2000; {maximum number of strings; must not exceed max halfword }
string vacancies = 8000; { the minimum number of characters that should be available for the user’s

identifier names and strings, after METAFONT’s own error messages are stored }
pool size = 32000; {maximum number of characters in strings, including all error messages and

help texts, and the names of all identifiers; must exceed string vacancies by the total length of
METAFONT’s own strings, which is currently about 22000 }

move size = 5000; { space for storing moves in a single octant }
max wiggle = 300; { number of autorounded points per cycle }
gf buf size = 800; { size of the output buffer, must be a multiple of 8 }
file name size = 40; { file names shouldn’t be longer than this }
pool name = ´MFbases:MF.POOL ´;
{ string of length file name size ; tells where the string pool appears }

path size = 300; {maximum number of knots between breakpoints of a path }
bistack size = 785; { size of stack for bisection algorithms; should probably be left at this value }
header size = 100; {maximum number of TFM header words, times 4 }
lig table size = 5000;

{maximum number of ligature/kern steps, must be at least 255 and at most 32510 }
max kerns = 500; {maximum number of distinct kern amounts }
max font dimen = 50; {maximum number of fontdimen parameters }

This code is used in section 4.

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce METAFONT’s capacity. But if they are changed, it is necessary to rerun the initialization program
INIMF to generate new tables for the production METAFONT program. One can’t simply make helter-skelter
changes to the following constants, since certain rather complex initialization numbers are computed from
them. They are defined here using WEB macros, instead of being put into Pascal’s const list, in order to
emphasize this distinction.

define mem min = 0 { smallest index in the mem array, must not be less than min halfword }
define mem top ≡ 30000 { largest index in the mem array dumped by INIMF; must be substantially

larger than mem min and not greater than mem max }
define hash size = 2100

{maximum number of symbolic tokens, must be less than max halfword − 3 ∗ param size }
define hash prime = 1777 { a prime number equal to about 85% of hash size }
define max in open = 6

{maximum number of input files and error insertions that can be going on simultaneously }
define param size = 150 {maximum number of simultaneous macro parameters }

8 PART 1: INTRODUCTION METAFONT §13

13. In case somebody has inadvertently made bad settings of the “constants,” METAFONT checks them
using a global variable called bad .

This is the first of many sections of METAFONT where global variables are defined.

〈Global variables 13 〉 ≡
bad : integer ; { is some “constant” wrong? }
See also sections 20, 25, 29, 31, 38, 42, 50, 54, 68, 71, 74, 91, 97, 129, 137, 144, 148, 159, 160, 161, 166, 178, 190, 196, 198, 200,

201, 225, 230, 250, 267, 279, 283, 298, 308, 309, 327, 371, 379, 389, 395, 403, 427, 430, 448, 455, 461, 464, 507, 552, 555,

557, 566, 569, 572, 579, 585, 592, 624, 628, 631, 633, 634, 659, 680, 699, 738, 752, 767, 768, 775, 782, 785, 791, 796, 813,
821, 954, 1077, 1084, 1087, 1096, 1119, 1125, 1130, 1149, 1152, 1162, 1183, 1188, and 1203.

This code is used in section 4.

14. Later on we will say ‘if mem max ≥ max halfword then bad ← 10’, or something similar. (We can’t
do that until max halfword has been defined.)

〈Check the “constant” values for consistency 14 〉 ≡
bad ← 0;
if (half error line < 30) ∨ (half error line > error line − 15) then bad ← 1;
if max print line < 60 then bad ← 2;
if gf buf size mod 8 6= 0 then bad ← 3;
if mem min + 1100 > mem top then bad ← 4;
if hash prime > hash size then bad ← 5;
if header size mod 4 6= 0 then bad ← 6;
if (lig table size < 255) ∨ (lig table size > 32510) then bad ← 7;

See also sections 154, 204, 214, 310, 553, and 777.

This code is used in section 1204.

15. Labels are given symbolic names by the following definitions, so that occasional goto statements
will be meaningful. We insert the label ‘exit ’ just before the ‘end’ of a procedure in which we have used
the ‘return’ statement defined below; the label ‘restart ’ is occasionally used at the very beginning of a
procedure; and the label ‘reswitch ’ is occasionally used just prior to a case statement in which some cases
change the conditions and we wish to branch to the newly applicable case. Loops that are set up with the
loop construction defined below are commonly exited by going to ‘done ’ or to ‘found ’ or to ‘not found ’, and
they are sometimes repeated by going to ‘continue ’. If two or more parts of a subroutine start differently
but end up the same, the shared code may be gathered together at ‘common ending ’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit = 10 { go here to leave a procedure }
define restart = 20 { go here to start a procedure again }
define reswitch = 21 { go here to start a case statement again }
define continue = 22 { go here to resume a loop }
define done = 30 { go here to exit a loop }
define done1 = 31 { like done , when there is more than one loop }
define done2 = 32 { for exiting the second loop in a long block }
define done3 = 33 { for exiting the third loop in a very long block }
define done4 = 34 { for exiting the fourth loop in an extremely long block }
define done5 = 35 { for exiting the fifth loop in an immense block }
define done6 = 36 { for exiting the sixth loop in a block }
define found = 40 { go here when you’ve found it }
define found1 = 41 { like found , when there’s more than one per routine }
define found2 = 42 { like found , when there’s more than two per routine }
define not found = 45 { go here when you’ve found nothing }
define common ending = 50 { go here when you want to merge with another branch }

§16 METAFONT PART 1: INTRODUCTION 9

16. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define negate (#) ≡ #← −# { change the sign of a variable }
define double (#) ≡ #← # + # {multiply a variable by two }
define loop ≡ while true do { repeat over and over until a goto happens }
format loop ≡ xclause { WEB’s xclause acts like ‘while true do’ }
define do nothing ≡ { empty statement }
define return ≡ goto exit { terminate a procedure call }
format return ≡ nil { WEB will henceforth say return instead of return }

10 PART 2: THE CHARACTER SET METAFONT §17

17. The character set. In order to make METAFONT readily portable to a wide variety of computers,
all of its input text is converted to an internal eight-bit code that includes standard ASCII, the “American
Standard Code for Information Interchange.” This conversion is done immediately when each character is
read in. Conversely, characters are converted from ASCII to the user’s external representation just before
they are output to a text file.

Such an internal code is relevant to users of METAFONT only with respect to the char and ASCII
operations, and the comparison of strings.

18. Characters of text that have been converted to METAFONT’s internal form are said to be of type
ASCII code , which is a subrange of the integers.

〈Types in the outer block 18 〉 ≡
ASCII code = 0 . . 255; { eight-bit numbers }

See also sections 24, 37, 101, 105, 106, 156, 186, 565, 571, 627, and 1151.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, especially in a program for font design; so the present specification of
METAFONT has been written under the assumption that the Pascal compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes 4́0 through 1́76 ; all of these
characters are now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text char to stand for the data type of
the characters that are converted to and from ASCII code when they are input and output. We shall also
assume that text char consists of the elements chr (first text char) through chr (last text char), inclusive.
The following definitions should be adjusted if necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 255 { ordinal number of the largest element of text char }

〈Local variables for initialization 19 〉 ≡
i: integer ;

See also section 130.

This code is used in section 4.

20. The METAFONT processor converts between ASCII code and the user’s external character set by means
of arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Global variables 13 〉 +≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [ASCII code] of text char ; { specifies conversion of output characters }

§21 METAFONT PART 2: THE CHARACTER SET 11

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the xchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement METAFONT with less complete character sets, and
in such cases it will be necessary to change something here.

〈Set initial values of key variables 21 〉 ≡
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;

See also sections 22, 23, 69, 72, 75, 92, 98, 131, 138, 179, 191, 199, 202, 231, 251, 396, 428, 449, 456, 462, 570, 573, 593, 739,
753, 776, 797, 822, 1078, 1085, 1097, 1150, 1153, and 1184.

This code is used in section 4.

22. The ASCII code is “standard” only to a certain extent, since many computer installations have found
it advantageous to have ready access to more than 94 printing characters. If METAFONT is being used on
a garden-variety Pascal for which only standard ASCII codes will appear in the input and output files, it
doesn’t really matter what codes are specified in xchr [0 . . 3́7], but the safest policy is to blank everything
out by using the code shown below.

However, other settings of xchr will make METAFONT more friendly on computers that have an extended
character set, so that users can type things like ‘≠’ instead of ‘<>’. People with extended character sets can
assign codes arbitrarily, giving an xchr equivalent to whatever characters the users of METAFONT are allowed
to have in their input files. Appropriate changes to METAFONT’s char class table should then be made.
(Unlike TEX, each installation of METAFONT has a fixed assignment of category codes, called the char class .)
Such changes make portability of programs more difficult, so they should be introduced cautiously if at all.

〈Set initial values of key variables 21 〉 +≡
for i← 0 to 3́7 do xchr [i]← ´ ´;
for i← 1́77 to 3́77 do xchr [i]← ´ ´;

12 PART 2: THE CHARACTER SET METAFONT §23

23. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr . Note that if xchr [i] = xchr [j] where i < j < 1́77 , the value of xord [xchr [i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 4́0 in case there
is a coincidence.

〈Set initial values of key variables 21 〉 +≡
for i← first text char to last text char do xord [chr (i)]← 1́77 ;
for i← 2́00 to 3́77 do xord [xchr [i]]← i;
for i← 0 to 1́76 do xord [xchr [i]]← i;

§24 METAFONT PART 3: INPUT AND OUTPUT 13

24. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached; (5) display of bits on the user’s screen. The bit-display operation will
be discussed in a later section; we shall deal here only with more traditional kinds of I/O.

METAFONT needs to deal with two kinds of files. We shall use the term alpha file for a file that contains
textual data, and the term byte file for a file that contains eight-bit binary information. These two types
turn out to be the same on many computers, but sometimes there is a significant distinction, so we shall
be careful to distinguish between them. Standard protocols for transferring such files from computer to
computer, via high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word file , when dumping and reloading
base information for its own initialization. We shall define a word file later; but it will be possible for us to
specify simple operations on word files before they are defined.

〈Types in the outer block 18 〉 +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
alpha file = packed file of text char ; {files that contain textual data }
byte file = packed file of eight bits ; { files that contain binary data }

25. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get , put , eof , and so on. But standard Pascal does
not allow file variables to be associated with file names that are determined at run time, so it cannot be
used to implement METAFONT; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for
our purposes. We shall assume that name of file is a variable of an appropriate type such that the Pascal
run-time system being used to implement METAFONT can open a file whose external name is specified by
name of file .

〈Global variables 13 〉 +≡
name of file : packed array [1 . . file name size] of char ;

{ on some systems this may be a record variable }
name length : 0 . . file name size ;
{ this many characters are actually relevant in name of file (the rest are blank) }

14 PART 3: INPUT AND OUTPUT METAFONT §26

26. The Pascal-H compiler with which the present version of METAFONT was prepared has extended the
rules of Pascal in a very convenient way. To open file f , we can write

reset (f,name , ´/O´) for input;
rewrite (f,name , ´/O´) for output.

The ‘name ’ parameter, which is of type ‘packed array [〈any 〉] of text char ’, stands for the name of the
external file that is being opened for input or output. Blank spaces that might appear in name are ignored.

The ‘/O’ parameter tells the operating system not to issue its own error messages if something goes wrong.
If a file of the specified name cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file), we will have erstat (f) 6= 0 after an unsuccessful reset
or rewrite . This allows METAFONT to undertake appropriate corrective action.

METAFONT’s file-opening procedures return false if no file identified by name of file could be opened.

define reset OK (#) ≡ erstat (#) = 0
define rewrite OK (#) ≡ erstat (#) = 0

function a open in (var f : alpha file): boolean ; { open a text file for input }
begin reset (f,name of file , ´/O´); a open in ← reset OK (f);
end;

function a open out (var f : alpha file): boolean ; { open a text file for output }
begin rewrite (f,name of file , ´/O´); a open out ← rewrite OK (f);
end;

function b open out (var f : byte file): boolean ; { open a binary file for output }
begin rewrite (f,name of file , ´/O´); b open out ← rewrite OK (f);
end;

function w open in (var f : word file): boolean ; { open a word file for input }
begin reset (f,name of file , ´/O´); w open in ← reset OK (f);
end;

function w open out (var f : word file): boolean ; { open a word file for output }
begin rewrite (f,name of file , ´/O´); w open out ← rewrite OK (f);
end;

27. Files can be closed with the Pascal-H routine ‘close (f)’, which should be used when all input or output
with respect to f has been completed. This makes f available to be opened again, if desired; and if f was
used for output, the close operation makes the corresponding external file appear on the user’s area, ready
to be read.

procedure a close (var f : alpha file); { close a text file }
begin close (f);
end;

procedure b close (var f : byte file); { close a binary file }
begin close (f);
end;

procedure w close (var f : word file); { close a word file }
begin close (f);
end;

28. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/O. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII code values. METAFONT’s conventions should be efficient, and they should blend nicely with the
user’s operating environment.

§29 METAFONT PART 3: INPUT AND OUTPUT 15

29. Input from text files is read one line at a time, using a routine called input ln . This function is defined
in terms of global variables called buffer , first , and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII code values, and that first and last are indices into
this array representing the beginning and ending of a line of text.

〈Global variables 13 〉 +≡
buffer : array [0 . . buf size] of ASCII code ; { lines of characters being read }
first : 0 . . buf size ; { the first unused position in buffer }
last : 0 . . buf size ; { end of the line just input to buffer }
max buf stack : 0 . . buf size ; { largest index used in buffer }

30. The input ln function brings the next line of input from the specified file into available positions of
the buffer array and returns the value true , unless the file has already been entirely read, in which case it
returns false and sets last ← first . In general, the ASCII code numbers that represent the next line of the
file are input into buffer [first], buffer [first + 1], . . . , buffer [last − 1]; and the global variable last is set equal
to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first (in
which case the line was entirely blank) or buffer [last − 1] 6= " ".

An overflow error is given, however, if the normal actions of input ln would make last ≥ buf size ; this is
done so that other parts of METAFONT can safely look at the contents of buffer [last +1] without overstepping
the bounds of the buffer array. Upon entry to input ln , the condition first < buf size will always hold, so
that there is always room for an “empty” line.

The variable max buf stack , which is used to keep track of how large the buf size parameter must be to
accommodate the present job, is also kept up to date by input ln .

If the bypass eoln parameter is true , input ln will do a get before looking at the first character of the line;
this skips over an eoln that was in f↑. The procedure does not do a get when it reaches the end of the line;
therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof , but METAFONT needs only a
weaker restriction: If eof occurs in the middle of a line, the system function eoln should return a true result
(even though f↑ will be undefined).

function input ln (var f : alpha file ; bypass eoln : boolean): boolean ;
{ inputs the next line or returns false }

var last nonblank : 0 . . buf size ; { last with trailing blanks removed }
begin if bypass eoln then

if ¬eof (f) then get (f); { input the first character of the line into f↑ }
last ← first ; { cf. Matthew 19 : 30 }
if eof (f) then input ln ← false
else begin last nonblank ← first ;

while ¬eoln (f) do
begin if last ≥ max buf stack then

begin max buf stack ← last + 1;
if max buf stack = buf size then 〈Report overflow of the input buffer, and abort 34 〉;
end;

buffer [last]← xord [f↑]; get (f); incr (last);
if buffer [last − 1] 6= " " then last nonblank ← last ;
end;

last ← last nonblank ; input ln ← true ;
end;

end;

16 PART 3: INPUT AND OUTPUT METAFONT §31

31. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term in , and when it is
considered an output file the file variable is term out .

〈Global variables 13 〉 +≡
term in : alpha file ; { the terminal as an input file }
term out : alpha file ; { the terminal as an output file }

32. Here is how to open the terminal files in Pascal-H. The ‘/I’ switch suppresses the first get .

define t open in ≡ reset (term in , ´TTY:´, ´/O/I´) { open the terminal for text input }
define t open out ≡ rewrite (term out , ´TTY:´, ´/O´) { open the terminal for text output }

33. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update terminal , is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear terminal , is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake up terminal , is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

define update terminal ≡ break (term out) { empty the terminal output buffer }
define clear terminal ≡ break in (term in , true) { clear the terminal input buffer }
define wake up terminal ≡ do nothing { cancel the user’s cancellation of output }

34. We need a special routine to read the first line of METAFONT input from the user’s terminal. This
line is different because it is read before we have opened the transcript file; there is sort of a “chicken and
egg” problem here. If the user types ‘input cmr10’ on the first line, or if some macro invoked by that line
does such an input, the transcript file will be named ‘cmr10.log’; but if no input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘mfput.log’. (The
transcript file will not contain error messages generated by the first line before the first input command.)

The first line is even more special if we are lucky enough to have an operating system that treats META-
FONT differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a
METAFONT job by typing a command line like ‘MF cmr10’; in such a case, METAFONT will operate as if the
first line of input were ‘cmr10’, i.e., the first line will consist of the remainder of the command line, after the
part that invoked METAFONT.

The first line is special also because it may be read before METAFONT has input a base file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto final end ’ should be replaced
by something that quietly terminates the program.)

〈Report overflow of the input buffer, and abort 34 〉 ≡
if base ident = 0 then

begin write ln (term out , ´Buffer size exceeded!´); goto final end ;
end

else begin cur input .loc field ← first ; cur input .limit field ← last − 1;
overflow ("buffer size", buf size);
end

This code is used in section 30.

§35 METAFONT PART 3: INPUT AND OUTPUT 17

35. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term in for input from the terminal. (The file term out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’, and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last − 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by METAFONT is in
buffer [loc]. This character should not be blank, and we should have loc < last .

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘input’ need not be typed immediately
after ‘**’.)

define loc ≡ cur input .loc field { location of first unread character in buffer }

36. The following program does the required initialization without retrieving a possible command line. It
should be clear how to modify this routine to deal with command lines, if the system permits them.

function init terminal : boolean ; { gets the terminal input started }
label exit ;
begin t open in ;
loop begin wake up terminal ; write (term out , ´**´); update terminal ;

if ¬input ln (term in , true) then { this shouldn’t happen }
begin write ln (term out); write (term out , ´! End of file on the terminal... why?´);
init terminal ← false ; return;
end;

loc ← first ;
while (loc < last) ∧ (buffer [loc] = " ") do incr (loc);
if loc < last then

begin init terminal ← true ; return; { return unless the line was all blank }
end;

write ln (term out , ´Please type the name of your input file.´);
end;

exit : end;

18 PART 4: STRING HANDLING METAFONT §37

37. String handling. Symbolic token names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, METAFONT does all of
its string processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str pool contains all of the (eight-bit) ASCII codes in all of the strings,
and the array str start contains indices of the starting points of each string. Strings are referred to by integer
numbers, so that string number s comprises the characters str pool [j] for str start [s] ≤ j < str start [s+ 1].
Additional integer variables pool ptr and str ptr indicate the number of entries used so far in str pool and
str start , respectively; locations str pool [pool ptr] and str start [str ptr] are ready for the next string to be
allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’ ; but some ASCII codes have no
standard visible representation, and METAFONT may need to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range −128 . . 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

define si (#) ≡ # { convert from ASCII code to packed ASCII code }
define so(#) ≡ # { convert from packed ASCII code to ASCII code }

〈Types in the outer block 18 〉 +≡
pool pointer = 0 . . pool size ; { for variables that point into str pool }
str number = 0 . . max strings ; { for variables that point into str start }
packed ASCII code = 0 . . 255; { elements of str pool array }

38. 〈Global variables 13 〉 +≡
str pool : packed array [pool pointer] of packed ASCII code ; { the characters }
str start : array [str number] of pool pointer ; { the starting pointers }
pool ptr : pool pointer ; { first unused position in str pool }
str ptr : str number ; { number of the current string being created }
init pool ptr : pool pointer ; { the starting value of pool ptr }
init str ptr : str number ; { the starting value of str ptr }
max pool ptr : pool pointer ; { the maximum so far of pool ptr }
max str ptr : str number ; { the maximum so far of str ptr }

39. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

define length (#) ≡ (str start [# + 1]− str start [#]) { the number of characters in string number # }

40. The length of the current string is called cur length :

define cur length ≡ (pool ptr − str start [str ptr])

§41 METAFONT PART 4: STRING HANDLING 19

41. Strings are created by appending character codes to str pool . The append char macro, defined here,
does not check to see if the value of pool ptr has gotten too high; this test is supposed to be made before
append char is used.

To test if there is room to append l more characters to str pool , we shall write str room (l), which aborts
METAFONT and gives an apologetic error message if there isn’t enough room.

define append char (#) ≡ {put ASCII code # at the end of str pool }
begin str pool [pool ptr]← si (#); incr (pool ptr);
end

define str room (#) ≡ {make sure that the pool hasn’t overflowed }
begin if pool ptr + # > max pool ptr then

begin if pool ptr + # > pool size then overflow ("pool size", pool size − init pool ptr);
max pool ptr ← pool ptr + #;
end;

end

42. METAFONT’s string expressions are implemented in a brute-force way: Every new string or substring
that is needed is simply copied into the string pool.

Such a scheme can be justified because string expressions aren’t a big deal in METAFONT applications;
strings rarely need to be saved from one statement to the next. But it would waste space needlessly if we
didn’t try to reclaim the space of strings that are going to be used only once.

Therefore a simple reference count mechanism is provided: If there are no references to a certain string
from elsewhere in the program, and if there are no references to any strings created subsequent to it, then
the string space will be reclaimed.

The number of references to string number s will be str ref [s]. The special value str ref [s] = max str ref =
127 is used to denote an unknown positive number of references; such strings will never be recycled. If a
string is ever referred to more than 126 times, simultaneously, we put it in this category. Hence a single byte
suffices to store each str ref .

define max str ref = 127 { “infinite” number of references }
define add str ref (#) ≡

begin if str ref [#] < max str ref then incr (str ref [#]);
end

〈Global variables 13 〉 +≡
str ref : array [str number] of 0 . . max str ref ;

43. Here’s what we do when a string reference disappears:

define delete str ref (#) ≡
begin if str ref [#] < max str ref then

if str ref [#] > 1 then decr (str ref [#]) else flush string (#);
end

〈Declare the procedure called flush string 43 〉 ≡
procedure flush string (s : str number);

begin if s < str ptr − 1 then str ref [s]← 0
else repeat decr (str ptr);

until str ref [str ptr − 1] 6= 0;
pool ptr ← str start [str ptr];
end;

This code is used in section 73.

20 PART 4: STRING HANDLING METAFONT §44

44. Once a sequence of characters has been appended to str pool , it officially becomes a string when the
function make string is called. This function returns the identification number of the new string as its value.

function make string : str number ; { current string enters the pool }
begin if str ptr = max str ptr then

begin if str ptr = max strings then overflow ("number of strings",max strings − init str ptr);
incr (max str ptr);
end;

str ref [str ptr]← 1; incr (str ptr); str start [str ptr]← pool ptr ; make string ← str ptr − 1;
end;

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal.

function str eq buf (s : str number ; k : integer): boolean ; { test equality of strings }
label not found ; { loop exit }
var j: pool pointer ; { running index }

result : boolean ; { result of comparison }
begin j ← str start [s];
while j < str start [s+ 1] do

begin if so(str pool [j]) 6= buffer [k] then
begin result ← false ; goto not found ;
end;

incr (j); incr (k);
end;

result ← true ;
not found : str eq buf ← result ;

end;

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length. If the first string is lexicographically greater than, less than, or equal to the
second, the result is respectively positive, negative, or zero.

function str vs str (s, t : str number): integer ; { test equality of strings }
label exit ;
var j, k: pool pointer ; { running indices }

ls , lt : integer ; { lengths }
l: integer ; { length remaining to test }

begin ls ← length (s); lt ← length (t);
if ls ≤ lt then l← ls else l← lt ;
j ← str start [s]; k ← str start [t];
while l > 0 do

begin if str pool [j] 6= str pool [k] then
begin str vs str ← str pool [j]− str pool [k]; return;
end;

incr (j); incr (k); decr (l);
end;

str vs str ← ls − lt ;
exit : end;

§47 METAFONT PART 4: STRING HANDLING 21

47. The initial values of str pool , str start , pool ptr , and str ptr are computed by the INIMF program,
based in part on the information that WEB has output while processing METAFONT.

init function get strings started : boolean ;
{ initializes the string pool, but returns false if something goes wrong }

label done , exit ;
var k, l: 0 . . 255; { small indices or counters }
m,n: text char ; { characters input from pool file }
g: str number ; { the string just created }
a: integer ; { accumulator for check sum }
c: boolean ; { check sum has been checked }

begin pool ptr ← 0; str ptr ← 0; max pool ptr ← 0; max str ptr ← 0; str start [0]← 0;
〈Make the first 256 strings 48 〉;
〈Read the other strings from the MF.POOL file and return true , or give an error message and return

false 51 〉;
exit : end;

tini

48. define app lc hex (#) ≡ l← #;
if l < 10 then append char (l + "0") else append char (l − 10 + "a")

〈Make the first 256 strings 48 〉 ≡
for k ← 0 to 255 do

begin if (〈Character k cannot be printed 49 〉) then
begin append char ("^"); append char ("^");
if k < 1́00 then append char (k + 1́00)
else if k < 2́00 then append char (k − 1́00)

else begin app lc hex (k div 16); app lc hex (k mod 16);
end;

end
else append char (k);
g ← make string ; str ref [g]← max str ref ;
end

This code is used in section 47.

49. The first 128 strings will contain 95 standard ASCII characters, and the other 33 characters will be
printed in three-symbol form like ‘^^A’ unless a system-dependent change is made here. Installations that
have an extended character set, where for example xchr [3́2] = ´≠´, would like string 3́2 to be the single
character 3́2 instead of the three characters 1́36 , 1́36 , 1́32 (^^Z). On the other hand, even people with
an extended character set will want to represent string 1́5 by ^^M, since 1́5 is ASCII’s “carriage return”
code; the idea is to produce visible strings instead of tabs or line-feeds or carriage-returns or bell-rings or
characters that are treated anomalously in text files.

Unprintable characters of codes 128–255 are, similarly, rendered ^^80–^^ff.
The boolean expression defined here should be true unless METAFONT internal code number k corresponds

to a non-troublesome visible symbol in the local character set. If character k cannot be printed, and k < 2́00 ,
then character k+ 1́00 or k− 1́00 must be printable; moreover, ASCII codes [6́0 . . 7́1 , 1́36 , 1́41 . . 1́46]
must be printable.

〈Character k cannot be printed 49 〉 ≡
(k < " ") ∨ (k > "~")

This code is used in section 48.

22 PART 4: STRING HANDLING METAFONT §50

50. When the WEB system program called TANGLE processes the MF.WEB description that you are now
reading, it outputs the Pascal program MF.PAS and also a string pool file called MF.POOL. The INIMF

program reads the latter file, where each string appears as a two-digit decimal length followed by the string
itself, and the information is recorded in METAFONT’s string memory.

〈Global variables 13 〉 +≡
init pool file : alpha file ; { the string-pool file output by TANGLE }
tini

51. define bad pool (#) ≡
begin wake up terminal ; write ln (term out , #); a close (pool file); get strings started ← false ;
return;
end

〈Read the other strings from the MF.POOL file and return true , or give an error message and return
false 51 〉 ≡

name of file ← pool name ; {we needn’t set name length }
if a open in (pool file) then

begin c← false ;
repeat 〈Read one string, but return false if the string memory space is getting too tight for

comfort 52 〉;
until c;
a close (pool file); get strings started ← true ;
end

else bad pool (´! I can´´t read MF.POOL.´)

This code is used in section 47.

52. 〈Read one string, but return false if the string memory space is getting too tight for comfort 52 〉 ≡
begin if eof (pool file) then bad pool (´! MF.POOL has no check sum.´);
read (pool file ,m, n); { read two digits of string length }
if m = ´*´ then 〈Check the pool check sum 53 〉
else begin if (xord [m] < "0") ∨ (xord [m] > "9") ∨ (xord [n] < "0") ∨ (xord [n] > "9") then

bad pool (´! MF.POOL line doesn´´t begin with two digits.´);
l← xord [m] ∗ 10 + xord [n]− "0" ∗ 11; { compute the length }
if pool ptr + l+ string vacancies > pool size then bad pool (´! You have to increase POOLSIZE.´);
for k ← 1 to l do

begin if eoln (pool file) then m← ´ ´ else read (pool file ,m);
append char (xord [m]);
end;

read ln (pool file); g ← make string ; str ref [g]← max str ref ;
end;

end

This code is used in section 51.

§53 METAFONT PART 4: STRING HANDLING 23

53. The WEB operation @$ denotes the value that should be at the end of this MF.POOL file; any other value
means that the wrong pool file has been loaded.

〈Check the pool check sum 53 〉 ≡
begin a← 0; k ← 1;
loop begin if (xord [n] < "0") ∨ (xord [n] > "9") then

bad pool (´! MF.POOL check sum doesn´´t have nine digits.´);
a← 10 ∗ a+ xord [n]− "0";
if k = 9 then goto done ;
incr (k); read (pool file , n);
end;

done : if a 6= @$ then bad pool (´! MF.POOL doesn´´t match; TANGLE me again.´);
c← true ;
end

This code is used in section 52.

24 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT §54

54. On-line and off-line printing. Messages that are sent to a user’s terminal and to the transcript-
log file are produced by several ‘print ’ procedures. These procedures will direct their output to a variety of
places, based on the setting of the global variable selector , which has the following possible values:

term and log , the normal setting, prints on the terminal and on the transcript file.
log only , prints only on the transcript file.
term only , prints only on the terminal.
no print , doesn’t print at all. This is used only in rare cases before the transcript file is open.
pseudo , puts output into a cyclic buffer that is used by the show context routine; when we get to that routine

we shall discuss the reasoning behind this curious mode.
new string , appends the output to the current string in the string pool.

The symbolic names ‘term and log ’, etc., have been assigned numeric codes that satisfy the convenient
relations no print + 1 = term only , no print + 2 = log only , term only + 2 = log only + 1 = term and log .

Three additional global variables, tally and term offset and file offset , record the number of characters
that have been printed since they were most recently cleared to zero. We use tally to record the length of
(possibly very long) stretches of printing; term offset and file offset , on the other hand, keep track of how
many characters have appeared so far on the current line that has been output to the terminal or to the
transcript file, respectively.

define no print = 0 { selector setting that makes data disappear }
define term only = 1 { printing is destined for the terminal only }
define log only = 2 { printing is destined for the transcript file only }
define term and log = 3 {normal selector setting }
define pseudo = 4 { special selector setting for show context }
define new string = 5 { printing is deflected to the string pool }
define max selector = 5 { highest selector setting }

〈Global variables 13 〉 +≡
log file : alpha file ; { transcript of METAFONT session }
selector : 0 . . max selector ; {where to print a message }
dig : array [0 . . 22] of 0 . . 15; { digits in a number being output }
tally : integer ; { the number of characters recently printed }
term offset : 0 . . max print line ; { the number of characters on the current terminal line }
file offset : 0 . . max print line ; { the number of characters on the current file line }
trick buf : array [0 . . error line] of ASCII code ; { circular buffer for pseudoprinting }
trick count : integer ; { threshold for pseudoprinting, explained later }
first count : integer ; { another variable for pseudoprinting }

55. 〈 Initialize the output routines 55 〉 ≡
selector ← term only ; tally ← 0; term offset ← 0; file offset ← 0;

See also sections 61, 783, and 792.

This code is used in section 1204.

56. Macro abbreviations for output to the terminal and to the log file are defined here for convenience.
Some systems need special conventions for terminal output, and it is possible to adhere to those conventions
by changing wterm , wterm ln , and wterm cr here.

define wterm (#) ≡ write (term out , #)
define wterm ln (#) ≡ write ln (term out , #)
define wterm cr ≡ write ln (term out)
define wlog (#) ≡ write (log file , #)
define wlog ln (#) ≡ write ln (log file , #)
define wlog cr ≡ write ln (log file)

§57 METAFONT PART 5: ON-LINE AND OFF-LINE PRINTING 25

57. To end a line of text output, we call print ln .

〈Basic printing procedures 57 〉 ≡
procedure print ln ; { prints an end-of-line }

begin case selector of
term and log : begin wterm cr ; wlog cr ; term offset ← 0; file offset ← 0;

end;
log only : begin wlog cr ; file offset ← 0;

end;
term only : begin wterm cr ; term offset ← 0;

end;
no print , pseudo ,new string : do nothing ;
end; { there are no other cases }
end; {note that tally is not affected }

See also sections 58, 59, 60, 62, 63, 64, 103, 104, 187, 195, 197, and 773.

This code is used in section 4.

58. The print char procedure sends one character to the desired destination, using the xchr array to map
it into an external character compatible with input ln . All printing comes through print ln or print char .

〈Basic printing procedures 57 〉 +≡
procedure print char (s : ASCII code); {prints a single character }

begin case selector of
term and log : begin wterm (xchr [s]); wlog (xchr [s]); incr (term offset); incr (file offset);

if term offset = max print line then
begin wterm cr ; term offset ← 0;
end;

if file offset = max print line then
begin wlog cr ; file offset ← 0;
end;

end;
log only : begin wlog (xchr [s]); incr (file offset);

if file offset = max print line then print ln ;
end;

term only : begin wterm (xchr [s]); incr (term offset);
if term offset = max print line then print ln ;
end;

no print : do nothing ;
pseudo : if tally < trick count then trick buf [tally mod error line]← s;
new string : begin if pool ptr < pool size then append char (s);

end; {we drop characters if the string space is full }
end; { there are no other cases }
incr (tally);
end;

26 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT §59

59. An entire string is output by calling print . Note that if we are outputting the single standard ASCII
character c, we could call print ("c"), since "c" = 99 is the number of a single-character string, as explained
above. But print char ("c") is quicker, so METAFONT goes directly to the print char routine when it knows
that this is safe. (The present implementation assumes that it is always safe to print a visible ASCII
character.)

〈Basic printing procedures 57 〉 +≡
procedure print (s : integer); { prints string s }

var j: pool pointer ; { current character code position }
begin if (s < 0) ∨ (s ≥ str ptr) then s← "???"; { this can’t happen }
if (s < 256) ∧ (selector > pseudo) then print char (s)
else begin j ← str start [s];

while j < str start [s+ 1] do
begin print char (so(str pool [j])); incr (j);
end;

end;
end;

60. Sometimes it’s necessary to print a string whose characters may not be visible ASCII codes. In that
case slow print is used.

〈Basic printing procedures 57 〉 +≡
procedure slow print (s : integer); { prints string s }

var j: pool pointer ; { current character code position }
begin if (s < 0) ∨ (s ≥ str ptr) then s← "???"; { this can’t happen }
if (s < 256) ∧ (selector > pseudo) then print char (s)
else begin j ← str start [s];

while j < str start [s+ 1] do
begin print (so(str pool [j])); incr (j);
end;

end;
end;

61. Here is the very first thing that METAFONT prints: a headline that identifies the version number and
base name. The term offset variable is temporarily incorrect, but the discrepancy is not serious since we
assume that this part of the program is system dependent.

〈 Initialize the output routines 55 〉 +≡
wterm (banner);
if base ident = 0 then wterm ln (´ (no base preloaded)´)
else begin slow print (base ident); print ln ;

end;
update terminal ;

62. The procedure print nl is like print , but it makes sure that the string appears at the beginning of a
new line.

〈Basic printing procedures 57 〉 +≡
procedure print nl (s : str number); {prints string s at beginning of line }

begin if ((term offset > 0) ∧ (odd (selector))) ∨ ((file offset > 0) ∧ (selector ≥ log only)) then print ln ;
print (s);
end;

§63 METAFONT PART 5: ON-LINE AND OFF-LINE PRINTING 27

63. An array of digits in the range 0 . . 9 is printed by print the digs .

〈Basic printing procedures 57 〉 +≡
procedure print the digs (k : eight bits); { prints dig [k − 1] . . . dig [0] }

begin while k > 0 do
begin decr (k); print char ("0" + dig [k]);
end;

end;

64. The following procedure, which prints out the decimal representation of a given integer n, has been
written carefully so that it works properly if n = 0 or if (−n) would cause overflow. It does not apply mod or
div to negative arguments, since such operations are not implemented consistently by all Pascal compilers.

〈Basic printing procedures 57 〉 +≡
procedure print int (n : integer); {prints an integer in decimal form }

var k: 0 . . 23; { index to current digit; we assume that |n| < 1023 }
m: integer ; {used to negate n in possibly dangerous cases }

begin k ← 0;
if n < 0 then

begin print char ("−");
if n > −100000000 then negate (n)
else begin m← −1− n; n← m div 10; m← (mmod 10) + 1; k ← 1;

if m < 10 then dig [0]← m
else begin dig [0]← 0; incr (n);

end;
end;

end;
repeat dig [k]← nmod 10; n← n div 10; incr (k);
until n = 0;
print the digs (k);
end;

65. METAFONT also makes use of a trivial procedure to print two digits. The following subroutine is
usually called with a parameter in the range 0 ≤ n ≤ 99.

procedure print dd (n : integer); { prints two least significant digits }
begin n← abs (n) mod 100; print char ("0" + (n div 10)); print char ("0" + (nmod 10));
end;

28 PART 5: ON-LINE AND OFF-LINE PRINTING METAFONT §66

66. Here is a procedure that asks the user to type a line of input, assuming that the selector setting is
either term only or term and log . The input is placed into locations first through last − 1 of the buffer
array, and echoed on the transcript file if appropriate.

This procedure is never called when interaction < scroll mode .

define prompt input (#) ≡
begin wake up terminal ; print (#); term input ;
end { prints a string and gets a line of input }

procedure term input ; { gets a line from the terminal }
var k: 0 . . buf size ; { index into buffer }
begin update terminal ; {now the user sees the prompt for sure }
if ¬input ln (term in , true) then fatal error ("End of file on the terminal!");
term offset ← 0; { the user’s line ended with 〈return〉 }
decr (selector); { prepare to echo the input }
if last 6= first then

for k ← first to last − 1 do print (buffer [k]);
print ln ; buffer [last]← "%"; incr (selector); { restore previous status }
end;

§67 METAFONT PART 6: REPORTING ERRORS 29

67. Reporting errors. When something anomalous is detected, METAFONT typically does something
like this:

print err ("Something anomalous has been detected");
help3 ("This is the first line of my offer to help.")
("This is the second line. I´m trying to")
("explain the best way for you to proceed.");
error ;

A two-line help message would be given using help2 , etc.; these informal helps should use simple vocabulary
that complements the words used in the official error message that was printed. (Outside the U.S.A., the
help messages should preferably be translated into the local vernacular. Each line of help is at most 60
characters long, in the present implementation, so that max print line will not be exceeded.)

The print err procedure supplies a ‘!’ before the official message, and makes sure that the terminal is
awake if a stop is going to occur. The error procedure supplies a ‘.’ after the official message, then it shows
the location of the error; and if interaction = error stop mode , it also enters into a dialog with the user,
during which time the help message may be printed.

68. The global variable interaction has four settings, representing increasing amounts of user interaction:

define batch mode = 0 { omits all stops and omits terminal output }
define nonstop mode = 1 { omits all stops }
define scroll mode = 2 { omits error stops }
define error stop mode = 3 { stops at every opportunity to interact }
define print err (#) ≡

begin if interaction = error stop mode then wake up terminal ;
print nl ("! "); print (#);
end

〈Global variables 13 〉 +≡
interaction : batch mode . . error stop mode ; { current level of interaction }

69. 〈Set initial values of key variables 21 〉 +≡
interaction ← error stop mode ;

70. METAFONT is careful not to call error when the print selector setting might be unusual. The only
possible values of selector at the time of error messages are

no print (when interaction = batch mode and log file not yet open);
term only (when interaction > batch mode and log file not yet open);
log only (when interaction = batch mode and log file is open);
term and log (when interaction > batch mode and log file is open).

〈 Initialize the print selector based on interaction 70 〉 ≡
if interaction = batch mode then selector ← no print else selector ← term only

This code is used in sections 1023 and 1211.

30 PART 6: REPORTING ERRORS METAFONT §71

71. A global variable deletions allowed is set false if the get next routine is active when error is called;
this ensures that get next will never be called recursively.

The global variable history records the worst level of error that has been detected. It has four possible
values: spotless , warning issued , error message issued , and fatal error stop .

Another global variable, error count , is increased by one when an error occurs without an interactive
dialog, and it is reset to zero at the end of every statement. If error count reaches 100, METAFONT decides
that there is no point in continuing further.

define spotless = 0 { history value when nothing has been amiss yet }
define warning issued = 1 { history value when begin diagnostic has been called }
define error message issued = 2 { history value when error has been called }
define fatal error stop = 3 { history value when termination was premature }

〈Global variables 13 〉 +≡
deletions allowed : boolean ; { is it safe for error to call get next ? }
history : spotless . . fatal error stop ; {has the source input been clean so far? }
error count : −1 . . 100; { the number of scrolled errors since the last statement ended }

72. The value of history is initially fatal error stop , but it will be changed to spotless if METAFONT

survives the initialization process.

〈Set initial values of key variables 21 〉 +≡
deletions allowed ← true ; error count ← 0; { history is initialized elsewhere }

73. Since errors can be detected almost anywhere in METAFONT, we want to declare the error procedures
near the beginning of the program. But the error procedures in turn use some other procedures, which need
to be declared forward before we get to error itself.

It is possible for error to be called recursively if some error arises when get next is being used to delete a
token, and/or if some fatal error occurs while METAFONT is trying to fix a non-fatal one. But such recursion
is never more than two levels deep.

〈Error handling procedures 73 〉 ≡
procedure normalize selector ; forward ;
procedure get next ; forward ;
procedure term input ; forward ;
procedure show context ; forward ;
procedure begin file reading ; forward ;
procedure open log file ; forward ;
procedure close files and terminate ; forward ;
procedure clear for error prompt ; forward ;
debug procedure debug help ; forward ; gubed
〈Declare the procedure called flush string 43 〉

See also sections 76, 77, 88, 89, and 90.

This code is used in section 4.

§74 METAFONT PART 6: REPORTING ERRORS 31

74. Individual lines of help are recorded in the array help line , which contains entries in positions 0 . .
(help ptr − 1). They should be printed in reverse order, i.e., with help line [0] appearing last.

define hlp1 (#) ≡ help line [0]← #; end
define hlp2 (#) ≡ help line [1]← #; hlp1
define hlp3 (#) ≡ help line [2]← #; hlp2
define hlp4 (#) ≡ help line [3]← #; hlp3
define hlp5 (#) ≡ help line [4]← #; hlp4
define hlp6 (#) ≡ help line [5]← #; hlp5
define help0 ≡ help ptr ← 0 { sometimes there might be no help }
define help1 ≡ begin help ptr ← 1; hlp1 { use this with one help line }
define help2 ≡ begin help ptr ← 2; hlp2 { use this with two help lines }
define help3 ≡ begin help ptr ← 3; hlp3 { use this with three help lines }
define help4 ≡ begin help ptr ← 4; hlp4 { use this with four help lines }
define help5 ≡ begin help ptr ← 5; hlp5 { use this with five help lines }
define help6 ≡ begin help ptr ← 6; hlp6 { use this with six help lines }

〈Global variables 13 〉 +≡
help line : array [0 . . 5] of str number ; { helps for the next error }
help ptr : 0 . . 6; { the number of help lines present }
use err help : boolean ; { should the err help string be shown? }
err help : str number ; { a string set up by errhelp }

75. 〈Set initial values of key variables 21 〉 +≡
help ptr ← 0; use err help ← false ; err help ← 0;

76. The jump out procedure just cuts across all active procedure levels and goes to end of MF . This is the
only nontrivial goto statement in the whole program. It is used when there is no recovery from a particular
error.

Some Pascal compilers do not implement non-local goto statements. In such cases the body of jump out
should simply be ‘close files and terminate ; ’ followed by a call on some system procedure that quietly
terminates the program.

〈Error handling procedures 73 〉 +≡
procedure jump out ;

begin goto end of MF ;
end;

32 PART 6: REPORTING ERRORS METAFONT §77

77. Here now is the general error routine.

〈Error handling procedures 73 〉 +≡
procedure error ; { completes the job of error reporting }

label continue , exit ;
var c: ASCII code ; {what the user types }

s1 , s2 , s3 : integer ; { used to save global variables when deleting tokens }
j: pool pointer ; { character position being printed }

begin if history < error message issued then history ← error message issued ;
print char ("."); show context ;
if interaction = error stop mode then 〈Get user’s advice and return 78 〉;
incr (error count);
if error count = 100 then

begin print nl ("(That makes 100 errors; please try again.)"); history ← fatal error stop ;
jump out ;
end;
〈Put help message on the transcript file 86 〉;

exit : end;

78. 〈Get user’s advice and return 78 〉 ≡
loop begin continue : if interaction 6= error stop mode then return;

clear for error prompt ; prompt input ("? ");
if last = first then return;
c← buffer [first];
if c ≥ "a" then c← c+ "A"− "a"; { convert to uppercase }
〈 Interpret code c and return if done 79 〉;
end

This code is used in section 77.

§79 METAFONT PART 6: REPORTING ERRORS 33

79. It is desirable to provide an ‘E’ option here that gives the user an easy way to return from METAFONT

to the system editor, with the offending line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the file that should be edited and the
relevant line number.

There is a secret ‘D’ option available when the debugging routines haven’t been commented out.

〈 Interpret code c and return if done 79 〉 ≡
case c of
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9": if deletions allowed then

〈Delete c− "0" tokens and goto continue 83 〉;
debug "D": begin debug help ; goto continue ; end; gubed
"E": if file ptr > 0 then

if input stack [file ptr].name field ≥ 256 then
begin print nl ("You want to edit file "); slow print (input stack [file ptr].name field);
print (" at line "); print int (line);
interaction ← scroll mode ; jump out ;
end;

"H": 〈Print the help information and goto continue 84 〉;
"I": 〈 Introduce new material from the terminal and return 82 〉;
"Q", "R", "S": 〈Change the interaction level and return 81 〉;
"X": begin interaction ← scroll mode ; jump out ;

end;
othercases do nothing
endcases;
〈Print the menu of available options 80 〉

This code is used in section 78.

80. 〈Print the menu of available options 80 〉 ≡
begin print ("Type <return> to proceed, S to scroll future error messages,");
print nl ("R to run without stopping, Q to run quietly,");
print nl ("I to insert something, ");
if file ptr > 0 then

if input stack [file ptr].name field ≥ 256 then print ("E to edit your file,");
if deletions allowed then

print nl ("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
print nl ("H for help, X to quit.");
end

This code is used in section 79.

81. Here the author of METAFONT apologizes for making use of the numerical relation between "Q", "R",
"S", and the desired interaction settings batch mode , nonstop mode , scroll mode .

〈Change the interaction level and return 81 〉 ≡
begin error count ← 0; interaction ← batch mode + c− "Q"; print ("OK, entering ");
case c of
"Q": begin print ("batchmode"); decr (selector);

end;
"R": print ("nonstopmode");
"S": print ("scrollmode");
end; { there are no other cases }
print ("..."); print ln ; update terminal ; return;
end

This code is used in section 79.

34 PART 6: REPORTING ERRORS METAFONT §82

82. When the following code is executed, buffer [(first + 1) . . (last − 1)] may contain the material inserted
by the user; otherwise another prompt will be given. In order to understand this part of the program fully,
you need to be familiar with METAFONT’s input stacks.

〈 Introduce new material from the terminal and return 82 〉 ≡
begin begin file reading ; { enter a new syntactic level for terminal input }
if last > first + 1 then

begin loc ← first + 1; buffer [first]← " ";
end

else begin prompt input ("insert>"); loc ← first ;
end;

first ← last + 1; cur input .limit field ← last ; return;
end

This code is used in section 79.

83. We allow deletion of up to 99 tokens at a time.

〈Delete c− "0" tokens and goto continue 83 〉 ≡
begin s1 ← cur cmd ; s2 ← cur mod ; s3 ← cur sym ; OK to interrupt ← false ;
if (last > first + 1) ∧ (buffer [first + 1] ≥ "0") ∧ (buffer [first + 1] ≤ "9") then
c← c ∗ 10 + buffer [first + 1]− "0" ∗ 11

else c← c− "0";
while c > 0 do

begin get next ; { one-level recursive call of error is possible }
〈Decrease the string reference count, if the current token is a string 743 〉;
decr (c);
end;

cur cmd ← s1 ; cur mod ← s2 ; cur sym ← s3 ; OK to interrupt ← true ;
help2 ("I have just deleted some text, as you asked.")
("You can now delete more, or insert, or whatever."); show context ; goto continue ;
end

This code is used in section 79.

84. 〈Print the help information and goto continue 84 〉 ≡
begin if use err help then

begin 〈Print the string err help , possibly on several lines 85 〉;
use err help ← false ;
end

else begin if help ptr = 0 then help2 ("Sorry, I don´t know how to help in this situation.")
("Maybe you should try asking a human?");

repeat decr (help ptr); print (help line [help ptr]); print ln ;
until help ptr = 0;
end;

help4 ("Sorry, I already gave what help I could...")
("Maybe you should try asking a human?")
("An error might have occurred before I noticed any problems.")
("``If all else fails, read the instructions.´´");
goto continue ;
end

This code is used in section 79.

§85 METAFONT PART 6: REPORTING ERRORS 35

85. 〈Print the string err help , possibly on several lines 85 〉 ≡
j ← str start [err help];
while j < str start [err help + 1] do

begin if str pool [j] 6= si ("%") then print (so(str pool [j]))
else if j + 1 = str start [err help + 1] then print ln

else if str pool [j + 1] 6= si ("%") then print ln
else begin incr (j); print char ("%");

end;
incr (j);
end

This code is used in sections 84 and 86.

86. 〈Put help message on the transcript file 86 〉 ≡
if interaction > batch mode then decr (selector); { avoid terminal output }
if use err help then

begin print nl (""); 〈Print the string err help , possibly on several lines 85 〉;
end

else while help ptr > 0 do
begin decr (help ptr); print nl (help line [help ptr]);
end;

print ln ;
if interaction > batch mode then incr (selector); { re-enable terminal output }
print ln

This code is used in section 77.

87. In anomalous cases, the print selector might be in an unknown state; the following subroutine is called
to fix things just enough to keep running a bit longer.

procedure normalize selector ;
begin if log opened then selector ← term and log
else selector ← term only ;
if job name = 0 then open log file ;
if interaction = batch mode then decr (selector);
end;

88. The following procedure prints METAFONT’s last words before dying.

define succumb ≡
begin if interaction = error stop mode then interaction ← scroll mode ;

{ no more interaction }
if log opened then error ;
debug if interaction > batch mode then debug help ; gubed
history ← fatal error stop ; jump out ; { irrecoverable error }
end

〈Error handling procedures 73 〉 +≡
procedure fatal error (s : str number); { prints s, and that’s it }

begin normalize selector ;
print err ("Emergency stop"); help1 (s); succumb ;
end;

36 PART 6: REPORTING ERRORS METAFONT §89

89. Here is the most dreaded error message.

〈Error handling procedures 73 〉 +≡
procedure overflow (s : str number ; n : integer); { stop due to finiteness }

begin normalize selector ; print err ("METAFONT capacity exceeded, sorry ["); print (s);
print char ("="); print int (n); print char ("]");
help2 ("If you really absolutely need more capacity,")
("you can ask a wizard to enlarge me."); succumb ;
end;

90. The program might sometime run completely amok, at which point there is no choice but to stop. If
no previous error has been detected, that’s bad news; a message is printed that is really intended for the
METAFONT maintenance person instead of the user (unless the user has been particularly diabolical). The
index entries for ‘this can’t happen’ may help to pinpoint the problem.

〈Error handling procedures 73 〉 +≡
procedure confusion (s : str number); { consistency check violated; s tells where }

begin normalize selector ;
if history < error message issued then

begin print err ("This can´t happen ("); print (s); print char (")");
help1 ("I´m broken. Please show this to someone who can fix can fix");
end

else begin print err ("I can´t go on meeting you like this");
help2 ("One of your faux pas seems to have wounded me deeply...")
("in fact, I´m barely conscious. Please fix it and try again.");
end;

succumb ;
end;

91. Users occasionally want to interrupt METAFONT while it’s running. If the Pascal runtime system
allows this, one can implement a routine that sets the global variable interrupt to some nonzero value when
such an interrupt is signalled. Otherwise there is probably at least a way to make interrupt nonzero using
the Pascal debugger.

define check interrupt ≡
begin if interrupt 6= 0 then pause for instructions ;
end

〈Global variables 13 〉 +≡
interrupt : integer ; { should METAFONT pause for instructions? }
OK to interrupt : boolean ; { should interrupts be observed? }

92. 〈Set initial values of key variables 21 〉 +≡
interrupt ← 0; OK to interrupt ← true ;

§93 METAFONT PART 6: REPORTING ERRORS 37

93. When an interrupt has been detected, the program goes into its highest interaction level and lets the
user have the full flexibility of the error routine. METAFONT checks for interrupts only at times when it is
safe to do this.

procedure pause for instructions ;
begin if OK to interrupt then

begin interaction ← error stop mode ;
if (selector = log only) ∨ (selector = no print) then incr (selector);
print err ("Interruption"); help3 ("You rang?")
("Try to insert an instruction for me (e.g., `I show x;´),")
("unless you just want to quit by typing `X´."); deletions allowed ← false ; error ;
deletions allowed ← true ; interrupt ← 0;
end;

end;

94. Many of METAFONT’s error messages state that a missing token has been inserted behind the scenes.
We can save string space and program space by putting this common code into a subroutine.

procedure missing err (s : str number);
begin print err ("Missing `"); print (s); print ("´ has been inserted");
end;

38 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §95

95. Arithmetic with scaled numbers. The principal computations performed by METAFONT are
done entirely in terms of integers less than 231 in magnitude; thus, the arithmetic specified in this program
can be carried out in exactly the same way on a wide variety of computers, including some small ones.

But Pascal does not define the div operation in the case of negative dividends; for example, the result
of (−2 ∗ n − 1) div 2 is −(n + 1) on some computers and −n on others. There are two principal types of
arithmetic: “translation-preserving,” in which the identity (a + q ∗ b) div b = (a div b) + q is valid; and
“negation-preserving,” in which (−a)div b = −(adiv b). This leads to two METAFONTs, which can produce
different results, although the differences should be negligible when the language is being used properly. The
TEX processor has been defined carefully so that both varieties of arithmetic will produce identical output,
but it would be too inefficient to constrain METAFONT in a similar way.

define el gordo ≡ 1́7777777777 { 231 − 1, the largest value that METAFONT likes }

96. One of METAFONT’s most common operations is the calculation of ba+b2 c, the midpoint of two given
integers a and b. The only decent way to do this in Pascal is to write ‘(a+ b) div 2’; but on most machines
it is far more efficient to calculate ‘(a+ b) right shifted one bit’.

Therefore the midpoint operation will always be denoted by ‘half (a+ b)’ in this program. If METAFONT

is being implemented with languages that permit binary shifting, the half macro should be changed to make
this operation as efficient as possible.

define half (#) ≡ (#) div 2

97. A single computation might use several subroutine calls, and it is desirable to avoid producing multiple
error messages in case of arithmetic overflow. So the routines below set the global variable arith error to
true instead of reporting errors directly to the user.

〈Global variables 13 〉 +≡
arith error : boolean ; {has arithmetic overflow occurred recently? }

98. 〈Set initial values of key variables 21 〉 +≡
arith error ← false ;

99. At crucial points the program will say check arith , to test if an arithmetic error has been detected.

define check arith ≡
begin if arith error then clear arith ;
end

procedure clear arith ;
begin print err ("Arithmetic overflow");
help4 ("Uh, oh. A little while ago one of the quantities that I was")
("computing got too large, so I´m afraid your answers will be")
("somewhat askew. You´ll probably have to adopt different")
("tactics next time. But I shall try to carry on anyway."); error ; arith error ← false ;
end;

§100 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 39

100. Addition is not always checked to make sure that it doesn’t overflow, but in places where overflow
isn’t too unlikely the slow add routine is used.

function slow add (x, y : integer): integer ;
begin if x ≥ 0 then

if y ≤ el gordo − x then slow add ← x+ y
else begin arith error ← true ; slow add ← el gordo ;

end
else if −y ≤ el gordo + x then slow add ← x+ y

else begin arith error ← true ; slow add ← −el gordo ;
end;

end;

101. Fixed-point arithmetic is done on scaled integers that are multiples of 2−16. In other words, a binary
point is assumed to be sixteen bit positions from the right end of a binary computer word.

define quarter unit ≡ 4́0000 { 214, represents 0.250000 }
define half unit ≡ 1́00000 { 215, represents 0.50000 }
define three quarter unit ≡ 1́40000 { 3 · 214, represents 0.75000 }
define unity ≡ 2́00000 { 216, represents 1.00000 }
define two ≡ 4́00000 { 217, represents 2.00000 }
define three ≡ 6́00000 { 217 + 216, represents 3.00000 }

〈Types in the outer block 18 〉 +≡
scaled = integer ; { this type is used for scaled integers }
small number = 0 . . 63; { this type is self-explanatory }

102. The following function is used to create a scaled integer from a given decimal fraction (.d0d1 . . . dk−1),
where 0 ≤ k ≤ 17. The digit di is given in dig [i], and the calculation produces a correctly rounded result.

function round decimals (k : small number): scaled ; { converts a decimal fraction }
var a: integer ; { the accumulator }
begin a← 0;
while k > 0 do

begin decr (k); a← (a+ dig [k] ∗ two) div 10;
end;

round decimals ← half (a+ 1);
end;

40 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §103

103. Conversely, here is a procedure analogous to print int . If the output of this procedure is subsequently
read by METAFONT and converted by the round decimals routine above, it turns out that the original value
will be reproduced exactly. A decimal point is printed only if the value is not an integer. If there is more
than one way to print the result with the optimum number of digits following the decimal point, the closest
possible value is given.

The invariant relation in the repeat loop is that a sequence of decimal digits yet to be printed will yield
the original number if and only if they form a fraction f in the range s− δ ≤ 10 · 216f < s. We can stop if
and only if f = 0 satisfies this condition; the loop will terminate before s can possibly become zero.

〈Basic printing procedures 57 〉 +≡
procedure print scaled (s : scaled); { prints scaled real, rounded to five digits }

var delta : scaled ; { amount of allowable inaccuracy }
begin if s < 0 then

begin print char ("−"); negate (s); { print the sign, if negative }
end;

print int (s div unity); { print the integer part }
s← 10 ∗ (smod unity) + 5;
if s 6= 5 then

begin delta ← 10; print char (".");
repeat if delta > unity then s← s+ 1́00000 − (delta div 2); { round the final digit }

print char ("0" + (s div unity)); s← 10 ∗ (smod unity); delta ← delta ∗ 10;
until s ≤ delta ;
end;

end;

104. We often want to print two scaled quantities in parentheses, separated by a comma.

〈Basic printing procedures 57 〉 +≡
procedure print two(x, y : scaled); { prints ‘(x, y)’ }

begin print char ("("); print scaled (x); print char (","); print scaled (y); print char (")");
end;

105. The scaled quantities in METAFONT programs are generally supposed to be less than 212 in absolute
value, so METAFONT does much of its internal arithmetic with 28 significant bits of precision. A fraction
denotes a scaled integer whose binary point is assumed to be 28 bit positions from the right.

define fraction half ≡ 1́000000000 { 227, represents 0.50000000 }
define fraction one ≡ 2́000000000 { 228, represents 1.00000000 }
define fraction two ≡ 4́000000000 { 229, represents 2.00000000 }
define fraction three ≡ 6́000000000 { 3 · 228, represents 3.00000000 }
define fraction four ≡ 1́0000000000 { 230, represents 4.00000000 }

〈Types in the outer block 18 〉 +≡
fraction = integer ; { this type is used for scaled fractions }

106. In fact, the two sorts of scaling discussed above aren’t quite sufficient; METAFONT has yet another,
used internally to keep track of angles in units of 2−20 degrees.

define forty five deg ≡ 2́64000000 { 45 · 220, represents 45◦ }
define ninety deg ≡ 5́50000000 { 90 · 220, represents 90◦ }
define one eighty deg ≡ 1́320000000 { 180 · 220, represents 180◦ }
define three sixty deg ≡ 2́640000000 { 360 · 220, represents 360◦ }

〈Types in the outer block 18 〉 +≡
angle = integer ; { this type is used for scaled angles }

§107 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 41

107. The make fraction routine produces the fraction equivalent of p/q, given integers p and q; it computes
the integer f = b228p/q+ 1

2c, when p and q are positive. If p and q are both of the same scaled type t, the “type
relation” make fraction (t, t) = fraction is valid; and it’s also possible to use the subroutine “backwards,”
using the relation make fraction (t, fraction) = t between scaled types.

If the result would have magnitude 231 or more, make fraction sets arith error ← true . Most of META-
FONT’s internal computations have been designed to avoid this sort of error.

Notice that if 64-bit integer arithmetic were available, we could simply compute (229∗p+q) div(2∗q). But
when we are restricted to Pascal’s 32-bit arithmetic we must either resort to multiple-precision maneuvering
or use a simple but slow iteration. The multiple-precision technique would be about three times faster than
the code adopted here, but it would be comparatively long and tricky, involving about sixteen additional
multiplications and divisions.

This operation is part of METAFONT’s “inner loop”; indeed, it will consume nearly 10% of the running
time (exclusive of input and output) if the code below is left unchanged. A machine-dependent recoding will
therefore make METAFONT run faster. The present implementation is highly portable, but slow; it avoids
multiplication and division except in the initial stage. System wizards should be careful to replace it with a
routine that is guaranteed to produce identical results in all cases.

As noted below, a few more routines should also be replaced by machine-dependent code, for efficiency. But
when a procedure is not part of the “inner loop,” such changes aren’t advisable; simplicity and robustness
are preferable to trickery, unless the cost is too high.

function make fraction (p, q : integer): fraction ;
var f : integer ; { the fraction bits, with a leading 1 bit }
n: integer ; { the integer part of |p/q| }
negative : boolean ; { should the result be negated? }
be careful : integer ; { disables certain compiler optimizations }

begin if p ≥ 0 then negative ← false
else begin negate (p); negative ← true ;

end;
if q ≤ 0 then

begin debug if q = 0 then confusion ("/"); gubed
negate (q); negative ← ¬negative ;
end;

n← p div q; p← pmod q;
if n ≥ 8 then

begin arith error ← true ;
if negative then make fraction ← −el gordo else make fraction ← el gordo ;
end

else begin n← (n− 1) ∗ fraction one ; 〈Compute f = b228(1 + p/q) + 1
2c 108 〉;

if negative then make fraction ← −(f + n) else make fraction ← f + n;
end;

end;

42 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §108

108. The repeat loop here preserves the following invariant relations between f , p, and q: (i) 0 ≤ p < q;
(ii) fq + p = 2k(q + p0), where k is an integer and p0 is the original value of p.

Notice that the computation specifies (p−q)+p instead of (p+p)−q, because the latter could overflow. Let
us hope that optimizing compilers do not miss this point; a special variable be careful is used to emphasize
the necessary order of computation. Optimizing compilers should keep be careful in a register, not store it
in memory.

〈Compute f = b228(1 + p/q) + 1
2c 108 〉 ≡

f ← 1;
repeat be careful ← p− q; p← be careful + p;

if p ≥ 0 then f ← f + f + 1
else begin double (f); p← p+ q;

end;
until f ≥ fraction one ;
be careful ← p− q;
if be careful + p ≥ 0 then incr (f)

This code is used in section 107.

109. The dual of make fraction is take fraction , which multiplies a given integer q by a fraction f . When
the operands are positive, it computes p = bqf/228 + 1

2c, a symmetric function of q and f .
This routine is even more “inner loopy” than make fraction ; the present implementation consumes almost

20% of METAFONT’s computation time during typical jobs, so a machine-language or 64-bit substitute is
advisable.

function take fraction (q : integer ; f : fraction): integer ;
var p: integer ; { the fraction so far }

negative : boolean ; { should the result be negated? }
n: integer ; { additional multiple of q }
be careful : integer ; { disables certain compiler optimizations }

begin 〈Reduce to the case that f ≥ 0 and q ≥ 0 110 〉;
if f < fraction one then n← 0
else begin n← f div fraction one ; f ← f mod fraction one ;

if q ≤ el gordo div n then n← n ∗ q
else begin arith error ← true ; n← el gordo ;

end;
end;

f ← f + fraction one ; 〈Compute p = bqf/228 + 1
2c − q 111 〉;

be careful ← n− el gordo ;
if be careful + p > 0 then

begin arith error ← true ; n← el gordo − p;
end;

if negative then take fraction ← −(n+ p)
else take fraction ← n+ p;
end;

110. 〈Reduce to the case that f ≥ 0 and q ≥ 0 110 〉 ≡
if f ≥ 0 then negative ← false
else begin negate (f); negative ← true ;

end;
if q < 0 then

begin negate (q); negative ← ¬negative ;
end;

This code is used in sections 109 and 112.

§111 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 43

111. The invariant relations in this case are (i) b(qf + p)/2kc = bqf0/228 + 1
2c, where k is an integer and

f0 is the original value of f ; (ii) 2k ≤ f < 2k+1.

〈Compute p = bqf/228 + 1
2c − q 111 〉 ≡

p← fraction half ; { that’s 227; the invariants hold now with k = 28 }
if q < fraction four then

repeat if odd (f) then p← half (p+ q) else p← half (p);
f ← half (f);

until f = 1
else repeat if odd (f) then p← p+ half (q − p) else p← half (p);

f ← half (f);
until f = 1

This code is used in section 109.

112. When we want to multiply something by a scaled quantity, we use a scheme analogous to take fraction
but with a different scaling. Given positive operands, take scaled computes the quantity p = bqf/216 + 1

2c.
Once again it is a good idea to use 64-bit arithmetic if possible; otherwise take scaled will use more than

2% of the running time when the Computer Modern fonts are being generated.

function take scaled (q : integer ; f : scaled): integer ;
var p: integer ; { the fraction so far }

negative : boolean ; { should the result be negated? }
n: integer ; { additional multiple of q }
be careful : integer ; { disables certain compiler optimizations }

begin 〈Reduce to the case that f ≥ 0 and q ≥ 0 110 〉;
if f < unity then n← 0
else begin n← f div unity ; f ← f mod unity ;

if q ≤ el gordo div n then n← n ∗ q
else begin arith error ← true ; n← el gordo ;

end;
end;

f ← f + unity ; 〈Compute p = bqf/216 + 1
2c − q 113 〉;

be careful ← n− el gordo ;
if be careful + p > 0 then

begin arith error ← true ; n← el gordo − p;
end;

if negative then take scaled ← −(n+ p)
else take scaled ← n+ p;
end;

113. 〈Compute p = bqf/216 + 1
2c − q 113 〉 ≡

p← half unit ; { that’s 215; the invariants hold now with k = 16 }
if q < fraction four then

repeat if odd (f) then p← half (p+ q) else p← half (p);
f ← half (f);

until f = 1
else repeat if odd (f) then p← p+ half (q − p) else p← half (p);

f ← half (f);
until f = 1

This code is used in section 112.

44 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §114

114. For completeness, there’s also make scaled , which computes a quotient as a scaled number instead
of as a fraction . In other words, the result is b216p/q + 1

2c, if the operands are positive. (This procedure is
not used especially often, so it is not part of METAFONT’s inner loop.)

function make scaled (p, q : integer): scaled ;
var f : integer ; { the fraction bits, with a leading 1 bit }
n: integer ; { the integer part of |p/q| }
negative : boolean ; { should the result be negated? }
be careful : integer ; { disables certain compiler optimizations }

begin if p ≥ 0 then negative ← false
else begin negate (p); negative ← true ;

end;
if q ≤ 0 then

begin debug if q = 0 then confusion ("/");
gubed
negate (q); negative ← ¬negative ;
end;

n← p div q; p← pmod q;
if n ≥ 1́00000 then

begin arith error ← true ;
if negative then make scaled ← −el gordo else make scaled ← el gordo ;
end

else begin n← (n− 1) ∗ unity ; 〈Compute f = b216(1 + p/q) + 1
2c 115 〉;

if negative then make scaled ← −(f + n) else make scaled ← f + n;
end;

end;

115. 〈Compute f = b216(1 + p/q) + 1
2c 115 〉 ≡

f ← 1;
repeat be careful ← p− q; p← be careful + p;

if p ≥ 0 then f ← f + f + 1
else begin double (f); p← p+ q;

end;
until f ≥ unity ;
be careful ← p− q;
if be careful + p ≥ 0 then incr (f)

This code is used in section 114.

§116 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 45

116. Here is a typical example of how the routines above can be used. It computes the function

1

3τ
f(θ, φ) =

τ−1
(
2 +
√

2 (sin θ − 1
16 sinφ)(sinφ− 1

16 sin θ)(cos θ − cosφ)
)

3
(
1 + 1

2 (
√

5− 1) cos θ + 1
2 (3−

√
5) cosφ

) ,

where τ is a scaled “tension” parameter. This is METAFONT’s magic fudge factor for placing the first control
point of a curve that starts at an angle θ and ends at an angle φ from the straight path. (Actually, if the
stated quantity exceeds 4, METAFONT reduces it to 4.)

The trigonometric quantity to be multiplied by
√

2 is less than
√

2. (It’s a sum of eight terms whose
absolute values can be bounded using relations such as sin θ cos θ ≤ 1

2 .) Thus the numerator is positive;
and since the tension τ is constrained to be at least 3

4 , the numerator is less than 16
3 . The denominator

is nonnegative and at most 6. Hence the fixed-point calculations below are guaranteed to stay within the
bounds of a 32-bit computer word.

The angles θ and φ are given implicitly in terms of fraction arguments st , ct , sf , and cf , representing
sin θ, cos θ, sinφ, and cosφ, respectively.

function velocity (st , ct , sf , cf : fraction ; t : scaled): fraction ;
var acc ,num , denom : integer ; { registers for intermediate calculations }
begin acc ← take fraction (st − (sf div 16), sf − (st div 16)); acc ← take fraction (acc , ct − cf);
num ← fraction two + take fraction (acc , 379625062); { 228

√
2 ≈ 379625062.497 }

denom ← fraction three + take fraction (ct , 497706707) + take fraction (cf , 307599661);
{ 3 · 227 · (

√
5− 1) ≈ 497706706.78 and 3 · 227 · (3−

√
5) ≈ 307599661.22 }

if t 6= unity then num ← make scaled (num , t); {make scaled (fraction , scaled) = fraction }
if num div 4 ≥ denom then velocity ← fraction four
else velocity ← make fraction (num , denom);
end;

117. The following somewhat different subroutine tests rigorously if ab is greater than, equal to, or less
than cd, given integers (a, b, c, d). In most cases a quick decision is reached. The result is +1, 0, or −1 in
the three respective cases.

define return sign (#) ≡
begin ab vs cd ← #; return;
end

function ab vs cd (a, b, c, d : integer): integer ;
label exit ;
var q, r: integer ; { temporary registers }
begin 〈Reduce to the case that a, c ≥ 0, b, d > 0 118 〉;
loop begin q ← a div d; r ← c div b;

if q 6= r then
if q > r then return sign (1) else return sign (−1);

q ← amod d; r ← cmod b;
if r = 0 then

if q = 0 then return sign (0) else return sign (1);
if q = 0 then return sign (−1);
a← b; b← q; c← d; d← r;
end; { now a > d > 0 and c > b > 0 }

exit : end;

46 PART 7: ARITHMETIC WITH SCALED NUMBERS METAFONT §118

118. 〈Reduce to the case that a, c ≥ 0, b, d > 0 118 〉 ≡
if a < 0 then

begin negate (a); negate (b);
end;

if c < 0 then
begin negate (c); negate (d);
end;

if d ≤ 0 then
begin if b ≥ 0 then

if ((a = 0) ∨ (b = 0)) ∧ ((c = 0) ∨ (d = 0)) then return sign (0)
else return sign (1);

if d = 0 then
if a = 0 then return sign (0) else return sign (−1);

q ← a; a← c; c← q; q ← −b; b← −d; d← q;
end

else if b ≤ 0 then
begin if b < 0 then

if a > 0 then return sign (−1);
if c = 0 then return sign (0)
else return sign (−1);
end

This code is used in section 117.

§119 METAFONT PART 7: ARITHMETIC WITH SCALED NUMBERS 47

119. We conclude this set of elementary routines with some simple rounding and truncation operations
that are coded in a machine-independent fashion. The routines are slightly complicated because we want
them to work without overflow whenever −231 ≤ x < 231.

function floor scaled (x : scaled): scaled ; { 216bx/216c }
var be careful : integer ; { temporary register }
begin if x ≥ 0 then floor scaled ← x− (xmod unity)
else begin be careful ← x+ 1; floor scaled ← x+ ((−be careful) mod unity) + 1− unity ;

end;
end;

function floor unscaled (x : scaled): integer ; { bx/216c }
var be careful : integer ; { temporary register }
begin if x ≥ 0 then floor unscaled ← x div unity
else begin be careful ← x+ 1; floor unscaled ← −(1 + ((−be careful) div unity));

end;
end;

function round unscaled (x : scaled): integer ; { bx/216 + .5c }
var be careful : integer ; { temporary register }
begin if x ≥ half unit then round unscaled ← 1 + ((x− half unit) div unity)
else if x ≥ −half unit then round unscaled ← 0

else begin be careful ← x+ 1; round unscaled ← −(1 + ((−be careful − half unit) div unity));
end;

end;

function round fraction (x : fraction): scaled ; { bx/212 + .5c }
var be careful : integer ; { temporary register }
begin if x ≥ 2048 then round fraction ← 1 + ((x− 2048) div 4096)
else if x ≥ −2048 then round fraction ← 0

else begin be careful ← x+ 1; round fraction ← −(1 + ((−be careful − 2048) div 4096));
end;

end;

48 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §120

120. Algebraic and transcendental functions. METAFONT computes all of the necessary special
functions from scratch, without relying on real arithmetic or system subroutines for sines, cosines, etc.

121. To get the square root of a scaled number x, we want to calculate s = b28
√
x + 1

2c. If x > 0, this is
the unique integer such that 216x− s ≤ s2 < 216x+ s. The following subroutine determines s by an iterative
method that maintains the invariant relations x = 246−2kx0 mod 230, 0 < y = b216−2kx0c − s2 + s ≤ q = 2s,
where x0 is the initial value of x. The value of y might, however, be zero at the start of the first iteration.

function square rt (x : scaled): scaled ;
var k: small number ; { iteration control counter }
y, q: integer ; { registers for intermediate calculations }

begin if x ≤ 0 then 〈Handle square root of zero or negative argument 122 〉
else begin k ← 23; q ← 2;

while x < fraction two do { i.e., while x < 229 }
begin decr (k); x← x+ x+ x+ x;
end;

if x < fraction four then y ← 0
else begin x← x− fraction four ; y ← 1;

end;
repeat 〈Decrease k by 1, maintaining the invariant relations between x, y, and q 123 〉;
until k = 0;
square rt ← half (q);
end;

end;

122. 〈Handle square root of zero or negative argument 122 〉 ≡
begin if x < 0 then

begin print err ("Square root of "); print scaled (x); print (" has been replaced by 0");
help2 ("Since I don´t take square roots of negative numbers,")
("I´m zeroing this one. Proceed, with fingers crossed."); error ;
end;

square rt ← 0;
end

This code is used in section 121.

123. 〈Decrease k by 1, maintaining the invariant relations between x, y, and q 123 〉 ≡
double (x); double (y);
if x ≥ fraction four then { note that fraction four = 230 }

begin x← x− fraction four ; incr (y);
end;

double (x); y ← y + y − q; double (q);
if x ≥ fraction four then

begin x← x− fraction four ; incr (y);
end;

if y > q then
begin y ← y − q; q ← q + 2;
end

else if y ≤ 0 then
begin q ← q − 2; y ← y + q;
end;

decr (k)

This code is used in section 121.

§124 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 49

124. Pythagorean addition
√
a2 + b2 is implemented by an elegant iterative scheme due to Cleve Moler

and Donald Morrison [IBM Journal of Research and Development 27 (1983), 577–581]. It modifies a and b
in such a way that their Pythagorean sum remains invariant, while the smaller argument decreases.

function pyth add (a, b : integer): integer ;
label done ;
var r: fraction ; { register used to transform a and b }

big : boolean ; { is the result dangerously near 231? }
begin a← abs (a); b← abs (b);
if a < b then

begin r ← b; b← a; a← r;
end; { now 0 ≤ b ≤ a }

if b > 0 then
begin if a < fraction two then big ← false
else begin a← a div 4; b← b div 4; big ← true ;

end; {we reduced the precision to avoid arithmetic overflow }
〈Replace a by an approximation to

√
a2 + b2 125 〉;

if big then
if a < fraction two then a← a+ a+ a+ a
else begin arith error ← true ; a← el gordo ;

end;
end;

pyth add ← a;
end;

125. The key idea here is to reflect the vector (a, b) about the line through (a, b/2).

〈Replace a by an approximation to
√
a2 + b2 125 〉 ≡

loop begin r ← make fraction (b, a); r ← take fraction (r, r); { now r ≈ b2/a2 }
if r = 0 then goto done ;
r ← make fraction (r, fraction four + r); a← a+ take fraction (a+ a, r); b← take fraction (b, r);
end;

done :

This code is used in section 124.

126. Here is a similar algorithm for
√
a2 − b2. It converges slowly when b is near a, but otherwise it works

fine.

function pyth sub(a, b : integer): integer ;
label done ;
var r: fraction ; { register used to transform a and b }

big : boolean ; { is the input dangerously near 231? }
begin a← abs (a); b← abs (b);
if a ≤ b then 〈Handle erroneous pyth sub and set a← 0 128 〉
else begin if a < fraction four then big ← false

else begin a← half (a); b← half (b); big ← true ;
end;

〈Replace a by an approximation to
√
a2 − b2 127 〉;

if big then a← a+ a;
end;

pyth sub ← a;
end;

50 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §127

127. 〈Replace a by an approximation to
√
a2 − b2 127 〉 ≡

loop begin r ← make fraction (b, a); r ← take fraction (r, r); { now r ≈ b2/a2 }
if r = 0 then goto done ;
r ← make fraction (r, fraction four − r); a← a− take fraction (a+ a, r); b← take fraction (b, r);
end;

done :

This code is used in section 126.

128. 〈Handle erroneous pyth sub and set a← 0 128 〉 ≡
begin if a < b then

begin print err ("Pythagorean subtraction "); print scaled (a); print ("+−+"); print scaled (b);
print (" has been replaced by 0");
help2 ("Since I don´t take square roots of negative numbers,")
("I´m zeroing this one. Proceed, with fingers crossed."); error ;
end;

a← 0;
end

This code is used in section 126.

129. The subroutines for logarithm and exponential involve two tables. The first is simple: two to the [k]
equals 2k. The second involves a bit more calculation, which the author claims to have done correctly:
spec log [k] is 227 times ln

(
1/(1− 2−k)

)
= 2−k + 1

22−2k + 1
32−3k + · · · , rounded to the nearest integer.

〈Global variables 13 〉 +≡
two to the : array [0 . . 30] of integer ; { powers of two }
spec log : array [1 . . 28] of integer ; { special logarithms }

130. 〈Local variables for initialization 19 〉 +≡
k: integer ; { all-purpose loop index }

131. 〈Set initial values of key variables 21 〉 +≡
two to the [0]← 1;
for k ← 1 to 30 do two to the [k]← 2 ∗ two to the [k − 1];
spec log [1]← 93032640; spec log [2]← 38612034; spec log [3]← 17922280; spec log [4]← 8662214;
spec log [5]← 4261238; spec log [6]← 2113709; spec log [7]← 1052693; spec log [8]← 525315;
spec log [9]← 262400; spec log [10]← 131136; spec log [11]← 65552; spec log [12]← 32772;
spec log [13]← 16385;
for k ← 14 to 27 do spec log [k]← two to the [27− k];
spec log [28]← 1;

§132 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 51

132. Here is the routine that calculates 28 times the natural logarithm of a scaled quantity; it is an integer
approximation to 224 ln(x/216), when x is a given positive integer.

The method is based on exercise 1.2.2–25 in The Art of Computer Programming : During the main iteration
we have 1 ≤ 2−30x < 1/(1−21−k), and the logarithm of 230x remains to be added to an accumulator register
called y. Three auxiliary bits of accuracy are retained in y during the calculation, and sixteen auxiliary bits
to extend y are kept in z during the initial argument reduction. (We add 100 · 216 = 6553600 to z and
subtract 100 from y so that z will not become negative; also, the actual amount subtracted from y is 96,
not 100, because we want to add 4 for rounding before the final division by 8.)

function m log (x : scaled): scaled ;
var y, z: integer ; { auxiliary registers }
k: integer ; { iteration counter }

begin if x ≤ 0 then 〈Handle non-positive logarithm 134 〉
else begin y ← 1302456956 + 4− 100; { 14× 227 ln 2 ≈ 1302456956.421063 }
z ← 27595 + 6553600; { and 216 × .421063 ≈ 27595 }
while x < fraction four do

begin double (x); y ← y − 93032639; z ← z − 48782;
end; { 227 ln 2 ≈ 93032639.74436163 and 216 × .74436163 ≈ 48782 }

y ← y + (z div unity); k ← 2;
while x > fraction four + 4 do
〈 Increase k until x can be multiplied by a factor of 2−k, and adjust y accordingly 133 〉;

m log ← y div 8;
end;

end;

133. 〈 Increase k until x can be multiplied by a factor of 2−k, and adjust y accordingly 133 〉 ≡
begin z ← ((x− 1) div two to the [k]) + 1; { z = dx/2ke }
while x < fraction four + z do

begin z ← half (z + 1); k ← k + 1;
end;

y ← y + spec log [k]; x← x− z;
end

This code is used in section 132.

134. 〈Handle non-positive logarithm 134 〉 ≡
begin print err ("Logarithm of "); print scaled (x); print (" has been replaced by 0");
help2 ("Since I don´t take logs of non−positive numbers,")
("I´m zeroing this one. Proceed, with fingers crossed."); error ; m log ← 0;
end

This code is used in section 132.

52 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §135

135. Conversely, the exponential routine calculates exp(x/28), when x is scaled . The result is an integer
approximation to 216 exp(x/224), when x is regarded as an integer.

function m exp(x : scaled): scaled ;
var k: small number ; { loop control index }
y, z: integer ; { auxiliary registers }

begin if x > 174436200 then { 224 ln((231 − 1)/216) ≈ 174436199.51 }
begin arith error ← true ; m exp ← el gordo ;
end

else if x < −197694359 then m exp ← 0 { 224 ln(2−1/216) ≈ −197694359.45 }
else begin if x ≤ 0 then

begin z ← −8 ∗ x; y ← 4́000000 ; { y = 220 }
end

else begin if x ≤ 127919879 then z ← 1023359037− 8 ∗ x
{ 227 ln((231 − 1)/220) ≈ 1023359037.125 }

else z ← 8 ∗ (174436200− x); { z is always nonnegative }
y ← el gordo ;
end;

〈Multiply y by exp(−z/227) 136 〉;
if x ≤ 127919879 then m exp ← (y + 8) div 16 else m exp ← y;
end;

end;

136. The idea here is that subtracting spec log [k] from z corresponds to multiplying y by 1− 2−k.
A subtle point (which had to be checked) was that if x = 127919879, the value of y will decrease so that

y + 8 doesn’t overflow. In fact, z will be 5 in this case, and y will decrease by 64 when k = 25 and by 16
when k = 27.

〈Multiply y by exp(−z/227) 136 〉 ≡
k ← 1;
while z > 0 do

begin while z ≥ spec log [k] do
begin z ← z − spec log [k]; y ← y − 1− ((y − two to the [k − 1]) div two to the [k]);
end;

incr (k);
end

This code is used in section 135.

137. The trigonometric subroutines use an auxiliary table such that spec atan [k] contains an approximation
to the angle whose tangent is 1/2k.

〈Global variables 13 〉 +≡
spec atan : array [1 . . 26] of angle ; { arctan 2−k times 220 · 180/π }

138. 〈Set initial values of key variables 21 〉 +≡
spec atan [1]← 27855475; spec atan [2]← 14718068; spec atan [3]← 7471121; spec atan [4]← 3750058;
spec atan [5]← 1876857; spec atan [6]← 938658; spec atan [7]← 469357; spec atan [8]← 234682;
spec atan [9]← 117342; spec atan [10]← 58671; spec atan [11]← 29335; spec atan [12]← 14668;
spec atan [13]← 7334; spec atan [14]← 3667; spec atan [15]← 1833; spec atan [16]← 917;
spec atan [17]← 458; spec atan [18]← 229; spec atan [19]← 115; spec atan [20]← 57; spec atan [21]← 29;
spec atan [22]← 14; spec atan [23]← 7; spec atan [24]← 4; spec atan [25]← 2; spec atan [26]← 1;

§139 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 53

139. Given integers x and y, not both zero, the n arg function returns the angle whose tangent points
in the direction (x, y). This subroutine first determines the correct octant, then solves the problem for
0 ≤ y ≤ x, then converts the result appropriately to return an answer in the range −one eighty deg ≤ θ ≤
one eighty deg . (The answer is +one eighty deg if y = 0 and x < 0, but an answer of −one eighty deg is
possible if, for example, y = −1 and x = −230.)

The octants are represented in a “Gray code,” since that turns out to be computationally simplest.

define negate x = 1
define negate y = 2
define switch x and y = 4
define first octant = 1
define second octant = first octant + switch x and y
define third octant = first octant + switch x and y + negate x
define fourth octant = first octant + negate x
define fifth octant = first octant + negate x + negate y
define sixth octant = first octant + switch x and y + negate x + negate y
define seventh octant = first octant + switch x and y + negate y
define eighth octant = first octant + negate y

function n arg (x, y : integer): angle ;
var z: angle ; { auxiliary register }
t: integer ; { temporary storage }
k: small number ; { loop counter }
octant : first octant . . sixth octant ; { octant code }

begin if x ≥ 0 then octant ← first octant
else begin negate (x); octant ← first octant + negate x ;

end;
if y < 0 then

begin negate (y); octant ← octant + negate y ;
end;

if x < y then
begin t← y; y ← x; x← t; octant ← octant + switch x and y ;
end;

if x = 0 then 〈Handle undefined arg 140 〉
else begin 〈Set variable z to the arg of (x, y) 142 〉;
〈Return an appropriate answer based on z and octant 141 〉;
end;

end;

140. 〈Handle undefined arg 140 〉 ≡
begin print err ("angle(0,0) is taken as zero");
help2 ("The `angle´ between two identical points is undefined.")
("I´m zeroing this one. Proceed, with fingers crossed."); error ; n arg ← 0;
end

This code is used in section 139.

54 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §141

141. 〈Return an appropriate answer based on z and octant 141 〉 ≡
case octant of
first octant : n arg ← z;
second octant : n arg ← ninety deg − z;
third octant : n arg ← ninety deg + z;
fourth octant : n arg ← one eighty deg − z;
fifth octant : n arg ← z − one eighty deg ;
sixth octant : n arg ← −z − ninety deg ;
seventh octant : n arg ← z − ninety deg ;
eighth octant : n arg ← −z;
end { there are no other cases }

This code is used in section 139.

142. At this point we have x ≥ y ≥ 0, and x > 0. The numbers are scaled up or down until 228 ≤ x < 229,
so that accurate fixed-point calculations will be made.

〈Set variable z to the arg of (x, y) 142 〉 ≡
while x ≥ fraction two do

begin x← half (x); y ← half (y);
end;

z ← 0;
if y > 0 then

begin while x < fraction one do
begin double (x); double (y);
end;

〈 Increase z to the arg of (x, y) 143 〉;
end

This code is used in section 139.

143. During the calculations of this section, variables x and y represent actual coordinates (x, 2−ky). We
will maintain the condition x ≥ y, so that the tangent will be at most 2−k. If x < 2y, the tangent is greater
than 2−k−1. The transformation (a, b) 7→ (a+ b tanφ, b− a tanφ) replaces (a, b) by coordinates whose angle
has decreased by φ; in the special case a = x, b = 2−ky, and tanφ = 2−k−1, this operation reduces to the
particularly simple iteration shown here. [Cf. John E. Meggitt, IBM Journal of Research and Development
6 (1962), 210–226.]

The initial value of x will be multiplied by at most (1 + 1
2)(1 + 1

8)(1 + 1
32) · · · ≈ 1.7584; hence there is no

chance of integer overflow.

〈 Increase z to the arg of (x, y) 143 〉 ≡
k ← 0;
repeat double (y); incr (k);

if y > x then
begin z ← z + spec atan [k]; t← x; x← x+ (y div two to the [k + k]); y ← y − t;
end;

until k = 15;
repeat double (y); incr (k);

if y > x then
begin z ← z + spec atan [k]; y ← y − x;
end;

until k = 26

This code is used in section 142.

§144 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 55

144. Conversely, the n sin cos routine takes an angle and produces the sine and cosine of that angle. The
results of this routine are stored in global integer variables n sin and n cos .

〈Global variables 13 〉 +≡
n sin ,n cos : fraction ; { results computed by n sin cos }

145. Given an integer z that is 220 times an angle θ in degrees, the purpose of n sin cos (z) is to set
x = r cos θ and y = r sin θ (approximately), for some rather large number r. The maximum of x and y will
be between 228 and 230, so that there will be hardly any loss of accuracy. Then x and y are divided by r.

procedure n sin cos (z : angle); { computes a multiple of the sine and cosine }
var k: small number ; { loop control variable }
q: 0 . . 7; { specifies the quadrant }
r: fraction ; {magnitude of (x, y) }
x, y, t: integer ; { temporary registers }

begin while z < 0 do z ← z + three sixty deg ;
z ← z mod three sixty deg ; { now 0 ≤ z < three sixty deg }
q ← z div forty five deg ; z ← z mod forty five deg ; x← fraction one ; y ← x;
if ¬odd (q) then z ← forty five deg − z;
〈Subtract angle z from (x, y) 147 〉;
〈Convert (x, y) to the octant determined by q 146 〉;
r ← pyth add (x, y); n cos ← make fraction (x, r); n sin ← make fraction (y, r);
end;

146. In this case the octants are numbered sequentially.

〈Convert (x, y) to the octant determined by q 146 〉 ≡
case q of
0: do nothing ;
1: begin t← x; x← y; y ← t;

end;
2: begin t← x; x← −y; y ← t;

end;
3: negate (x);
4: begin negate (x); negate (y);

end;
5: begin t← x; x← −y; y ← −t;

end;
6: begin t← x; x← y; y ← −t;

end;
7: negate (y);
end { there are no other cases }

This code is used in section 145.

56 PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS METAFONT §147

147. The main iteration of n sin cos is similar to that of n arg but applied in reverse. The values of
spec atan [k] decrease slowly enough that this loop is guaranteed to terminate before the (nonexistent) value
spec atan [27] would be required.

〈Subtract angle z from (x, y) 147 〉 ≡
k ← 1;
while z > 0 do

begin if z ≥ spec atan [k] then
begin z ← z − spec atan [k]; t← x;
x← t+ y div two to the [k]; y ← y − t div two to the [k];
end;

incr (k);
end;

if y < 0 then y ← 0 { this precaution may never be needed }
This code is used in section 145.

148. And now let’s complete our collection of numeric utility routines by considering random number
generation. METAFONT generates pseudo-random numbers with the additive scheme recommended in
Section 3.6 of The Art of Computer Programming; however, the results are random fractions between 0
and fraction one − 1, inclusive.

There’s an auxiliary array randoms that contains 55 pseudo-random fractions. Using the recurrence
xn = (xn−55 − xn−24) mod 228, we generate batches of 55 new xn’s at a time by calling new randoms . The
global variable j random tells which element has most recently been consumed.

〈Global variables 13 〉 +≡
randoms : array [0 . . 54] of fraction ; { the last 55 random values generated }
j random : 0 . . 54; { the number of unused randoms }

149. To consume a random fraction, the program below will say ‘next random ’ and then it will fetch
randoms [j random]. The next random macro actually accesses the numbers backwards; blocks of 55 x’s are
essentially being “flipped.” But that doesn’t make them less random.

define next random ≡
if j random = 0 then new randoms
else decr (j random)

procedure new randoms ;
var k: 0 . . 54; { index into randoms }
x: fraction ; { accumulator }

begin for k ← 0 to 23 do
begin x← randoms [k]− randoms [k + 31];
if x < 0 then x← x+ fraction one ;
randoms [k]← x;
end;

for k ← 24 to 54 do
begin x← randoms [k]− randoms [k − 24];
if x < 0 then x← x+ fraction one ;
randoms [k]← x;
end;

j random ← 54;
end;

§150 METAFONT PART 8: ALGEBRAIC AND TRANSCENDENTAL FUNCTIONS 57

150. To initialize the randoms table, we call the following routine.

procedure init randoms (seed : scaled);
var j, jj , k: fraction ; {more or less random integers }
i: 0 . . 54; { index into randoms }

begin j ← abs (seed);
while j ≥ fraction one do j ← half (j);
k ← 1;
for i← 0 to 54 do

begin jj ← k; k ← j − k; j ← jj ;
if k < 0 then k ← k + fraction one ;
randoms [(i ∗ 21) mod 55]← j;
end;

new randoms ; new randoms ; new randoms ; { “warm up” the array }
end;

151. To produce a uniform random number in the range 0 ≤ u < x or 0 ≥ u > x or 0 = u = x, given a
scaled value x, we proceed as shown here.

Note that the call of take fraction will produce the values 0 and x with about half the probability that it
will produce any other particular values between 0 and x, because it rounds its answers.

function unif rand (x : scaled): scaled ;
var y: scaled ; { trial value }
begin next random ; y ← take fraction (abs (x), randoms [j random]);
if y = abs (x) then unif rand ← 0
else if x > 0 then unif rand ← y

else unif rand ← −y;
end;

152. Finally, a normal deviate with mean zero and unit standard deviation can readily be obtained with
the ratio method (Algorithm 3.4.1R in The Art of Computer Programming).

function norm rand : scaled ;
var x, u, l: integer ; {what the book would call 216X, 228U , and −224 lnU }
begin repeat repeat next random ; x← take fraction (112429, randoms [j random]− fraction half);

{ 216
√

8/e ≈ 112428.82793 }
next random ; u← randoms [j random];

until abs (x) < u;
x← make fraction (x, u); l← 139548960−m log (u); { 224 · 12 ln 2 ≈ 139548959.6165 }

until ab vs cd (1024, l, x, x) ≥ 0;
norm rand ← x;
end;

58 PART 9: PACKED DATA METAFONT §153

153. Packed data. In order to make efficient use of storage space, METAFONT bases its major data
structures on a memory word , which contains either a (signed) integer, possibly scaled, or a small number
of fields that are one half or one quarter of the size used for storing integers.

If x is a variable of type memory word , it contains up to four fields that can be referred to as follows:

x.int (an integer)
x.sc (a scaled integer)

x.hh .lh , x.hh .rh (two halfword fields)
x.hh .b0 , x.hh .b1 , x.hh .rh (two quarterword fields, one halfword field)

x.qqqq .b0 , x.qqqq .b1 , x.qqqq .b2 , x.qqqq .b3 (four quarterword fields)

This is somewhat cumbersome to write, and not very readable either, but macros will be used to make the
notation shorter and more transparent. The Pascal code below gives a formal definition of memory word
and its subsidiary types, using packed variant records. METAFONT makes no assumptions about the relative
positions of the fields within a word.

Since we are assuming 32-bit integers, a halfword must contain at least 16 bits, and a quarterword must
contain at least 8 bits. But it doesn’t hurt to have more bits; for example, with enough 36-bit words you
might be able to have mem max as large as 262142.

N.B.: Valuable memory space will be dreadfully wasted unless METAFONT is compiled by a Pascal that
packs all of the memory word variants into the space of a single integer. Some Pascal compilers will pack
an integer whose subrange is ‘0 . . 255’ into an eight-bit field, but others insist on allocating space for an
additional sign bit; on such systems you can get 256 values into a quarterword only if the subrange is
‘−128 . . 127’.

The present implementation tries to accommodate as many variations as possible, so it makes few as-
sumptions. If integers having the subrange ‘min quarterword . . max quarterword ’ can be packed into a
quarterword, and if integers having the subrange ‘min halfword . . max halfword ’ can be packed into a
halfword, everything should work satisfactorily.

It is usually most efficient to have min quarterword = min halfword = 0, so one should try to achieve this
unless it causes a severe problem. The values defined here are recommended for most 32-bit computers.

define min quarterword = 0 { smallest allowable value in a quarterword }
define max quarterword = 255 { largest allowable value in a quarterword }
define min halfword ≡ 0 { smallest allowable value in a halfword }
define max halfword ≡ 65535 { largest allowable value in a halfword }

154. Here are the inequalities that the quarterword and halfword values must satisfy (or rather, the
inequalities that they mustn’t satisfy):

〈Check the “constant” values for consistency 14 〉 +≡
init if mem max 6= mem top then bad ← 10;
tini
if mem max < mem top then bad ← 10;
if (min quarterword > 0) ∨ (max quarterword < 127) then bad ← 11;
if (min halfword > 0) ∨ (max halfword < 32767) then bad ← 12;
if (min quarterword < min halfword) ∨ (max quarterword > max halfword) then bad ← 13;
if (mem min < min halfword) ∨ (mem max ≥ max halfword) then bad ← 14;
if max strings > max halfword then bad ← 15;
if buf size > max halfword then bad ← 16;
if (max quarterword −min quarterword < 255) ∨ (max halfword −min halfword < 65535) then

bad ← 17;

§155 METAFONT PART 9: PACKED DATA 59

155. The operation of subtracting min halfword occurs rather frequently in METAFONT, so it is convenient
to abbreviate this operation by using the macro ho defined here. METAFONT will run faster with respect
to compilers that don’t optimize the expression ‘x− 0’, if this macro is simplified in the obvious way when
min halfword = 0. Similarly, qi and qo are used for input to and output from quarterwords.

define ho(#) ≡ #−min halfword { to take a sixteen-bit item from a halfword }
define qo(#) ≡ #−min quarterword { to read eight bits from a quarterword }
define qi (#) ≡ # + min quarterword { to store eight bits in a quarterword }

156. The reader should study the following definitions closely:

define sc ≡ int { scaled data is equivalent to integer }
〈Types in the outer block 18 〉 +≡

quarterword = min quarterword . . max quarterword ; { 1/4 of a word }
halfword = min halfword . . max halfword ; { 1/2 of a word }
two choices = 1 . . 2; { used when there are two variants in a record }
three choices = 1 . . 3; {used when there are three variants in a record }
two halves = packed record rh : halfword ;

case two choices of
1: (lh : halfword);
2: (b0 : quarterword ; b1 : quarterword);
end;

four quarters = packed record b0 : quarterword ;
b1 : quarterword ;
b2 : quarterword ;
b3 : quarterword ;
end;

memory word = record
case three choices of
1: (int : integer);
2: (hh : two halves);
3: (qqqq : four quarters);
end;

word file = file of memory word ;

157. When debugging, we may want to print a memory word without knowing what type it is; so we print
it in all modes.

debug procedure print word (w : memory word); {prints w in all ways }
begin print int (w.int); print char (" ");
print scaled (w.sc); print char (" "); print scaled (w.sc div 1́0000); print ln ;
print int (w.hh .lh); print char ("="); print int (w.hh .b0); print char (":"); print int (w.hh .b1);
print char (";"); print int (w.hh .rh); print char (" ");
print int (w.qqqq .b0); print char (":"); print int (w.qqqq .b1); print char (":"); print int (w.qqqq .b2);
print char (":"); print int (w.qqqq .b3);
end;
gubed

60 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT §158

158. Dynamic memory allocation. The METAFONT system does nearly all of its own memory al-
location, so that it can readily be transported into environments that do not have automatic facilities for
strings, garbage collection, etc., and so that it can be in control of what error messages the user receives.
The dynamic storage requirements of METAFONT are handled by providing a large array mem in which
consecutive blocks of words are used as nodes by the METAFONT routines.

Pointer variables are indices into this array, or into another array called eqtb that will be explained later.
A pointer variable might also be a special flag that lies outside the bounds of mem , so we allow pointers to
assume any halfword value. The minimum memory index represents a null pointer.

define pointer ≡ halfword { a flag or a location in mem or eqtb }
define null ≡ mem min { the null pointer }

159. The mem array is divided into two regions that are allocated separately, but the dividing line between
these two regions is not fixed; they grow together until finding their “natural” size in a particular job.
Locations less than or equal to lo mem max are used for storing variable-length records consisting of two
or more words each. This region is maintained using an algorithm similar to the one described in exercise
2.5–19 of The Art of Computer Programming. However, no size field appears in the allocated nodes; the
program is responsible for knowing the relevant size when a node is freed. Locations greater than or equal
to hi mem min are used for storing one-word records; a conventional AVAIL stack is used for allocation in
this region.

Locations of mem between mem min and mem top may be dumped as part of preloaded base files, by
the INIMF preprocessor. Production versions of METAFONT may extend the memory at the top end in order
to provide more space; these locations, between mem top and mem max , are always used for single-word
nodes.

The key pointers that govern mem allocation have a prescribed order:

null = mem min < lo mem max < hi mem min < mem top ≤ mem end ≤ mem max .

〈Global variables 13 〉 +≡
mem : array [mem min . . mem max] of memory word ; { the big dynamic storage area }
lo mem max : pointer ; { the largest location of variable-size memory in use }
hi mem min : pointer ; { the smallest location of one-word memory in use }

160. Users who wish to study the memory requirements of specific applications can use optional special
features that keep track of current and maximum memory usage. When code between the delimiters stat
. . . tats is not “commented out,” METAFONT will run a bit slower but it will report these statistics when
tracing stats is positive.

〈Global variables 13 〉 +≡
var used , dyn used : integer ; { how much memory is in use }

§161 METAFONT PART 10: DYNAMIC MEMORY ALLOCATION 61

161. Let’s consider the one-word memory region first, since it’s the simplest. The pointer variable mem end
holds the highest-numbered location of mem that has ever been used. The free locations of mem that occur
between hi mem min and mem end , inclusive, are of type two halves , and we write info(p) and link (p) for
the lh and rh fields of mem [p] when it is of this type. The single-word free locations form a linked list

avail , link (avail), link (link (avail)), . . .

terminated by null .

define link (#) ≡ mem [#].hh .rh { the link field of a memory word }
define info(#) ≡ mem [#].hh .lh { the info field of a memory word }

〈Global variables 13 〉 +≡
avail : pointer ; { head of the list of available one-word nodes }
mem end : pointer ; { the last one-word node used in mem }

162. If one-word memory is exhausted, it might mean that the user has forgotten a token like ‘enddef ’
or ‘endfor’. We will define some procedures later that try to help pinpoint the trouble.

〈Declare the procedure called show token list 217 〉
〈Declare the procedure called runaway 665 〉

163. The function get avail returns a pointer to a new one-word node whose link field is null. However,
METAFONT will halt if there is no more room left.

function get avail : pointer ; { single-word node allocation }
var p: pointer ; { the new node being got }
begin p← avail ; { get top location in the avail stack }
if p 6= null then avail ← link (avail) { and pop it off }
else if mem end < mem max then { or go into virgin territory }

begin incr (mem end); p← mem end ;
end

else begin decr (hi mem min); p← hi mem min ;
if hi mem min ≤ lo mem max then

begin runaway ; { if memory is exhausted, display possible runaway text }
overflow ("main memory size",mem max + 1−mem min); { quit; all one-word nodes are busy }
end;

end;
link (p)← null ; {provide an oft-desired initialization of the new node }
stat incr (dyn used); tats {maintain statistics }
get avail ← p;
end;

164. Conversely, a one-word node is recycled by calling free avail .

define free avail (#) ≡ { single-word node liberation }
begin link (#)← avail ; avail ← #;
stat decr (dyn used); tats
end

62 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT §165

165. There’s also a fast get avail routine, which saves the procedure-call overhead at the expense of extra
programming. This macro is used in the places that would otherwise account for the most calls of get avail .

define fast get avail (#) ≡
begin #← avail ; { avoid get avail if possible, to save time }
if # = null then #← get avail
else begin avail ← link (#); link (#)← null ;

stat incr (dyn used); tats
end;

end

166. The available-space list that keeps track of the variable-size portion of mem is a nonempty, doubly-
linked circular list of empty nodes, pointed to by the roving pointer rover .

Each empty node has size 2 or more; the first word contains the special value max halfword in its link
field and the size in its info field; the second word contains the two pointers for double linking.

Each nonempty node also has size 2 or more. Its first word is of type two halves, and its link field is never
equal to max halfword . Otherwise there is complete flexibility with respect to the contents of its other fields
and its other words.

(We require mem max < max halfword because terrible things can happen when max halfword appears
in the link field of a nonempty node.)

define empty flag ≡ max halfword { the link of an empty variable-size node }
define is empty (#) ≡ (link (#) = empty flag) { tests for empty node }
define node size ≡ info { the size field in empty variable-size nodes }
define llink (#) ≡ info(# + 1) { left link in doubly-linked list of empty nodes }
define rlink (#) ≡ link (# + 1) { right link in doubly-linked list of empty nodes }

〈Global variables 13 〉 +≡
rover : pointer ; { points to some node in the list of empties }

§167 METAFONT PART 10: DYNAMIC MEMORY ALLOCATION 63

167. A call to get node with argument s returns a pointer to a new node of size s, which must be 2 or
more. The link field of the first word of this new node is set to null. An overflow stop occurs if no suitable
space exists.

If get node is called with s = 230, it simply merges adjacent free areas and returns the value max halfword .

function get node (s : integer): pointer ; { variable-size node allocation }
label found , exit , restart ;
var p: pointer ; { the node currently under inspection }
q: pointer ; { the node physically after node p }
r: integer ; { the newly allocated node, or a candidate for this honor }
t, tt : integer ; { temporary registers }

begin restart : p← rover ; { start at some free node in the ring }
repeat 〈Try to allocate within node p and its physical successors, and goto found if allocation was

possible 169 〉;
p← rlink (p); {move to the next node in the ring }

until p = rover ; { repeat until the whole list has been traversed }
if s = 1́0000000000 then

begin get node ← max halfword ; return;
end;

if lo mem max + 2 < hi mem min then
if lo mem max + 2 ≤ mem min + max halfword then
〈Grow more variable-size memory and goto restart 168 〉;

overflow ("main memory size",mem max + 1−mem min); { sorry, nothing satisfactory is left }
found : link (r)← null ; { this node is now nonempty }

stat var used ← var used + s; {maintain usage statistics }
tats
get node ← r;

exit : end;

168. The lower part of mem grows by 1000 words at a time, unless we are very close to going under. When
it grows, we simply link a new node into the available-space list. This method of controlled growth helps to
keep the mem usage consecutive when METAFONT is implemented on “virtual memory” systems.

〈Grow more variable-size memory and goto restart 168 〉 ≡
begin if hi mem min − lo mem max ≥ 1998 then t← lo mem max + 1000
else t← lo mem max + 1 + (hi mem min − lo mem max) div 2; { lo mem max + 2 ≤ t < hi mem min }
if t > mem min + max halfword then t← mem min + max halfword ;
p← llink (rover); q ← lo mem max ; rlink (p)← q; llink (rover)← q;
rlink (q)← rover ; llink (q)← p; link (q)← empty flag ; node size (q)← t− lo mem max ;
lo mem max ← t; link (lo mem max)← null ; info(lo mem max)← null ; rover ← q; goto restart ;
end

This code is used in section 167.

64 PART 10: DYNAMIC MEMORY ALLOCATION METAFONT §169

169. 〈Try to allocate within node p and its physical successors, and goto found if allocation was
possible 169 〉 ≡

q ← p+ node size (p); { find the physical successor }
while is empty (q) do {merge node p with node q }

begin t← rlink (q); tt ← llink (q);
if q = rover then rover ← t;
llink (t)← tt ; rlink (tt)← t;
q ← q + node size (q);
end;

r ← q − s;
if r > p+ 1 then 〈Allocate from the top of node p and goto found 170 〉;
if r = p then

if rlink (p) 6= p then 〈Allocate entire node p and goto found 171 〉;
node size (p)← q − p { reset the size in case it grew }

This code is used in section 167.

170. 〈Allocate from the top of node p and goto found 170 〉 ≡
begin node size (p)← r − p; { store the remaining size }
rover ← p; { start searching here next time }
goto found ;
end

This code is used in section 169.

171. Here we delete node p from the ring, and let rover rove around.

〈Allocate entire node p and goto found 171 〉 ≡
begin rover ← rlink (p); t← llink (p); llink (rover)← t; rlink (t)← rover ; goto found ;
end

This code is used in section 169.

172. Conversely, when some variable-size node p of size s is no longer needed, the operation free node (p, s)
will make its words available, by inserting p as a new empty node just before where rover now points.

procedure free node (p : pointer ; s : halfword); { variable-size node liberation }
var q: pointer ; { llink (rover) }
begin node size (p)← s; link (p)← empty flag ; q ← llink (rover); llink (p)← q; rlink (p)← rover ;
{ set both links }

llink (rover)← p; rlink (q)← p; { insert p into the ring }
stat var used ← var used − s; tats {maintain statistics }
end;

§173 METAFONT PART 10: DYNAMIC MEMORY ALLOCATION 65

173. Just before INIMF writes out the memory, it sorts the doubly linked available space list. The list is
probably very short at such times, so a simple insertion sort is used. The smallest available location will be
pointed to by rover , the next-smallest by rlink (rover), etc.

init procedure sort avail ; { sorts the available variable-size nodes by location }
var p, q, r: pointer ; { indices into mem }

old rover : pointer ; { initial rover setting }
begin p← get node (1́0000000000); {merge adjacent free areas }
p← rlink (rover); rlink (rover)← max halfword ; old rover ← rover ;
while p 6= old rover do 〈Sort p into the list starting at rover and advance p to rlink (p) 174 〉;
p← rover ;
while rlink (p) 6= max halfword do

begin llink (rlink (p))← p; p← rlink (p);
end;

rlink (p)← rover ; llink (rover)← p;
end;
tini

174. The following while loop is guaranteed to terminate, since the list that starts at rover ends with
max halfword during the sorting procedure.

〈Sort p into the list starting at rover and advance p to rlink (p) 174 〉 ≡
if p < rover then

begin q ← p; p← rlink (q); rlink (q)← rover ; rover ← q;
end

else begin q ← rover ;
while rlink (q) < p do q ← rlink (q);
r ← rlink (p); rlink (p)← rlink (q); rlink (q)← p; p← r;
end

This code is used in section 173.

66 PART 11: MEMORY LAYOUT METAFONT §175

175. Memory layout. Some areas of mem are dedicated to fixed usage, since static allocation is more
efficient than dynamic allocation when we can get away with it. For example, locations mem min to
mem min + 2 are always used to store the specification for null pen coordinates that are ‘(0, 0)’. The
following macro definitions accomplish the static allocation by giving symbolic names to the fixed positions.
Static variable-size nodes appear in locations mem min through lo mem stat max , and static single-word
nodes appear in locations hi mem stat min through mem top , inclusive.

define null coords ≡ mem min { specification for pen offsets of (0, 0) }
define null pen ≡ null coords + 3 {we will define coord node size = 3 }
define dep head ≡ null pen + 10 { and pen node size = 10 }
define zero val ≡ dep head + 2 { two words for a permanently zero value }
define temp val ≡ zero val + 2 { two words for a temporary value node }
define end attr ≡ temp val {we use end attr + 2 only }
define inf val ≡ end attr + 2 { and inf val + 1 only }
define bad vardef ≡ inf val + 2 { two words for vardef error recovery }
define lo mem stat max ≡ bad vardef + 1 { largest statically allocated word in the variable-size mem }
define sentinel ≡ mem top { end of sorted lists }
define temp head ≡ mem top − 1 { head of a temporary list of some kind }
define hold head ≡ mem top − 2 { head of a temporary list of another kind }
define hi mem stat min ≡ mem top − 2 { smallest statically allocated word in the one-word mem }

176. The following code gets the dynamic part of mem off to a good start, when METAFONT is initializing
itself the slow way.

〈 Initialize table entries (done by INIMF only) 176 〉 ≡
rover ← lo mem stat max + 1; { initialize the dynamic memory }
link (rover)← empty flag ; node size (rover)← 1000; {which is a 1000-word available node }
llink (rover)← rover ; rlink (rover)← rover ;
lo mem max ← rover + 1000; link (lo mem max)← null ; info(lo mem max)← null ;
for k ← hi mem stat min to mem top do mem [k]← mem [lo mem max]; { clear list heads }
avail ← null ; mem end ← mem top ; hi mem min ← hi mem stat min ;
{ initialize the one-word memory }

var used ← lo mem stat max + 1−mem min ; dyn used ← mem top + 1− hi mem min ;
{ initialize statistics }

See also sections 193, 203, 229, 324, 475, 587, 702, 759, 911, 1116, 1127, and 1185.

This code is used in section 1210.

§177 METAFONT PART 11: MEMORY LAYOUT 67

177. The procedure flush list (p) frees an entire linked list of one-word nodes that starts at a given position,
until coming to sentinel or a pointer that is not in the one-word region. Another procedure, flush node list ,
frees an entire linked list of one-word and two-word nodes, until coming to a null pointer.

procedure flush list (p : pointer); {makes list of single-word nodes available }
label done ;
var q, r: pointer ; { list traversers }
begin if p ≥ hi mem min then

if p 6= sentinel then
begin r ← p;
repeat q ← r; r ← link (r);

stat decr (dyn used); tats
if r < hi mem min then goto done ;

until r = sentinel ;
done : { now q is the last node on the list }

link (q)← avail ; avail ← p;
end;

end;

procedure flush node list (p : pointer);
var q: pointer ; { the node being recycled }
begin while p 6= null do

begin q ← p; p← link (p);
if q < hi mem min then free node (q, 2) else free avail (q);
end;

end;

178. If METAFONT is extended improperly, the mem array might get screwed up. For example, some
pointers might be wrong, or some “dead” nodes might not have been freed when the last reference to them
disappeared. Procedures check mem and search mem are available to help diagnose such problems. These
procedures make use of two arrays called free and was free that are present only if METAFONT’s debugging
routines have been included. (You may want to decrease the size of mem while you are debugging.)

〈Global variables 13 〉 +≡
debug free : packed array [mem min . . mem max] of boolean ; { free cells }
was free : packed array [mem min . . mem max] of boolean ; { previously free cells }
was mem end ,was lo max ,was hi min : pointer ; { previous mem end , lo mem max , and hi mem min }
panicking : boolean ; { do we want to check memory constantly? }
gubed

179. 〈Set initial values of key variables 21 〉 +≡
debug was mem end ← mem min ; { indicate that everything was previously free }
was lo max ← mem min ; was hi min ← mem max ; panicking ← false ;
gubed

68 PART 11: MEMORY LAYOUT METAFONT §180

180. Procedure check mem makes sure that the available space lists of mem are well formed, and it
optionally prints out all locations that are reserved now but were free the last time this procedure was
called.

debug procedure check mem (print locs : boolean);
label done1 , done2 ; { loop exits }
var p, q, r: pointer ; { current locations of interest in mem }

clobbered : boolean ; { is something amiss? }
begin for p← mem min to lo mem max do free [p]← false ; { you can probably do this faster }
for p← hi mem min to mem end do free [p]← false ; { ditto }
〈Check single-word avail list 181 〉;
〈Check variable-size avail list 182 〉;
〈Check flags of unavailable nodes 183 〉;
〈Check the list of linear dependencies 617 〉;
if print locs then 〈Print newly busy locations 184 〉;
for p← mem min to lo mem max do was free [p]← free [p];
for p← hi mem min to mem end do was free [p]← free [p]; {was free ← free might be faster }
was mem end ← mem end ; was lo max ← lo mem max ; was hi min ← hi mem min ;
end;
gubed

181. 〈Check single-word avail list 181 〉 ≡
p← avail ; q ← null ; clobbered ← false ;
while p 6= null do

begin if (p > mem end) ∨ (p < hi mem min) then clobbered ← true
else if free [p] then clobbered ← true ;
if clobbered then

begin print nl ("AVAIL list clobbered at "); print int (q); goto done1 ;
end;

free [p]← true ; q ← p; p← link (q);
end;

done1 :

This code is used in section 180.

182. 〈Check variable-size avail list 182 〉 ≡
p← rover ; q ← null ; clobbered ← false ;
repeat if (p ≥ lo mem max) ∨ (p < mem min) then clobbered ← true

else if (rlink (p) ≥ lo mem max) ∨ (rlink (p) < mem min) then clobbered ← true
else if ¬(is empty (p)) ∨ (node size (p) < 2) ∨ (p+ node size (p) > lo mem max) ∨

(llink (rlink (p)) 6= p) then clobbered ← true ;
if clobbered then

begin print nl ("Double−AVAIL list clobbered at "); print int (q); goto done2 ;
end;

for q ← p to p+ node size (p)− 1 do {mark all locations free }
begin if free [q] then

begin print nl ("Doubly free location at "); print int (q); goto done2 ;
end;

free [q]← true ;
end;

q ← p; p← rlink (p);
until p = rover ;

done2 :

This code is used in section 180.

§183 METAFONT PART 11: MEMORY LAYOUT 69

183. 〈Check flags of unavailable nodes 183 〉 ≡
p← mem min ;
while p ≤ lo mem max do { node p should not be empty }

begin if is empty (p) then
begin print nl ("Bad flag at "); print int (p);
end;

while (p ≤ lo mem max) ∧ ¬free [p] do incr (p);
while (p ≤ lo mem max) ∧ free [p] do incr (p);
end

This code is used in section 180.

184. 〈Print newly busy locations 184 〉 ≡
begin print nl ("New busy locs:");
for p← mem min to lo mem max do

if ¬free [p] ∧ ((p > was lo max) ∨ was free [p]) then
begin print char (" "); print int (p);
end;

for p← hi mem min to mem end do
if ¬free [p] ∧ ((p < was hi min) ∨ (p > was mem end) ∨ was free [p]) then

begin print char (" "); print int (p);
end;

end

This code is used in section 180.

185. The search mem procedure attempts to answer the question “Who points to node p?” In doing so, it
fetches link and info fields of mem that might not be of type two halves . Strictly speaking, this is undefined
in Pascal, and it can lead to “false drops” (words that seem to point to p purely by coincidence). But for
debugging purposes, we want to rule out the places that do not point to p, so a few false drops are tolerable.

debug procedure search mem (p : pointer); { look for pointers to p }
var q: integer ; { current position being searched }
begin for q ← mem min to lo mem max do

begin if link (q) = p then
begin print nl ("LINK("); print int (q); print char (")");
end;

if info(q) = p then
begin print nl ("INFO("); print int (q); print char (")");
end;

end;
for q ← hi mem min to mem end do

begin if link (q) = p then
begin print nl ("LINK("); print int (q); print char (")");
end;

if info(q) = p then
begin print nl ("INFO("); print int (q); print char (")");
end;

end;
〈Search eqtb for equivalents equal to p 209 〉;
end;
gubed

70 PART 12: THE COMMAND CODES METAFONT §186

186. The command codes. Before we can go much further, we need to define symbolic names for
the internal code numbers that represent the various commands obeyed by METAFONT. These codes are
somewhat arbitrary, but not completely so. For example, some codes have been made adjacent so that
case statements in the program need not consider cases that are widely spaced, or so that case statements
can be replaced by if statements. A command can begin an expression if and only if its code lies between
min primary command and max primary command , inclusive. The first token of a statement that doesn’t
begin with an expression has a command code between min command and max statement command , inclu-
sive. The ordering of the highest-numbered commands (comma < semicolon < end group < stop) is crucial
for the parsing and error-recovery methods of this program.

At any rate, here is the list, for future reference.

define if test = 1 { conditional text (if) }
define fi or else = 2 {delimiters for conditionals (elseif , else, fi) }
define input = 3 { input a source file (input, endinput) }
define iteration = 4 { iterate (for, forsuffixes, forever, endfor) }
define repeat loop = 5 { special command substituted for endfor }
define exit test = 6 { premature exit from a loop (exitif) }
define relax = 7 { do nothing (\) }
define scan tokens = 8 {put a string into the input buffer }
define expand after = 9 { look ahead one token }
define defined macro = 10 { a macro defined by the user }
define min command = defined macro + 1
define display command = 11 { online graphic output (display) }
define save command = 12 { save a list of tokens (save) }
define interim command = 13 { save an internal quantity (interim) }
define let command = 14 { redefine a symbolic token (let) }
define new internal = 15 { define a new internal quantity (newinternal) }
define macro def = 16 { define a macro (def , vardef , etc.) }
define ship out command = 17 { output a character (shipout) }
define add to command = 18 { add to edges (addto) }
define cull command = 19 { cull and normalize edges (cull) }
define tfm command = 20 { command for font metric info (ligtable, etc.) }
define protection command = 21 { set protection flag (outer, inner) }
define show command = 22 {diagnostic output (show, showvariable, etc.) }
define mode command = 23 { set interaction level (batchmode, etc.) }
define random seed = 24 { initialize random number generator (randomseed) }
define message command = 25 { communicate to user (message, errmessage) }
define every job command = 26 { designate a starting token (everyjob) }
define delimiters = 27 { define a pair of delimiters (delimiters) }
define open window = 28 {define a window on the screen (openwindow) }
define special command = 29 { output special info (special, numspecial) }
define type name = 30 { declare a type (numeric, pair, etc.) }
define max statement command = type name
define min primary command = type name
define left delimiter = 31 { the left delimiter of a matching pair }
define begin group = 32 { beginning of a group (begingroup) }
define nullary = 33 { an operator without arguments (e.g., normaldeviate) }
define unary = 34 { an operator with one argument (e.g., sqrt) }
define str op = 35 { convert a suffix to a string (str) }
define cycle = 36 { close a cyclic path (cycle) }
define primary binary = 37 { binary operation taking ‘of ’ (e.g., point) }
define capsule token = 38 { a value that has been put into a token list }
define string token = 39 { a string constant (e.g., "hello") }

§186 METAFONT PART 12: THE COMMAND CODES 71

define internal quantity = 40 { internal numeric parameter (e.g., pausing) }
define min suffix token = internal quantity
define tag token = 41 { a symbolic token without a primitive meaning }
define numeric token = 42 { a numeric constant (e.g., 3.14159) }
define max suffix token = numeric token
define plus or minus = 43 { either ‘+’ or ‘−’ }
define max primary command = plus or minus { should also be numeric token + 1 }
define min tertiary command = plus or minus
define tertiary secondary macro = 44 { a macro defined by secondarydef }
define tertiary binary = 45 { an operator at the tertiary level (e.g., ‘++’) }
define max tertiary command = tertiary binary
define left brace = 46 { the operator ‘{’ }
define min expression command = left brace
define path join = 47 { the operator ‘..’ }
define ampersand = 48 { the operator ‘&’ }
define expression tertiary macro = 49 { a macro defined by tertiarydef }
define expression binary = 50 { an operator at the expression level (e.g., ‘<’) }
define equals = 51 { the operator ‘=’ }
define max expression command = equals
define and command = 52 { the operator ‘and’ }
define min secondary command = and command
define secondary primary macro = 53 { a macro defined by primarydef }
define slash = 54 { the operator ‘/’ }
define secondary binary = 55 { an operator at the binary level (e.g., shifted) }
define max secondary command = secondary binary
define param type = 56 { type of parameter (primary, expr, suffix, etc.) }
define controls = 57 { specify control points explicitly (controls) }
define tension = 58 { specify tension between knots (tension) }
define at least = 59 {bounded tension value (atleast) }
define curl command = 60 { specify curl at an end knot (curl) }
define macro special = 61 { special macro operators (quote, #@, etc.) }
define right delimiter = 62 { the right delimiter of a matching pair }
define left bracket = 63 { the operator ‘[’ }
define right bracket = 64 { the operator ‘]’ }
define right brace = 65 { the operator ‘}’ }
define with option = 66 { option for filling (withpen, withweight) }
define cull op = 67 { the operator ‘keeping’ or ‘dropping’ }
define thing to add = 68 { variant of addto (contour, doublepath, also) }
define of token = 69 { the operator ‘of ’ }
define from token = 70 { the operator ‘from’ }
define to token = 71 { the operator ‘to’ }
define at token = 72 { the operator ‘at’ }
define in window = 73 { the operator ‘inwindow’ }
define step token = 74 { the operator ‘step’ }
define until token = 75 { the operator ‘until’ }
define lig kern token = 76 { the operators ‘kern’ and ‘=:’ and ‘=:|’, etc. }
define assignment = 77 { the operator ‘:=’ }
define skip to = 78 { the operation ‘skipto’ }
define bchar label = 79 { the operator ‘||:’ }
define double colon = 80 { the operator ‘::’ }
define colon = 81 { the operator ‘:’ }

define comma = 82 { the operator ‘,’, must be colon + 1 }

72 PART 12: THE COMMAND CODES METAFONT §186

define end of statement ≡ cur cmd > comma
define semicolon = 83 { the operator ‘;’, must be comma + 1 }
define end group = 84 { end a group (endgroup), must be semicolon + 1 }
define stop = 85 { end a job (end, dump), must be end group + 1 }
define max command code = stop
define outer tag = max command code + 1 { protection code added to command code }

〈Types in the outer block 18 〉 +≡
command code = 1 . . max command code ;

§187 METAFONT PART 12: THE COMMAND CODES 73

187. Variables and capsules in METAFONT have a variety of “types,” distinguished by the following code
numbers:

define undefined = 0 { no type has been declared }
define unknown tag = 1 { this constant is added to certain type codes below }
define vacuous = 1 { no expression was present }
define boolean type = 2 {boolean with a known value }
define unknown boolean = boolean type + unknown tag
define string type = 4 { string with a known value }
define unknown string = string type + unknown tag
define pen type = 6 {pen with a known value }
define unknown pen = pen type + unknown tag
define future pen = 8 { subexpression that will become a pen at a higher level }
define path type = 9 {path with a known value }
define unknown path = path type + unknown tag
define picture type = 11 {picture with a known value }
define unknown picture = picture type + unknown tag
define transform type = 13 { transform variable or capsule }
define pair type = 14 {pair variable or capsule }
define numeric type = 15 { variable that has been declared numeric but not used }
define known = 16 {numeric with a known value }
define dependent = 17 { a linear combination with fraction coefficients }
define proto dependent = 18 { a linear combination with scaled coefficients }
define independent = 19 {numeric with unknown value }
define token list = 20 { variable name or suffix argument or text argument }
define structured = 21 { variable with subscripts and attributes }
define unsuffixed macro = 22 { variable defined with vardef but no @# }
define suffixed macro = 23 { variable defined with vardef and @# }
define unknown types ≡ unknown boolean , unknown string , unknown pen , unknown picture , unknown path

〈Basic printing procedures 57 〉 +≡
procedure print type (t : small number);

begin case t of
vacuous : print ("vacuous");
boolean type : print ("boolean");
unknown boolean : print ("unknown boolean");
string type : print ("string");
unknown string : print ("unknown string");
pen type : print ("pen");
unknown pen : print ("unknown pen");
future pen : print ("future pen");
path type : print ("path");
unknown path : print ("unknown path");
picture type : print ("picture");
unknown picture : print ("unknown picture");
transform type : print ("transform");
pair type : print ("pair");
known : print ("known numeric");
dependent : print ("dependent");
proto dependent : print ("proto−dependent");
numeric type : print ("numeric");
independent : print ("independent");
token list : print ("token list");
structured : print ("structured");

74 PART 12: THE COMMAND CODES METAFONT §187

unsuffixed macro : print ("unsuffixed macro");
suffixed macro : print ("suffixed macro");
othercases print ("undefined")
endcases;
end;

188. Values inside METAFONT are stored in two-word nodes that have a name type as well as a type . The
possibilities for name type are defined here; they will be explained in more detail later.

define root = 0 {name type at the top level of a variable }
define saved root = 1 { same, when the variable has been saved }
define structured root = 2 {name type where a structured branch occurs }
define subscr = 3 {name type in a subscript node }
define attr = 4 {name type in an attribute node }
define x part sector = 5 {name type in the xpart of a node }
define y part sector = 6 {name type in the ypart of a node }
define xx part sector = 7 {name type in the xxpart of a node }
define xy part sector = 8 {name type in the xypart of a node }
define yx part sector = 9 {name type in the yxpart of a node }
define yy part sector = 10 {name type in the yypart of a node }
define capsule = 11 {name type in stashed-away subexpressions }
define token = 12 {name type in a numeric token or string token }

§189 METAFONT PART 12: THE COMMAND CODES 75

189. Primitive operations that produce values have a secondary identification code in addition to their com-
mand code; it’s something like genera and species. For example, ‘*’ has the command code primary binary ,
and its secondary identification is times . The secondary codes start at 30 so that they don’t overlap with
the type codes; some type codes (e.g., string type) are used as operators as well as type identifications.

define true code = 30 { operation code for true }
define false code = 31 { operation code for false }
define null picture code = 32 { operation code for nullpicture }
define null pen code = 33 { operation code for nullpen }
define job name op = 34 { operation code for jobname }
define read string op = 35 { operation code for readstring }
define pen circle = 36 { operation code for pencircle }
define normal deviate = 37 { operation code for normaldeviate }
define odd op = 38 { operation code for odd }
define known op = 39 { operation code for known }
define unknown op = 40 { operation code for unknown }
define not op = 41 { operation code for not }
define decimal = 42 { operation code for decimal }
define reverse = 43 { operation code for reverse }
define make path op = 44 { operation code for makepath }
define make pen op = 45 { operation code for makepen }
define total weight op = 46 { operation code for totalweight }
define oct op = 47 { operation code for oct }
define hex op = 48 { operation code for hex }
define ASCII op = 49 { operation code for ASCII }
define char op = 50 { operation code for char }
define length op = 51 { operation code for length }
define turning op = 52 { operation code for turningnumber }
define x part = 53 { operation code for xpart }
define y part = 54 { operation code for ypart }
define xx part = 55 { operation code for xxpart }
define xy part = 56 { operation code for xypart }
define yx part = 57 { operation code for yxpart }
define yy part = 58 { operation code for yypart }
define sqrt op = 59 { operation code for sqrt }
define m exp op = 60 { operation code for mexp }
define m log op = 61 { operation code for mlog }
define sin d op = 62 { operation code for sind }
define cos d op = 63 { operation code for cosd }
define floor op = 64 { operation code for floor }
define uniform deviate = 65 { operation code for uniformdeviate }
define char exists op = 66 { operation code for charexists }
define angle op = 67 { operation code for angle }
define cycle op = 68 { operation code for cycle }
define plus = 69 { operation code for + }
define minus = 70 { operation code for − }
define times = 71 { operation code for * }
define over = 72 { operation code for / }
define pythag add = 73 { operation code for ++ }
define pythag sub = 74 { operation code for +−+ }
define or op = 75 { operation code for or }
define and op = 76 { operation code for and }
define less than = 77 { operation code for < }

76 PART 12: THE COMMAND CODES METAFONT §189

define less or equal = 78 { operation code for <= }
define greater than = 79 { operation code for > }
define greater or equal = 80 { operation code for >= }
define equal to = 81 { operation code for = }
define unequal to = 82 { operation code for <> }
define concatenate = 83 { operation code for & }
define rotated by = 84 { operation code for rotated }
define slanted by = 85 { operation code for slanted }
define scaled by = 86 { operation code for scaled }
define shifted by = 87 { operation code for shifted }
define transformed by = 88 { operation code for transformed }
define x scaled = 89 { operation code for xscaled }
define y scaled = 90 { operation code for yscaled }
define z scaled = 91 { operation code for zscaled }
define intersect = 92 { operation code for intersectiontimes }
define double dot = 93 { operation code for improper .. }
define substring of = 94 { operation code for substring }
define min of = substring of
define subpath of = 95 { operation code for subpath }
define direction time of = 96 { operation code for directiontime }
define point of = 97 { operation code for point }
define precontrol of = 98 { operation code for precontrol }
define postcontrol of = 99 { operation code for postcontrol }
define pen offset of = 100 { operation code for penoffset }

procedure print op(c : quarterword);
begin if c ≤ numeric type then print type (c)
else case c of

true code : print ("true");
false code : print ("false");
null picture code : print ("nullpicture");
null pen code : print ("nullpen");
job name op : print ("jobname");
read string op : print ("readstring");
pen circle : print ("pencircle");
normal deviate : print ("normaldeviate");
odd op : print ("odd");
known op : print ("known");
unknown op : print ("unknown");
not op : print ("not");
decimal : print ("decimal");
reverse : print ("reverse");
make path op : print ("makepath");
make pen op : print ("makepen");
total weight op : print ("totalweight");
oct op : print ("oct");
hex op : print ("hex");
ASCII op : print ("ASCII");
char op : print ("char");
length op : print ("length");
turning op : print ("turningnumber");
x part : print ("xpart");
y part : print ("ypart");

§189 METAFONT PART 12: THE COMMAND CODES 77

xx part : print ("xxpart");
xy part : print ("xypart");
yx part : print ("yxpart");
yy part : print ("yypart");
sqrt op : print ("sqrt");
m exp op : print ("mexp");
m log op : print ("mlog");
sin d op : print ("sind");
cos d op : print ("cosd");
floor op : print ("floor");
uniform deviate : print ("uniformdeviate");
char exists op : print ("charexists");
angle op : print ("angle");
cycle op : print ("cycle");
plus : print char ("+");
minus : print char ("−");
times : print char ("*");
over : print char ("/");
pythag add : print ("++");
pythag sub : print ("+−+");
or op : print ("or");
and op : print ("and");
less than : print char ("<");
less or equal : print ("<=");
greater than : print char (">");
greater or equal : print (">=");
equal to : print char ("=");
unequal to : print ("<>");
concatenate : print ("&");
rotated by : print ("rotated");
slanted by : print ("slanted");
scaled by : print ("scaled");
shifted by : print ("shifted");
transformed by : print ("transformed");
x scaled : print ("xscaled");
y scaled : print ("yscaled");
z scaled : print ("zscaled");
intersect : print ("intersectiontimes");
substring of : print ("substring");
subpath of : print ("subpath");
direction time of : print ("directiontime");
point of : print ("point");
precontrol of : print ("precontrol");
postcontrol of : print ("postcontrol");
pen offset of : print ("penoffset");
othercases print ("..")
endcases;

end;

78 PART 12: THE COMMAND CODES METAFONT §190

190. METAFONT also has a bunch of internal parameters that a user might want to fuss with. Every such
parameter has an identifying code number, defined here.

define tracing titles = 1 { show titles online when they appear }
define tracing equations = 2 { show each variable when it becomes known }
define tracing capsules = 3 { show capsules too }
define tracing choices = 4 { show the control points chosen for paths }
define tracing specs = 5 { show subdivision of paths into octants before digitizing }
define tracing pens = 6 { show details of pens that are made }
define tracing commands = 7 { show commands and operations before they are performed }
define tracing restores = 8 { show when a variable or internal is restored }
define tracing macros = 9 { show macros before they are expanded }
define tracing edges = 10 { show digitized edges as they are computed }
define tracing output = 11 { show digitized edges as they are output }
define tracing stats = 12 { show memory usage at end of job }
define tracing online = 13 { show long diagnostics on terminal and in the log file }
define year = 14 { the current year (e.g., 1984) }
define month = 15 { the current month (e.g., 3 ≡ March) }
define day = 16 { the current day of the month }
define time = 17 { the number of minutes past midnight when this job started }
define char code = 18 { the number of the next character to be output }
define char ext = 19 { the extension code of the next character to be output }
define char wd = 20 { the width of the next character to be output }
define char ht = 21 { the height of the next character to be output }
define char dp = 22 { the depth of the next character to be output }
define char ic = 23 { the italic correction of the next character to be output }
define char dx = 24 { the device’s x movement for the next character, in pixels }
define char dy = 25 { the device’s y movement for the next character, in pixels }
define design size = 26 { the unit of measure used for char wd . . char ic , in points }
define hppp = 27 { the number of horizontal pixels per point }
define vppp = 28 { the number of vertical pixels per point }
define x offset = 29 { horizontal displacement of shipped-out characters }
define y offset = 30 { vertical displacement of shipped-out characters }
define pausing = 31 { positive to display lines on the terminal before they are read }
define showstopping = 32 { positive to stop after each show command }
define fontmaking = 33 { positive if font metric output is to be produced }
define proofing = 34 {positive for proof mode, negative to suppress output }
define smoothing = 35 {positive if moves are to be “smoothed” }
define autorounding = 36 { controls path modification to “good” points }
define granularity = 37 { autorounding uses this pixel size }
define fillin = 38 { extra darkness of diagonal lines }
define turning check = 39 { controls reorientation of clockwise paths }
define warning check = 40 { controls error message when variable value is large }
define boundary char = 41 { the boundary character for ligatures }
define max given internal = 41

〈Global variables 13 〉 +≡
internal : array [1 . . max internal] of scaled ; { the values of internal quantities }
int name : array [1 . . max internal] of str number ; { their names }
int ptr : max given internal . . max internal ; { the maximum internal quantity defined so far }

§191 METAFONT PART 12: THE COMMAND CODES 79

191. 〈Set initial values of key variables 21 〉 +≡
for k ← 1 to max given internal do internal [k]← 0;
int ptr ← max given internal ;

192. The symbolic names for internal quantities are put into METAFONT’s hash table by using a routine
called primitive , which will be defined later. Let us enter them now, so that we don’t have to list all those
names again anywhere else.

〈Put each of METAFONT’s primitives into the hash table 192 〉 ≡
primitive ("tracingtitles", internal quantity , tracing titles);
primitive ("tracingequations", internal quantity , tracing equations);
primitive ("tracingcapsules", internal quantity , tracing capsules);
primitive ("tracingchoices", internal quantity , tracing choices);
primitive ("tracingspecs", internal quantity , tracing specs);
primitive ("tracingpens", internal quantity , tracing pens);
primitive ("tracingcommands", internal quantity , tracing commands);
primitive ("tracingrestores", internal quantity , tracing restores);
primitive ("tracingmacros", internal quantity , tracing macros);
primitive ("tracingedges", internal quantity , tracing edges);
primitive ("tracingoutput", internal quantity , tracing output);
primitive ("tracingstats", internal quantity , tracing stats);
primitive ("tracingonline", internal quantity , tracing online);
primitive ("year", internal quantity , year);
primitive ("month", internal quantity ,month);
primitive ("day", internal quantity , day);
primitive ("time", internal quantity , time);
primitive ("charcode", internal quantity , char code);
primitive ("charext", internal quantity , char ext);
primitive ("charwd", internal quantity , char wd);
primitive ("charht", internal quantity , char ht);
primitive ("chardp", internal quantity , char dp);
primitive ("charic", internal quantity , char ic);
primitive ("chardx", internal quantity , char dx);
primitive ("chardy", internal quantity , char dy);
primitive ("designsize", internal quantity , design size);
primitive ("hppp", internal quantity , hppp);
primitive ("vppp", internal quantity , vppp);
primitive ("xoffset", internal quantity , x offset);
primitive ("yoffset", internal quantity , y offset);
primitive ("pausing", internal quantity , pausing);
primitive ("showstopping", internal quantity , showstopping);
primitive ("fontmaking", internal quantity , fontmaking);
primitive ("proofing", internal quantity , proofing);
primitive ("smoothing", internal quantity , smoothing);
primitive ("autorounding", internal quantity , autorounding);
primitive ("granularity", internal quantity , granularity);
primitive ("fillin", internal quantity ,fillin);
primitive ("turningcheck", internal quantity , turning check);
primitive ("warningcheck", internal quantity ,warning check);
primitive ("boundarychar", internal quantity , boundary char);

See also sections 211, 683, 688, 695, 709, 740, 893, 1013, 1018, 1024, 1027, 1037, 1052, 1079, 1101, 1108, and 1176.

This code is used in section 1210.

80 PART 12: THE COMMAND CODES METAFONT §193

193. Well, we do have to list the names one more time, for use in symbolic printouts.

〈 Initialize table entries (done by INIMF only) 176 〉 +≡
int name [tracing titles]← "tracingtitles"; int name [tracing equations]← "tracingequations";
int name [tracing capsules]← "tracingcapsules"; int name [tracing choices]← "tracingchoices";
int name [tracing specs]← "tracingspecs"; int name [tracing pens]← "tracingpens";
int name [tracing commands]← "tracingcommands"; int name [tracing restores]← "tracingrestores";
int name [tracing macros]← "tracingmacros"; int name [tracing edges]← "tracingedges";
int name [tracing output]← "tracingoutput"; int name [tracing stats]← "tracingstats";
int name [tracing online]← "tracingonline"; int name [year]← "year"; int name [month]← "month";
int name [day]← "day"; int name [time]← "time"; int name [char code]← "charcode";
int name [char ext]← "charext"; int name [char wd]← "charwd"; int name [char ht]← "charht";
int name [char dp]← "chardp"; int name [char ic]← "charic"; int name [char dx]← "chardx";
int name [char dy]← "chardy"; int name [design size]← "designsize"; int name [hppp]← "hppp";
int name [vppp]← "vppp"; int name [x offset]← "xoffset"; int name [y offset]← "yoffset";
int name [pausing]← "pausing"; int name [showstopping]← "showstopping";
int name [fontmaking]← "fontmaking"; int name [proofing]← "proofing";
int name [smoothing]← "smoothing"; int name [autorounding]← "autorounding";
int name [granularity]← "granularity"; int name [fillin]← "fillin";
int name [turning check]← "turningcheck"; int name [warning check]← "warningcheck";
int name [boundary char]← "boundarychar";

194. The following procedure, which is called just before METAFONT initializes its input and output,
establishes the initial values of the date and time. Since standard Pascal cannot provide such information,
something special is needed. The program here simply assumes that suitable values appear in the global
variables sys time , sys day , sys month , and sys year (which are initialized to noon on 4 July 1776, in case
the implementor is careless).

Note that the values are scaled integers. Hence METAFONT can no longer be used after the year 32767.

procedure fix date and time ;
begin sys time ← 12 ∗ 60; sys day ← 4; sys month ← 7; sys year ← 1776; { self-evident truths }
internal [time]← sys time ∗ unity ; {minutes since midnight }
internal [day]← sys day ∗ unity ; { day of the month }
internal [month]← sys month ∗ unity ; {month of the year }
internal [year]← sys year ∗ unity ; {Anno Domini }
end;

195. METAFONT is occasionally supposed to print diagnostic information that goes only into the transcript
file, unless tracing online is positive. Now that we have defined tracing online we can define two routines
that adjust the destination of print commands:

〈Basic printing procedures 57 〉 +≡
procedure begin diagnostic ; { prepare to do some tracing }

begin old setting ← selector ;
if (internal [tracing online] ≤ 0) ∧ (selector = term and log) then

begin decr (selector);
if history = spotless then history ← warning issued ;
end;

end;

procedure end diagnostic(blank line : boolean); { restore proper conditions after tracing }
begin print nl ("");
if blank line then print ln ;
selector ← old setting ;
end;

§196 METAFONT PART 12: THE COMMAND CODES 81

196. Of course we had better declare a few more global variables, if the previous routines are going to
work.

〈Global variables 13 〉 +≡
old setting : 0 . . max selector ;
sys time , sys day , sys month , sys year : integer ; { date and time supplied by external system }

197. We will occasionally use begin diagnostic in connection with line-number printing, as follows. (The
parameter s is typically "Path" or "Cycle spec", etc.)

〈Basic printing procedures 57 〉 +≡
procedure print diagnostic(s, t : str number ; nuline : boolean);

begin begin diagnostic ;
if nuline then print nl (s) else print (s);
print (" at line "); print int (line); print (t); print char (":");
end;

198. The 256 ASCII code characters are grouped into classes by means of the char class table. Individual
class numbers have no semantic or syntactic significance, except in a few instances defined here. There’s
also max class , which can be used as a basis for additional class numbers in nonstandard extensions of
METAFONT.

define digit class = 0 { the class number of 0123456789 }
define period class = 1 { the class number of ‘.’ }
define space class = 2 { the class number of spaces and nonstandard characters }
define percent class = 3 { the class number of ‘%’ }
define string class = 4 { the class number of ‘"’ }
define right paren class = 8 { the class number of ‘)’ }
define isolated classes ≡ 5, 6, 7, 8 { characters that make length-one tokens only }
define letter class = 9 { letters and the underline character }
define left bracket class = 17 { ‘[’ }
define right bracket class = 18 { ‘]’ }
define invalid class = 20 { bad character in the input }
define max class = 20 { the largest class number }

〈Global variables 13 〉 +≡
char class : array [ASCII code] of 0 . . max class ; { the class numbers }

82 PART 12: THE COMMAND CODES METAFONT §199

199. If changes are made to accommodate non-ASCII character sets, they should follow the guidelines in
Appendix C of The METAFONT book.

〈Set initial values of key variables 21 〉 +≡
for k ← "0" to "9" do char class [k]← digit class ;
char class ["."]← period class ; char class [" "]← space class ; char class ["%"]← percent class ;
char class [""""]← string class ;
char class [","]← 5; char class [";"]← 6; char class ["("]← 7; char class [")"]← right paren class ;
for k ← "A" to "Z" do char class [k]← letter class ;
for k ← "a" to "z" do char class [k]← letter class ;
char class ["_"]← letter class ;
char class ["<"]← 10; char class ["="]← 10; char class [">"]← 10; char class [":"]← 10;
char class ["|"]← 10;
char class ["`"]← 11; char class ["´"]← 11;
char class ["+"]← 12; char class ["−"]← 12;
char class ["/"]← 13; char class ["*"]← 13; char class ["\"]← 13;
char class ["!"]← 14; char class ["?"]← 14;
char class ["#"]← 15; char class ["&"]← 15; char class ["@"]← 15; char class ["$"]← 15;
char class ["^"]← 16; char class ["~"]← 16;
char class ["["]← left bracket class ; char class ["]"]← right bracket class ;
char class ["{"]← 19; char class ["}"]← 19;
for k ← 0 to " "− 1 do char class [k]← invalid class ;
for k ← 127 to 255 do char class [k]← invalid class ;

§200 METAFONT PART 13: THE HASH TABLE 83

200. The hash table. Symbolic tokens are stored and retrieved by means of a fairly standard hash table
algorithm called the method of “coalescing lists” (cf. Algorithm 6.4C in The Art of Computer Programming).
Once a symbolic token enters the table, it is never removed.

The actual sequence of characters forming a symbolic token is stored in the str pool array together with
all the other strings. An auxiliary array hash consists of items with two halfword fields per word. The first
of these, called next (p), points to the next identifier belonging to the same coalesced list as the identifier
corresponding to p; and the other, called text (p), points to the str start entry for p’s identifier. If position p
of the hash table is empty, we have text (p) = 0; if position p is either empty or the end of a coalesced hash
list, we have next (p) = 0.

An auxiliary pointer variable called hash used is maintained in such a way that all locations p ≥ hash used
are nonempty. The global variable st count tells how many symbolic tokens have been defined, if statistics
are being kept.

The first 256 locations of hash are reserved for symbols of length one.
There’s a parallel array called eqtb that contains the current equivalent values of each symbolic token.

The entries of this array consist of two halfwords called eq type (a command code) and equiv (a secondary
piece of information that qualifies the eq type).

define next (#) ≡ hash [#].lh { link for coalesced lists }
define text (#) ≡ hash [#].rh { string number for symbolic token name }
define eq type (#) ≡ eqtb [#].lh { the current “meaning” of a symbolic token }
define equiv (#) ≡ eqtb [#].rh { parametric part of a token’s meaning }
define hash base = 257 { hashing actually starts here }
define hash is full ≡ (hash used = hash base) { are all positions occupied? }

〈Global variables 13 〉 +≡
hash used : pointer ; { allocation pointer for hash }
st count : integer ; { total number of known identifiers }

201. Certain entries in the hash table are “frozen” and not redefinable, since they are used in error recovery.

define hash top ≡ hash base + hash size { the first location of the frozen area }
define frozen inaccessible ≡ hash top { hash location to protect the frozen area }
define frozen repeat loop ≡ hash top + 1 { hash location of a loop-repeat token }
define frozen right delimiter ≡ hash top + 2 { hash location of a permanent ‘)’ }
define frozen left bracket ≡ hash top + 3 { hash location of a permanent ‘[’ }
define frozen slash ≡ hash top + 4 { hash location of a permanent ‘/’ }
define frozen colon ≡ hash top + 5 { hash location of a permanent ‘:’ }
define frozen semicolon ≡ hash top + 6 { hash location of a permanent ‘;’ }
define frozen end for ≡ hash top + 7 { hash location of a permanent endfor }
define frozen end def ≡ hash top + 8 { hash location of a permanent enddef }
define frozen fi ≡ hash top + 9 { hash location of a permanent fi }
define frozen end group ≡ hash top + 10 { hash location of a permanent ‘endgroup’ }
define frozen bad vardef ≡ hash top + 11 { hash location of ‘a bad variable’ }
define frozen undefined ≡ hash top + 12 { hash location that never gets defined }
define hash end ≡ hash top + 12 { the actual size of the hash and eqtb arrays }

〈Global variables 13 〉 +≡
hash : array [1 . . hash end] of two halves ; { the hash table }
eqtb : array [1 . . hash end] of two halves ; { the equivalents }

202. 〈Set initial values of key variables 21 〉 +≡
next (1)← 0; text (1)← 0; eq type (1)← tag token ; equiv (1)← null ;
for k ← 2 to hash end do

begin hash [k]← hash [1]; eqtb [k]← eqtb [1];
end;

84 PART 13: THE HASH TABLE METAFONT §203

203. 〈 Initialize table entries (done by INIMF only) 176 〉 +≡
hash used ← frozen inaccessible ; { nothing is used }
st count ← 0;
text (frozen bad vardef)← "a bad variable"; text (frozen fi)← "fi";
text (frozen end group)← "endgroup"; text (frozen end def)← "enddef";
text (frozen end for)← "endfor";
text (frozen semicolon)← ";"; text (frozen colon)← ":"; text (frozen slash)← "/";
text (frozen left bracket)← "["; text (frozen right delimiter)← ")";
text (frozen inaccessible)← " INACCESSIBLE";
eq type (frozen right delimiter)← right delimiter ;

204. 〈Check the “constant” values for consistency 14 〉 +≡
if hash end + max internal > max halfword then bad ← 21;

205. Here is the subroutine that searches the hash table for an identifier that matches a given string of
length l appearing in buffer [j . . (j + l− 1)]. If the identifier is not found, it is inserted; hence it will always
be found, and the corresponding hash table address will be returned.

function id lookup(j, l : integer): pointer ; { search the hash table }
label found ; { go here when you’ve found it }
var h: integer ; { hash code }
p: pointer ; { index in hash array }
k: pointer ; { index in buffer array }

begin if l = 1 then 〈Treat special case of length 1 and goto found 206 〉;
〈Compute the hash code h 208 〉;
p← h+ hash base ; {we start searching here; note that 0 ≤ h < hash prime }
loop begin if text (p) > 0 then

if length (text (p)) = l then
if str eq buf (text (p), j) then goto found ;

if next (p) = 0 then
〈 Insert a new symbolic token after p, then make p point to it and goto found 207 〉;

p← next (p);
end;

found : id lookup ← p;
end;

206. 〈Treat special case of length 1 and goto found 206 〉 ≡
begin p← buffer [j] + 1; text (p)← p− 1; goto found ;
end

This code is used in section 205.

§207 METAFONT PART 13: THE HASH TABLE 85

207. 〈 Insert a new symbolic token after p, then make p point to it and goto found 207 〉 ≡
begin if text (p) > 0 then

begin repeat if hash is full then overflow ("hash size", hash size);
decr (hash used);

until text (hash used) = 0; { search for an empty location in hash }
next (p)← hash used ; p← hash used ;
end;

str room (l);
for k ← j to j + l − 1 do append char (buffer [k]);
text (p)← make string ; str ref [text (p)]← max str ref ;
stat incr (st count); tats
goto found ;
end

This code is used in section 205.

208. The value of hash prime should be roughly 85% of hash size , and it should be a prime number. The
theory of hashing tells us to expect fewer than two table probes, on the average, when the search is successful.
[See J. S. Vitter, Journal of the ACM 30 (1983), 231–258.]

〈Compute the hash code h 208 〉 ≡
h← buffer [j];
for k ← j + 1 to j + l − 1 do

begin h← h+ h+ buffer [k];
while h ≥ hash prime do h← h− hash prime ;
end

This code is used in section 205.

209. 〈Search eqtb for equivalents equal to p 209 〉 ≡
for q ← 1 to hash end do

begin if equiv (q) = p then
begin print nl ("EQUIV("); print int (q); print char (")");
end;

end

This code is used in section 185.

210. We need to put METAFONT’s “primitive” symbolic tokens into the hash table, together with their
command code (which will be the eq type) and an operand (which will be the equiv). The primitive procedure
does this, in a way that no METAFONT user can. The global value cur sym contains the new eqtb pointer
after primitive has acted.

init procedure primitive (s : str number ; c : halfword ; o : halfword);
var k: pool pointer ; { index into str pool }
j: small number ; { index into buffer }
l: small number ; { length of the string }

begin k ← str start [s]; l← str start [s+ 1]− k; {we will move s into the (empty) buffer }
for j ← 0 to l − 1 do buffer [j]← so(str pool [k + j]);
cur sym ← id lookup(0, l);
if s ≥ 256 then {we don’t want to have the string twice }

begin flush string (str ptr − 1); text (cur sym)← s;
end;

eq type (cur sym)← c; equiv (cur sym)← o;
end;
tini

86 PART 13: THE HASH TABLE METAFONT §211

211. Many of METAFONT’s primitives need no equiv , since they are identifiable by their eq type alone.
These primitives are loaded into the hash table as follows:

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("..", path join , 0);
primitive ("[", left bracket , 0); eqtb [frozen left bracket]← eqtb [cur sym];
primitive ("]", right bracket , 0);
primitive ("}", right brace , 0);
primitive ("{", left brace , 0);
primitive (":", colon , 0); eqtb [frozen colon]← eqtb [cur sym];
primitive ("::", double colon , 0);
primitive ("||:", bchar label , 0);
primitive (":=", assignment , 0);
primitive (",", comma , 0);
primitive (";", semicolon , 0); eqtb [frozen semicolon]← eqtb [cur sym];
primitive ("\", relax , 0);

primitive ("addto", add to command , 0);
primitive ("at", at token , 0);
primitive ("atleast", at least , 0);
primitive ("begingroup", begin group , 0); bg loc ← cur sym ;
primitive ("controls", controls , 0);
primitive ("cull", cull command , 0);
primitive ("curl", curl command , 0);
primitive ("delimiters", delimiters , 0);
primitive ("display", display command , 0);
primitive ("endgroup", end group , 0); eqtb [frozen end group]← eqtb [cur sym]; eg loc ← cur sym ;
primitive ("everyjob", every job command , 0);
primitive ("exitif", exit test , 0);
primitive ("expandafter", expand after , 0);
primitive ("from", from token , 0);
primitive ("inwindow", in window , 0);
primitive ("interim", interim command , 0);
primitive ("let", let command , 0);
primitive ("newinternal",new internal , 0);
primitive ("of", of token , 0);
primitive ("openwindow", open window , 0);
primitive ("randomseed", random seed , 0);
primitive ("save", save command , 0);
primitive ("scantokens", scan tokens , 0);
primitive ("shipout", ship out command , 0);
primitive ("skipto", skip to , 0);
primitive ("step", step token , 0);
primitive ("str", str op , 0);
primitive ("tension", tension , 0);
primitive ("to", to token , 0);
primitive ("until", until token , 0);

§212 METAFONT PART 13: THE HASH TABLE 87

212. Each primitive has a corresponding inverse, so that it is possible to display the cryptic numeric
contents of eqtb in symbolic form. Every call of primitive in this program is therefore accompanied by some
straightforward code that forms part of the print cmd mod routine explained below.

〈Cases of print cmd mod for symbolic printing of primitives 212 〉 ≡
add to command : print ("addto");
assignment : print (":=");
at least : print ("atleast");
at token : print ("at");
bchar label : print ("||:");
begin group : print ("begingroup");
colon : print (":");
comma : print (",");
controls : print ("controls");
cull command : print ("cull");
curl command : print ("curl");
delimiters : print ("delimiters");
display command : print ("display");
double colon : print ("::");
end group : print ("endgroup");
every job command : print ("everyjob");
exit test : print ("exitif");
expand after : print ("expandafter");
from token : print ("from");
in window : print ("inwindow");
interim command : print ("interim");
left brace : print ("{");
left bracket : print ("[");
let command : print ("let");
new internal : print ("newinternal");
of token : print ("of");
open window : print ("openwindow");
path join : print ("..");
random seed : print ("randomseed");
relax : print char ("\");
right brace : print ("}");
right bracket : print ("]");
save command : print ("save");
scan tokens : print ("scantokens");
semicolon : print (";");
ship out command : print ("shipout");
skip to : print ("skipto");
step token : print ("step");
str op : print ("str");
tension : print ("tension");
to token : print ("to");
until token : print ("until");

See also sections 684, 689, 696, 710, 741, 894, 1014, 1019, 1025, 1028, 1038, 1043, 1053, 1080, 1102, 1109, and 1180.

This code is used in section 625.

88 PART 13: THE HASH TABLE METAFONT §213

213. We will deal with the other primitives later, at some point in the program where their eq type and
equiv values are more meaningful. For example, the primitives for macro definitions will be loaded when
we consider the routines that define macros. It is easy to find where each particular primitive was treated
by looking in the index at the end; for example, the section where "def" entered eqtb is listed under ‘def
primitive’.

§214 METAFONT PART 14: TOKEN LISTS 89

214. Token lists. A METAFONT token is either symbolic or numeric or a string, or it denotes a macro
parameter or capsule; so there are five corresponding ways to encode it internally: (1) A symbolic token
whose hash code is p is represented by the number p, in the info field of a single-word node in mem . (2) A
numeric token whose scaled value is v is represented in a two-word node of mem ; the type field is known ,
the name type field is token , and the value field holds v. The fact that this token appears in a two-word
node rather than a one-word node is, of course, clear from the node address. (3) A string token is also
represented in a two-word node; the type field is string type , the name type field is token , and the value field
holds the corresponding str number . (4) Capsules have name type = capsule , and their type and value fields
represent arbitrary values (in ways to be explained later). (5) Macro parameters are like symbolic tokens in
that they appear in info fields of one-word nodes. The kth parameter is represented by expr base + k if it
is of type expr, or by suffix base + k if it is of type suffix, or by text base + k if it is of type text. (Here
0 ≤ k < param size .) Actual values of these parameters are kept in a separate stack, as we will see later.
The constants expr base , suffix base , and text base are, of course, chosen so that there will be no confusion
between symbolic tokens and parameters of various types.

It turns out that value (null) = 0, because null = null coords ; we will make use of this coincidence later.
Incidentally, while we’re speaking of coincidences, we might note that the ‘type ’ field of a node has nothing

to do with “type” in a printer’s sense. It’s curious that the same word is used in such different ways.

define type (#) ≡ mem [#].hh .b0 { identifies what kind of value this is }
define name type (#) ≡ mem [#].hh .b1 { a clue to the name of this value }
define token node size = 2 { the number of words in a large token node }
define value loc(#) ≡ # + 1 { the word that contains the value field }
define value (#) ≡ mem [value loc(#)].int { the value stored in a large token node }
define expr base ≡ hash end + 1 { code for the zeroth expr parameter }
define suffix base ≡ expr base + param size { code for the zeroth suffix parameter }
define text base ≡ suffix base + param size { code for the zeroth text parameter }

〈Check the “constant” values for consistency 14 〉 +≡
if text base + param size > max halfword then bad ← 22;

215. A numeric token is created by the following trivial routine.

function new num tok (v : scaled): pointer ;
var p: pointer ; { the new node }
begin p← get node (token node size); value (p)← v; type (p)← known ; name type (p)← token ;
new num tok ← p;
end;

90 PART 14: TOKEN LISTS METAFONT §216

216. A token list is a singly linked list of nodes in mem , where each node contains a token and a link.
Here’s a subroutine that gets rid of a token list when it is no longer needed.

procedure token recycle ; forward ;
procedure flush token list (p : pointer);

var q: pointer ; { the node being recycled }
begin while p 6= null do

begin q ← p; p← link (p);
if q ≥ hi mem min then free avail (q)
else begin case type (q) of

vacuous , boolean type , known : do nothing ;
string type : delete str ref (value (q));
unknown types , pen type , path type , future pen , picture type , pair type , transform type , dependent ,

proto dependent , independent : begin g pointer ← q; token recycle ;
end;

othercases confusion ("token")
endcases;
free node (q, token node size);
end;

end;
end;

217. The procedure show token list , which prints a symbolic form of the token list that starts at a given
node p, illustrates these conventions. The token list being displayed should not begin with a reference count.
However, the procedure is intended to be fairly robust, so that if the memory links are awry or if p is not
really a pointer to a token list, almost nothing catastrophic can happen.

An additional parameter q is also given; this parameter is either null or it points to a node in the token
list where a certain magic computation takes place that will be explained later. (Basically, q is non-null
when we are printing the two-line context information at the time of an error message; q marks the place
corresponding to where the second line should begin.)

The generation will stop, and ‘ ETC.’ will be printed, if the length of printing exceeds a given limit l; the
length of printing upon entry is assumed to be a given amount called null tally . (Note that show token list
sometimes uses itself recursively to print variable names within a capsule.)

Unusual entries are printed in the form of all-caps tokens preceded by a space, e.g., ‘ BAD’.

〈Declare the procedure called show token list 217 〉 ≡
procedure print capsule ; forward ;
procedure show token list (p, q : integer ; l,null tally : integer);

label exit ;
var class , c: small number ; { the char class of previous and new tokens }
r, v: integer ; { temporary registers }

begin class ← percent class ; tally ← null tally ;
while (p 6= null) ∧ (tally < l) do

begin if p = q then 〈Do magic computation 646 〉;
〈Display token p and set c to its class; but return if there are problems 218 〉;
class ← c; p← link (p);
end;

if p 6= null then print (" ETC.");
exit : end;

This code is used in section 162.

§218 METAFONT PART 14: TOKEN LISTS 91

218. 〈Display token p and set c to its class; but return if there are problems 218 〉 ≡
c← letter class ; { the default }
if (p < mem min) ∨ (p > mem end) then

begin print (" CLOBBERED"); return;
end;

if p < hi mem min then 〈Display two-word token 219 〉
else begin r ← info(p);

if r ≥ expr base then 〈Display a parameter token 222 〉
else if r < 1 then

if r = 0 then 〈Display a collective subscript 221 〉
else print (" IMPOSSIBLE")

else begin r ← text (r);
if (r < 0) ∨ (r ≥ str ptr) then print (" NONEXISTENT")
else 〈Print string r as a symbolic token and set c to its class 223 〉;
end;

end

This code is used in section 217.

219. 〈Display two-word token 219 〉 ≡
if name type (p) = token then

if type (p) = known then 〈Display a numeric token 220 〉
else if type (p) 6= string type then print (" BAD")

else begin print char (""""); slow print (value (p)); print char (""""); c← string class ;
end

else if (name type (p) 6= capsule) ∨ (type (p) < vacuous) ∨ (type (p) > independent) then print (" BAD")
else begin g pointer ← p; print capsule ; c← right paren class ;

end

This code is used in section 218.

220. 〈Display a numeric token 220 〉 ≡
begin if class = digit class then print char (" ");
v ← value (p);
if v < 0 then

begin if class = left bracket class then print char (" ");
print char ("["); print scaled (v); print char ("]"); c← right bracket class ;
end

else begin print scaled (v); c← digit class ;
end;

end

This code is used in section 219.

221. Strictly speaking, a genuine token will never have info(p) = 0. But we will see later (in the definition
of attribute nodes) that it is convenient to let info(p) = 0 stand for ‘[]’.

〈Display a collective subscript 221 〉 ≡
begin if class = left bracket class then print char (" ");
print ("[]"); c← right bracket class ;
end

This code is used in section 218.

92 PART 14: TOKEN LISTS METAFONT §222

222. 〈Display a parameter token 222 〉 ≡
begin if r < suffix base then

begin print ("(EXPR"); r ← r − (expr base);
end

else if r < text base then
begin print ("(SUFFIX"); r ← r − (suffix base);
end

else begin print ("(TEXT"); r ← r − (text base);
end;

print int (r); print char (")"); c← right paren class ;
end

This code is used in section 218.

223. 〈Print string r as a symbolic token and set c to its class 223 〉 ≡
begin c← char class [so(str pool [str start [r]])];
if c = class then

case c of
letter class : print char (".");
isolated classes : do nothing ;
othercases print char (" ")
endcases;

slow print (r);
end

This code is used in section 218.

224. The following procedures have been declared forward with no parameters, because the author dislikes
Pascal’s convention about forward procedures with parameters. It was necessary to do something, because
show token list is recursive (although the recursion is limited to one level), and because flush token list is
syntactically (but not semantically) recursive.

〈Declare miscellaneous procedures that were declared forward 224 〉 ≡
procedure print capsule ;

begin print char ("("); print exp(g pointer , 0); print char (")");
end;

procedure token recycle ;
begin recycle value (g pointer);
end;

This code is used in section 1202.

225. 〈Global variables 13 〉 +≡
g pointer : pointer ; { (global) parameter to the forward procedures }

§226 METAFONT PART 14: TOKEN LISTS 93

226. Macro definitions are kept in METAFONT’s memory in the form of token lists that have a few extra
one-word nodes at the beginning.

The first node contains a reference count that is used to tell when the list is no longer needed. To emphasize
the fact that a reference count is present, we shall refer to the info field of this special node as the ref count
field.

The next node or nodes after the reference count serve to describe the formal parameters. They consist
of zero or more parameter tokens followed by a code for the type of macro.

define ref count ≡ info { reference count preceding a macro definition or pen header }
define add mac ref (#) ≡ incr (ref count (#)) {make a new reference to a macro list }
define general macro = 0 { preface to a macro defined with a parameter list }
define primary macro = 1 {preface to a macro with a primary parameter }
define secondary macro = 2 { preface to a macro with a secondary parameter }
define tertiary macro = 3 {preface to a macro with a tertiary parameter }
define expr macro = 4 { preface to a macro with an undelimited expr parameter }
define of macro = 5 { preface to a macro with undelimited ‘expr x of y’ parameters }
define suffix macro = 6 { preface to a macro with an undelimited suffix parameter }
define text macro = 7 { preface to a macro with an undelimited text parameter }

procedure delete mac ref (p : pointer);
{ p points to the reference count of a macro list that is losing one reference }

begin if ref count (p) = null then flush token list (p)
else decr (ref count (p));
end;

227. The following subroutine displays a macro, given a pointer to its reference count.

〈Declare the procedure called print cmd mod 625 〉
procedure show macro(p : pointer ; q, l : integer);

label exit ;
var r: pointer ; { temporary storage }
begin p← link (p); { bypass the reference count }
while info(p) > text macro do

begin r ← link (p); link (p)← null ; show token list (p,null , l, 0); link (p)← r; p← r;
if l > 0 then l← l − tally else return;
end; { control printing of ‘ETC.’ }

tally ← 0;
case info(p) of
general macro : print ("−>");
primary macro , secondary macro , tertiary macro : begin print char ("<");

print cmd mod (param type , info(p)); print (">−>");
end;

expr macro : print ("<expr>−>");
of macro : print ("<expr>of<primary>−>");
suffix macro : print ("<suffix>−>");
text macro : print ("<text>−>");
end; { there are no other cases }
show token list (link (p), q, l − tally , 0);

exit : end;

94 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §228

228. Data structures for variables. The variables of METAFONT programs can be simple, like ‘x’, or
they can combine the structural properties of arrays and records, like ‘x20a.b’. A METAFONT user assigns
a type to a variable like x20a.b by saying, for example, ‘boolean x[]a.b’. It’s time for us to study how
such things are represented inside of the computer.

Each variable value occupies two consecutive words, either in a two-word node called a value node, or
as a two-word subfield of a larger node. One of those two words is called the value field; it is an integer,
containing either a scaled numeric value or the representation of some other type of quantity. (It might also
be subdivided into halfwords, in which case it is referred to by other names instead of value .) The other word
is broken into subfields called type , name type , and link . The type field is a quarterword that specifies the
variable’s type, and name type is a quarterword from which METAFONT can reconstruct the variable’s name
(sometimes by using the link field as well). Thus, only 1.25 words are actually devoted to the value itself;
the other three-quarters of a word are overhead, but they aren’t wasted because they allow METAFONT to
deal with sparse arrays and to provide meaningful diagnostics.

In this section we shall be concerned only with the structural aspects of variables, not their values. Later
parts of the program will change the type and value fields, but we shall treat those fields as black boxes
whose contents should not be touched.

However, if the type field is structured , there is no value field, and the second word is broken into two
pointer fields called attr head and subscr head . Those fields point to additional nodes that contain structural
information, as we shall see.

define subscr head loc(#) ≡ # + 1 {where value , subscr head , and attr head are }
define attr head (#) ≡ info(subscr head loc(#)) { pointer to attribute info }
define subscr head (#) ≡ link (subscr head loc(#)) { pointer to subscript info }
define value node size = 2 { the number of words in a value node }

§229 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 95

229. An attribute node is three words long. Two of these words contain type and value fields as described
above, and the third word contains additional information: There is an attr loc field, which contains the
hash address of the token that names this attribute; and there’s also a parent field, which points to the value
node of structured type at the next higher level (i.e., at the level to which this attribute is subsidiary). The
name type in an attribute node is ‘attr ’. The link field points to the next attribute with the same parent;
these are arranged in increasing order, so that attr loc(link (p)) > attr loc(p). The final attribute node links
to the constant end attr , whose attr loc field is greater than any legal hash address. The attr head in the
parent points to a node whose name type is structured root ; this node represents the null attribute, i.e., the
variable that is relevant when no attributes are attached to the parent. The attr head node has the fields
of either a value node, a subscript node, or an attribute node, depending on what the parent would be if
it were not structured; but the subscript and attribute fields are ignored, so it effectively contains only the
data of a value node. The link field in this special node points to an attribute node whose attr loc field is
zero; the latter node represents a collective subscript ‘[]’ attached to the parent, and its link field points to
the first non-special attribute node (or to end attr if there are none).

A subscript node likewise occupies three words, with type and value fields plus extra information; its
name type is subscr . In this case the third word is called the subscript field, which is a scaled integer. The
link field points to the subscript node with the next larger subscript, if any; otherwise the link points to the
attribute node for collective subscripts at this level. We have seen that the latter node contains an upward
pointer, so that the parent can be deduced.

The name type in a parent-less value node is root , and the link is the hash address of the token that
names this value.

In other words, variables have a hierarchical structure that includes enough threads running around so
that the program is able to move easily between siblings, parents, and children. An example should be
helpful: (The reader is advised to draw a picture while reading the following description, since that will
help to firm up the ideas.) Suppose that ‘x’ and ‘x.a’ and ‘x[]b’ and ‘x5’ and ‘x20b’ have been mentioned
in a user’s program, where x[]b has been declared to be of boolean type. Let h(x), h(a), and h(b)
be the hash addresses of x, a, and b. Then eq type (h(x)) = tag token and equiv (h(x)) = p, where p is
a two-word value node with name type (p) = root and link (p) = h(x). We have type (p) = structured ,
attr head (p) = q, and subscr head (p) = r, where q points to a value node and r to a subscript node.
(Are you still following this? Use a pencil to draw a diagram.) The lone variable ‘x’ is represented by
type (q) and value (q); furthermore name type (q) = structured root and link (q) = q1 , where q1 points to
an attribute node representing ‘x[]’. Thus name type (q1) = attr , attr loc(q1) = collective subscript = 0,
parent (q1) = p, type (q1) = structured , attr head (q1) = qq , and subscr head (q1) = qq1 ; qq is a three-word
“attribute-as-value” node with type (qq) = numeric type (assuming that x5 is numeric, because qq represents
‘x[]’ with no further attributes), name type (qq) = structured root , attr loc(qq) = 0, parent (qq) = p, and
link (qq) = qq1 . (Now pay attention to the next part.) Node qq1 is an attribute node representing
‘x[][]’, which has never yet occurred; its type field is undefined , and its value field is undefined. We
have name type (qq1) = attr , attr loc(qq1) = collective subscript , parent (qq1) = q1 , and link (qq1) = qq2 .
Since qq2 represents ‘x[]b’, type (qq2) = unknown boolean ; also attr loc(qq2) = h(b), parent (qq2) = q1 ,
name type (qq2) = attr , link (qq2) = end attr . (Maybe colored lines will help untangle your picture.) Node
r is a subscript node with type and value representing ‘x5’; name type (r) = subscr , subscript (r) = 5.0,
and link (r) = r1 is another subscript node. To complete the picture, see if you can guess what link (r1)
is; give up? It’s q1 . Furthermore subscript (r1) = 20.0, name type (r1) = subscr , type (r1) = structured ,
attr head (r1) = qqq , subscr head (r1) = qqq1 , and we finish things off with three more nodes qqq , qqq1 ,
and qqq2 hung onto r1 . (Perhaps you should start again with a larger sheet of paper.) The value of variable
‘x20b’ appears in node qqq2 = link (qqq1), as you can well imagine. Similarly, the value of ‘x.a’ appears in
node q2 = link (q1), where attr loc(q2) = h(a) and parent (q2) = p.

If the example in the previous paragraph doesn’t make things crystal clear, a glance at some of the simpler
subroutines below will reveal how things work out in practice.

The only really unusual thing about these conventions is the use of collective subscript attributes. The
idea is to avoid repeating a lot of type information when many elements of an array are identical macros (for
which distinct values need not be stored) or when they don’t have all of the possible attributes. Branches

96 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §229

of the structure below collective subscript attributes do not carry actual values except for macro identifiers;
branches of the structure below subscript nodes do not carry significant information in their collective
subscript attributes.

define attr loc loc(#) ≡ # + 2 {where the attr loc and parent fields are }
define attr loc(#) ≡ info(attr loc loc(#)) { hash address of this attribute }
define parent (#) ≡ link (attr loc loc(#)) { pointer to structured variable }
define subscript loc(#) ≡ # + 2 {where the subscript field lives }
define subscript (#) ≡ mem [subscript loc(#)].sc { subscript of this variable }
define attr node size = 3 { the number of words in an attribute node }
define subscr node size = 3 { the number of words in a subscript node }
define collective subscript = 0 { code for the attribute ‘[]’ }

〈 Initialize table entries (done by INIMF only) 176 〉 +≡
attr loc(end attr)← hash end + 1; parent (end attr)← null ;

230. Variables of type pair will have values that point to four-word nodes containing two numeric values.
The first of these values has name type = x part sector and the second has name type = y part sector ; the
link in the first points back to the node whose value points to this four-word node.

Variables of type transform are similar, but in this case their value points to a 12-word node containing
six values, identified by x part sector , y part sector , xx part sector , xy part sector , yx part sector , and
yy part sector .

When an entire structured variable is saved, the root indication is temporarily replaced by saved root .
Some variables have no name; they just are used for temporary storage while expressions are being

evaluated. We call them capsules.

define x part loc(#) ≡ # {where the xpart is found in a pair or transform node }
define y part loc(#) ≡ # + 2 {where the ypart is found in a pair or transform node }
define xx part loc(#) ≡ # + 4 {where the xxpart is found in a transform node }
define xy part loc(#) ≡ # + 6 {where the xypart is found in a transform node }
define yx part loc(#) ≡ # + 8 {where the yxpart is found in a transform node }
define yy part loc(#) ≡ # + 10 {where the yypart is found in a transform node }
define pair node size = 4 { the number of words in a pair node }
define transform node size = 12 { the number of words in a transform node }

〈Global variables 13 〉 +≡
big node size : array [transform type . . pair type] of small number ;

231. The big node size array simply contains two constants that METAFONT occasionally needs to know.

〈Set initial values of key variables 21 〉 +≡
big node size [transform type]← transform node size ; big node size [pair type]← pair node size ;

232. If type (p) = pair type or transform type and if value (p) = null , the procedure call init big node (p)
will allocate a pair or transform node for p. The individual parts of such nodes are initially of type
independent .

procedure init big node (p : pointer);
var q: pointer ; { the new node }
s: small number ; { its size }

begin s← big node size [type (p)]; q ← get node (s);
repeat s← s− 2; 〈Make variable q + s newly independent 586 〉;

name type (q + s)← half (s) + x part sector ; link (q + s)← null ;
until s = 0;
link (q)← p; value (p)← q;
end;

§233 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 97

233. The id transform function creates a capsule for the identity transformation.

function id transform : pointer ;
var p, q, r: pointer ; { list manipulation registers }
begin p← get node (value node size); type (p)← transform type ; name type (p)← capsule ;
value (p)← null ; init big node (p); q ← value (p); r ← q + transform node size ;
repeat r ← r − 2; type (r)← known ; value (r)← 0;
until r = q;
value (xx part loc(q))← unity ; value (yy part loc(q))← unity ; id transform ← p;
end;

234. Tokens are of type tag token when they first appear, but they point to null until they are first used
as the root of a variable. The following subroutine establishes the root node on such grand occasions.

procedure new root (x : pointer);
var p: pointer ; { the new node }
begin p← get node (value node size); type (p)← undefined ; name type (p)← root ; link (p)← x;
equiv (x)← p;
end;

235. These conventions for variable representation are illustrated by the print variable name routine,
which displays the full name of a variable given only a pointer to its two-word value packet.

procedure print variable name (p : pointer);
label found , exit ;
var q: pointer ; { a token list that will name the variable’s suffix }
r: pointer ; { temporary for token list creation }

begin while name type (p) ≥ x part sector do
〈Preface the output with a part specifier; return in the case of a capsule 237 〉;

q ← null ;
while name type (p) > saved root do
〈Ascend one level, pushing a token onto list q and replacing p by its parent 236 〉;

r ← get avail ; info(r)← link (p); link (r)← q;
if name type (p) = saved root then print ("(SAVED)");
show token list (r,null , el gordo , tally); flush token list (r);

exit : end;

236. 〈Ascend one level, pushing a token onto list q and replacing p by its parent 236 〉 ≡
begin if name type (p) = subscr then

begin r ← new num tok (subscript (p));
repeat p← link (p);
until name type (p) = attr ;
end

else if name type (p) = structured root then
begin p← link (p); goto found ;
end

else begin if name type (p) 6= attr then confusion ("var");
r ← get avail ; info(r)← attr loc(p);
end;

link (r)← q; q ← r;
found : p← parent (p);

end

This code is used in section 235.

98 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §237

237. 〈Preface the output with a part specifier; return in the case of a capsule 237 〉 ≡
begin case name type (p) of
x part sector : print char ("x");
y part sector : print char ("y");
xx part sector : print ("xx");
xy part sector : print ("xy");
yx part sector : print ("yx");
yy part sector : print ("yy");
capsule : begin print ("%CAPSULE"); print int (p− null); return;

end;
end; { there are no other cases }
print ("part "); p← link (p− 2 ∗ (name type (p)− x part sector));
end

This code is used in section 235.

238. The interesting function returns true if a given variable is not in a capsule, or if the user wants to
trace capsules.

function interesting (p : pointer): boolean ;
var t: small number ; { a name type }
begin if internal [tracing capsules] > 0 then interesting ← true
else begin t← name type (p);

if t ≥ x part sector then
if t 6= capsule then t← name type (link (p− 2 ∗ (t− x part sector)));

interesting ← (t 6= capsule);
end;

end;

239. Now here is a subroutine that converts an unstructured type into an equivalent structured type, by
inserting a structured node that is capable of growing. This operation is done only when name type (p) = root ,
subscr , or attr .

The procedure returns a pointer to the new node that has taken node p’s place in the structure. Node p
itself does not move, nor are its value or type fields changed in any way.

function new structure (p : pointer): pointer ;
var q, r: pointer ; { list manipulation registers }
begin case name type (p) of
root : begin q ← link (p); r ← get node (value node size); equiv (q)← r;

end;
subscr : 〈Link a new subscript node r in place of node p 240 〉;
attr : 〈Link a new attribute node r in place of node p 241 〉;
othercases confusion ("struct")
endcases;
link (r)← link (p); type (r)← structured ; name type (r)← name type (p); attr head (r)← p;
name type (p)← structured root ;
q ← get node (attr node size); link (p)← q; subscr head (r)← q; parent (q)← r; type (q)← undefined ;
name type (q)← attr ; link (q)← end attr ; attr loc(q)← collective subscript ; new structure ← r;
end;

§240 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 99

240. 〈Link a new subscript node r in place of node p 240 〉 ≡
begin q ← p;
repeat q ← link (q);
until name type (q) = attr ;
q ← parent (q); r ← subscr head loc(q); { link (r) = subscr head (q) }
repeat q ← r; r ← link (r);
until r = p;
r ← get node (subscr node size); link (q)← r; subscript (r)← subscript (p);
end

This code is used in section 239.

241. If the attribute is collective subscript , there are two pointers to node p, so we must change both of
them.

〈Link a new attribute node r in place of node p 241 〉 ≡
begin q ← parent (p); r ← attr head (q);
repeat q ← r; r ← link (r);
until r = p;
r ← get node (attr node size); link (q)← r;
mem [attr loc loc(r)]← mem [attr loc loc(p)]; { copy attr loc and parent }
if attr loc(p) = collective subscript then

begin q ← subscr head loc(parent (p));
while link (q) 6= p do q ← link (q);
link (q)← r;
end;

end

This code is used in section 239.

100 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §242

242. The find variable routine is given a pointer t to a nonempty token list of suffixes; it returns a pointer to
the corresponding two-word value. For example, if t points to token x followed by a numeric token containing
the value 7, find variable finds where the value of x7 is stored in memory. This may seem a simple task,
and it usually is, except when x7 has never been referenced before. Indeed, x may never have even been
subscripted before; complexities arise with respect to updating the collective subscript information.

If a macro type is detected anywhere along path t, or if the first item on t isn’t a tag token , the value null
is returned. Otherwise p will be a non-null pointer to a node such that undefined < type (p) < structured .

define abort find ≡
begin find variable ← null ; return; end

function find variable (t : pointer): pointer ;
label exit ;
var p, q, r, s: pointer ; { nodes in the “value” line }

pp , qq , rr , ss : pointer ; { nodes in the “collective” line }
n: integer ; { subscript or attribute }
save word : memory word ; { temporary storage for a word of mem }

begin p← info(t); t← link (t);
if eq type (p) mod outer tag 6= tag token then abort find ;
if equiv (p) = null then new root (p);
p← equiv (p); pp ← p;
while t 6= null do

begin 〈Make sure that both nodes p and pp are of structured type 243 〉;
if t < hi mem min then 〈Descend one level for the subscript value (t) 244 〉
else 〈Descend one level for the attribute info(t) 245 〉;
t← link (t);
end;

if type (pp) ≥ structured then
if type (pp) = structured then pp ← attr head (pp) else abort find ;

if type (p) = structured then p← attr head (p);
if type (p) = undefined then

begin if type (pp) = undefined then
begin type (pp)← numeric type ; value (pp)← null ;
end;

type (p)← type (pp); value (p)← null ;
end;

find variable ← p;
exit : end;

243. Although pp and p begin together, they diverge when a subscript occurs; pp stays in the collective
line while p goes through actual subscript values.

〈Make sure that both nodes p and pp are of structured type 243 〉 ≡
if type (pp) 6= structured then

begin if type (pp) > structured then abort find ;
ss ← new structure (pp);
if p = pp then p← ss ;
pp ← ss ;
end; { now type (pp) = structured }

if type (p) 6= structured then { it cannot be > structured }
p← new structure (p) { now type (p) = structured }

This code is used in section 242.

§244 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 101

244. We want this part of the program to be reasonably fast, in case there are lots of subscripts at the
same level of the data structure. Therefore we store an “infinite” value in the word that appears at the end
of the subscript list, even though that word isn’t part of a subscript node.

〈Descend one level for the subscript value (t) 244 〉 ≡
begin n← value (t); pp ← link (attr head (pp)); {now attr loc(pp) = collective subscript }
q ← link (attr head (p)); save word ← mem [subscript loc(q)]; subscript (q)← el gordo ;
s← subscr head loc(p); { link (s) = subscr head (p) }
repeat r ← s; s← link (s);
until n ≤ subscript (s);
if n = subscript (s) then p← s
else begin p← get node (subscr node size); link (r)← p; link (p)← s; subscript (p)← n;

name type (p)← subscr ; type (p)← undefined ;
end;

mem [subscript loc(q)]← save word ;
end

This code is used in section 242.

245. 〈Descend one level for the attribute info(t) 245 〉 ≡
begin n← info(t); ss ← attr head (pp);
repeat rr ← ss ; ss ← link (ss);
until n ≤ attr loc(ss);
if n < attr loc(ss) then

begin qq ← get node (attr node size); link (rr)← qq ; link (qq)← ss ; attr loc(qq)← n;
name type (qq)← attr ; type (qq)← undefined ; parent (qq)← pp ; ss ← qq ;
end;

if p = pp then
begin p← ss ; pp ← ss ;
end

else begin pp ← ss ; s← attr head (p);
repeat r ← s; s← link (s);
until n ≤ attr loc(s);
if n = attr loc(s) then p← s
else begin q ← get node (attr node size); link (r)← q; link (q)← s; attr loc(q)← n;

name type (q)← attr ; type (q)← undefined ; parent (q)← p; p← q;
end;

end;
end

This code is used in section 242.

102 PART 15: DATA STRUCTURES FOR VARIABLES METAFONT §246

246. Variables lose their former values when they appear in a type declaration, or when they are defined
to be macros or let equal to something else. A subroutine will be defined later that recycles the storage asso-
ciated with any particular type or value ; our goal now is to study a higher level process called flush variable ,
which selectively frees parts of a variable structure.

This routine has some complexity because of examples such as ‘numeric x[]a[]b’, which recycles all
variables of the form x[i]a[j]b (and no others), while ‘vardef x[]a[]=...’ discards all variables of the
form x[i]a[j] followed by an arbitrary suffix, except for the collective node x[]a[] itself. The obvious way
to handle such examples is to use recursion; so that’s what we do.

Parameter p points to the root information of the variable; parameter t points to a list of one-word nodes
that represent suffixes, with info = collective subscript for subscripts.

〈Declare subroutines for printing expressions 257 〉
〈Declare basic dependency-list subroutines 594 〉
〈Declare the recycling subroutines 268 〉
〈Declare the procedure called flush cur exp 808 〉
〈Declare the procedure called flush below variable 247 〉
procedure flush variable (p, t : pointer ; discard suffixes : boolean);

label exit ;
var q, r: pointer ; { list manipulation }
n: halfword ; { attribute to match }

begin while t 6= null do
begin if type (p) 6= structured then return;
n← info(t); t← link (t);
if n = collective subscript then

begin r ← subscr head loc(p); q ← link (r); { q = subscr head (p) }
while name type (q) = subscr do

begin flush variable (q, t, discard suffixes);
if t = null then

if type (q) = structured then r ← q
else begin link (r)← link (q); free node (q, subscr node size);

end
else r ← q;
q ← link (r);
end;

end;
p← attr head (p);
repeat r ← p; p← link (p);
until attr loc(p) ≥ n;
if attr loc(p) 6= n then return;
end;

if discard suffixes then flush below variable (p)
else begin if type (p) = structured then p← attr head (p);

recycle value (p);
end;

exit : end;

§247 METAFONT PART 15: DATA STRUCTURES FOR VARIABLES 103

247. The next procedure is simpler; it wipes out everything but p itself, which becomes undefined.

〈Declare the procedure called flush below variable 247 〉 ≡
procedure flush below variable (p : pointer);

var q, r: pointer ; { list manipulation registers }
begin if type (p) 6= structured then recycle value (p) { this sets type (p) = undefined }
else begin q ← subscr head (p);

while name type (q) = subscr do
begin flush below variable (q); r ← q; q ← link (q); free node (r, subscr node size);
end;

r ← attr head (p); q ← link (r); recycle value (r);
if name type (p) ≤ saved root then free node (r, value node size)
else free node (r, subscr node size); {we assume that subscr node size = attr node size }
repeat flush below variable (q); r ← q; q ← link (q); free node (r, attr node size);
until q = end attr ;
type (p)← undefined ;
end;

end;
This code is used in section 246.

248. Just before assigning a new value to a variable, we will recycle the old value and make the old value
undefined. The und type routine determines what type of undefined value should be given, based on the
current type before recycling.

function und type (p : pointer): small number ;
begin case type (p) of
undefined , vacuous : und type ← undefined ;
boolean type , unknown boolean : und type ← unknown boolean ;
string type , unknown string : und type ← unknown string ;
pen type , unknown pen , future pen : und type ← unknown pen ;
path type , unknown path : und type ← unknown path ;
picture type , unknown picture : und type ← unknown picture ;
transform type , pair type ,numeric type : und type ← type (p);
known , dependent , proto dependent , independent : und type ← numeric type ;
end; { there are no other cases }
end;

249. The clear symbol routine is used when we want to redefine the equivalent of a symbolic token. It
must remove any variable structure or macro definition that is currently attached to that symbol. If the
saving parameter is true, a subsidiary structure is saved instead of destroyed.

procedure clear symbol (p : pointer ; saving : boolean);
var q: pointer ; { equiv (p) }
begin q ← equiv (p);
case eq type (p) mod outer tag of
defined macro , secondary primary macro , tertiary secondary macro , expression tertiary macro : if

¬saving then delete mac ref (q);
tag token : if q 6= null then

if saving then name type (q)← saved root
else begin flush below variable (q); free node (q, value node size);

end;
othercases do nothing
endcases;
eqtb [p]← eqtb [frozen undefined];
end;

104 PART 16: SAVING AND RESTORING EQUIVALENTS METAFONT §250

250. Saving and restoring equivalents. The nested structure provided by begingroup and
endgroup allows eqtb entries to be saved and restored, so that temporary changes can be made without
difficulty. When the user requests a current value to be saved, METAFONT puts that value into its “save
stack.” An appearance of endgroup ultimately causes the old values to be removed from the save stack
and put back in their former places.

The save stack is a linked list containing three kinds of entries, distinguished by their info fields. If p
points to a saved item, then

info(p) = 0 stands for a group boundary; each begingroup contributes such an item to the save stack and
each endgroup cuts back the stack until the most recent such entry has been removed.

info(p) = q, where 1 ≤ q ≤ hash end , means that mem [p + 1] holds the former contents of eqtb [q]. Such
save stack entries are generated by save commands.

info(p) = hash end + q, where q > 0, means that value (p) is a scaled integer to be restored to internal
parameter number q. Such entries are generated by interim commands.

The global variable save ptr points to the top item on the save stack.

define save node size = 2 { number of words per non-boundary save-stack node }
define saved equiv (#) ≡ mem [# + 1].hh {where an eqtb entry gets saved }
define save boundary item (#) ≡

begin #← get avail ; info(#)← 0; link (#)← save ptr ; save ptr ← #;
end

〈Global variables 13 〉 +≡
save ptr : pointer ; { the most recently saved item }

251. 〈Set initial values of key variables 21 〉 +≡
save ptr ← null ;

252. The save variable routine is given a hash address q; it salts this address away in the save stack,
together with its current equivalent, then makes token q behave as though it were brand new.

Nothing is stacked when save ptr = null , however; there’s no way to remove things from the stack when
the program is not inside a group, so there’s no point in wasting the space.

procedure save variable (q : pointer);
var p: pointer ; { temporary register }
begin if save ptr 6= null then

begin p← get node (save node size); info(p)← q; link (p)← save ptr ; saved equiv (p)← eqtb [q];
save ptr ← p;
end;

clear symbol (q, (save ptr 6= null));
end;

253. Similarly, save internal is given the location q of an internal quantity like tracing pens . It creates a
save stack entry of the third kind.

procedure save internal (q : halfword);
var p: pointer ; { new item for the save stack }
begin if save ptr 6= null then

begin p← get node (save node size); info(p)← hash end + q; link (p)← save ptr ;
value (p)← internal [q]; save ptr ← p;
end;

end;

§254 METAFONT PART 16: SAVING AND RESTORING EQUIVALENTS 105

254. At the end of a group, the unsave routine restores all of the saved equivalents in reverse order. This
routine will be called only when there is at least one boundary item on the save stack.

procedure unsave ;
var q: pointer ; { index to saved item }
p: pointer ; { temporary register }

begin while info(save ptr) 6= 0 do
begin q ← info(save ptr);
if q > hash end then

begin if internal [tracing restores] > 0 then
begin begin diagnostic ; print nl ("{restoring "); slow print (int name [q − (hash end)]);
print char ("="); print scaled (value (save ptr)); print char ("}"); end diagnostic(false);
end;

internal [q − (hash end)]← value (save ptr);
end

else begin if internal [tracing restores] > 0 then
begin begin diagnostic ; print nl ("{restoring "); slow print (text (q)); print char ("}");
end diagnostic(false);
end;

clear symbol (q, false); eqtb [q]← saved equiv (save ptr);
if eq type (q) mod outer tag = tag token then

begin p← equiv (q);
if p 6= null then name type (p)← root ;
end;

end;
p← link (save ptr); free node (save ptr , save node size); save ptr ← p;
end;

p← link (save ptr); free avail (save ptr); save ptr ← p;
end;

106 PART 17: DATA STRUCTURES FOR PATHS METAFONT §255

255. Data structures for paths. When a METAFONT user specifies a path, METAFONT will create a
list of knots and control points for the associated cubic spline curves. If the knots are z0, z1, . . . , zn, there
are control points z+k and z−k+1 such that the cubic splines between knots zk and zk+1 are defined by Bézier’s
formula

z(t) = B(zk, z
+
k , z

−
k+1, zk+1; t)

= (1− t)3zk + 3(1− t)2tz+k + 3(1− t)t2z−k+1 + t3zk+1

for 0 ≤ t ≤ 1.
There is a 7-word node for each knot zk, containing one word of control information and six words for the

x and y coordinates of z−k and zk and z+k . The control information appears in the left type and right type
fields, which each occupy a quarter of the first word in the node; they specify properties of the curve as it
enters and leaves the knot. There’s also a halfword link field, which points to the following knot.

If the path is a closed contour, knots 0 and n are identical; i.e., the link in knot n − 1 points to knot 0.
But if the path is not closed, the left type of knot 0 and the right type of knot n are equal to endpoint . In
the latter case the link in knot n points to knot 0, and the control points z−0 and z+n are not used.

define left type (#) ≡ mem [#].hh .b0 { characterizes the path entering this knot }
define right type (#) ≡ mem [#].hh .b1 { characterizes the path leaving this knot }
define endpoint = 0 { left type at path beginning and right type at path end }
define x coord (#) ≡ mem [# + 1].sc { the x coordinate of this knot }
define y coord (#) ≡ mem [# + 2].sc { the y coordinate of this knot }
define left x (#) ≡ mem [# + 3].sc { the x coordinate of previous control point }
define left y (#) ≡ mem [# + 4].sc { the y coordinate of previous control point }
define right x (#) ≡ mem [# + 5].sc { the x coordinate of next control point }
define right y (#) ≡ mem [# + 6].sc { the y coordinate of next control point }
define knot node size = 7 { number of words in a knot node }

§256 METAFONT PART 17: DATA STRUCTURES FOR PATHS 107

256. Before the Bézier control points have been calculated, the memory space they will ultimately occupy
is taken up by information that can be used to compute them. There are four cases:

• If right type = open , the curve should leave the knot in the same direction it entered; METAFONT will
figure out a suitable direction.

• If right type = curl , the curve should leave the knot in a direction depending on the angle at which it
enters the next knot and on the curl parameter stored in right curl .

• If right type = given , the curve should leave the knot in a nonzero direction stored as an angle in
right given .

• If right type = explicit , the Bézier control point for leaving this knot has already been computed; it is
in the right x and right y fields.

The rules for left type are similar, but they refer to the curve entering the knot, and to left fields instead of
right fields.

Non-explicit control points will be chosen based on “tension” parameters in the left tension and
right tension fields. The ‘atleast’ option is represented by negative tension values.

For example, the METAFONT path specification

z0..z1..tension atleast 1..{curl 2}z2..z3{−1,−2}..tension 3 and 4..p,

where p is the path ‘z4..controls z45 and z54..z5’, will be represented by the six knots

left type left info x coord , y coord right type right info

endpoint , x0, y0 curl 1.0, 1.0
open , 1.0 x1, y1 open ,−1.0
curl 2.0,−1.0 x2, y2 curl 2.0, 1.0
given d, 1.0 x3, y3 given d, 3.0
open , 4.0 x4, y4 explicit x45, y45
explicit x54, y54 x5, y5 endpoint ,

Here d is the angle obtained by calling n arg (−unity ,−two). Of course, this example is more complicated
than anything a normal user would ever write.

These types must satisfy certain restrictions because of the form of METAFONT’s path syntax: (i) open
type never appears in the same node together with endpoint , given , or curl . (ii) The right type of a node
is explicit if and only if the left type of the following node is explicit . (iii) endpoint types occur only at the
ends, as mentioned above.

define left curl ≡ left x { curl information when entering this knot }
define left given ≡ left x { given direction when entering this knot }
define left tension ≡ left y { tension information when entering this knot }
define right curl ≡ right x { curl information when leaving this knot }
define right given ≡ right x { given direction when leaving this knot }
define right tension ≡ right y { tension information when leaving this knot }
define explicit = 1 { left type or right type when control points are known }
define given = 2 { left type or right type when a direction is given }
define curl = 3 { left type or right type when a curl is desired }
define open = 4 { left type or right type when METAFONT should choose the direction }

108 PART 17: DATA STRUCTURES FOR PATHS METAFONT §257

257. Here is a diagnostic routine that prints a given knot list in symbolic form. It illustrates the conventions
discussed above, and checks for anomalies that might arise while METAFONT is being debugged.

〈Declare subroutines for printing expressions 257 〉 ≡
procedure print path (h : pointer ; s : str number ; nuline : boolean);

label done , done1 ;
var p, q: pointer ; { for list traversal }
begin print diagnostic("Path", s,nuline); print ln ; p← h;
repeat q ← link (p);

if (p = null) ∨ (q = null) then
begin print nl ("???"); goto done ; { this won’t happen }
end;

〈Print information for adjacent knots p and q 258 〉;
p← q;
if (p 6= h) ∨ (left type (h) 6= endpoint) then 〈Print two dots, followed by given or curl if present 259 〉;

until p = h;
if left type (h) 6= endpoint then print ("cycle");

done : end diagnostic(true);
end;

See also sections 332, 388, 473, 589, 801, and 807.

This code is used in section 246.

258. 〈Print information for adjacent knots p and q 258 〉 ≡
print two(x coord (p), y coord (p));
case right type (p) of
endpoint : begin if left type (p) = open then print ("{open?}"); { can’t happen }

if (left type (q) 6= endpoint) ∨ (q 6= h) then q ← null ; { force an error }
goto done1 ;
end;

explicit : 〈Print control points between p and q, then goto done1 261 〉;
open : 〈Print information for a curve that begins open 262 〉;
curl , given : 〈Print information for a curve that begins curl or given 263 〉;
othercases print ("???") { can’t happen }
endcases;
if left type (q) ≤ explicit then print ("..control?") { can’t happen }
else if (right tension (p) 6= unity) ∨ (left tension (q) 6= unity) then 〈Print tension between p and q 260 〉;

done1 :

This code is used in section 257.

259. Since n sin cos produces fraction results, which we will print as if they were scaled , the magnitude
of a given direction vector will be 4096.

〈Print two dots, followed by given or curl if present 259 〉 ≡
begin print nl (" ..");
if left type (p) = given then

begin n sin cos (left given (p)); print char ("{"); print scaled (n cos); print char (",");
print scaled (n sin); print char ("}");
end

else if left type (p) = curl then
begin print ("{curl "); print scaled (left curl (p)); print char ("}");
end;

end

This code is used in section 257.

§260 METAFONT PART 17: DATA STRUCTURES FOR PATHS 109

260. 〈Print tension between p and q 260 〉 ≡
begin print ("..tension ");
if right tension (p) < 0 then print ("atleast");
print scaled (abs (right tension (p)));
if right tension (p) 6= left tension (q) then

begin print (" and ");
if left tension (q) < 0 then print ("atleast");
print scaled (abs (left tension (q)));
end;

end

This code is used in section 258.

261. 〈Print control points between p and q, then goto done1 261 〉 ≡
begin print ("..controls "); print two(right x (p), right y (p)); print (" and ");
if left type (q) 6= explicit then print ("??") { can’t happen }
else print two(left x (q), left y (q));
goto done1 ;
end

This code is used in section 258.

262. 〈Print information for a curve that begins open 262 〉 ≡
if (left type (p) 6= explicit) ∧ (left type (p) 6= open) then print ("{open?}") { can’t happen }

This code is used in section 258.

263. A curl of 1 is shown explicitly, so that the user sees clearly that METAFONT’s default curl is present.

〈Print information for a curve that begins curl or given 263 〉 ≡
begin if left type (p) = open then print ("??"); { can’t happen }
if right type (p) = curl then

begin print ("{curl "); print scaled (right curl (p));
end

else begin n sin cos (right given (p)); print char ("{"); print scaled (n cos); print char (",");
print scaled (n sin);
end;

print char ("}");
end

This code is used in section 258.

264. If we want to duplicate a knot node, we can say copy knot :

function copy knot (p : pointer): pointer ;
var q: pointer ; { the copy }
k: 0 . . knot node size − 1; { runs through the words of a knot node }

begin q ← get node (knot node size);
for k ← 0 to knot node size − 1 do mem [q + k]← mem [p+ k];
copy knot ← q;
end;

110 PART 17: DATA STRUCTURES FOR PATHS METAFONT §265

265. The copy path routine makes a clone of a given path.

function copy path (p : pointer): pointer ;
label exit ;
var q, pp , qq : pointer ; { for list manipulation }
begin q ← get node (knot node size); { this will correspond to p }
qq ← q; pp ← p;
loop begin left type (qq)← left type (pp); right type (qq)← right type (pp);

x coord (qq)← x coord (pp); y coord (qq)← y coord (pp);
left x (qq)← left x (pp); left y (qq)← left y (pp);
right x (qq)← right x (pp); right y (qq)← right y (pp);
if link (pp) = p then

begin link (qq)← q; copy path ← q; return;
end;

link (qq)← get node (knot node size); qq ← link (qq); pp ← link (pp);
end;

exit : end;

266. Similarly, there’s a way to copy the reverse of a path. This procedure returns a pointer to the first
node of the copy, if the path is a cycle, but to the final node of a non-cyclic copy. The global variable path tail
will point to the final node of the original path; this trick makes it easier to implement ‘doublepath’.

All node types are assumed to be endpoint or explicit only.

function htap ypoc(p : pointer): pointer ;
label exit ;
var q, pp , qq , rr : pointer ; { for list manipulation }
begin q ← get node (knot node size); { this will correspond to p }
qq ← q; pp ← p;
loop begin right type (qq)← left type (pp); left type (qq)← right type (pp);

x coord (qq)← x coord (pp); y coord (qq)← y coord (pp);
right x (qq)← left x (pp); right y (qq)← left y (pp);
left x (qq)← right x (pp); left y (qq)← right y (pp);
if link (pp) = p then

begin link (q)← qq ; path tail ← pp ; htap ypoc ← q; return;
end;

rr ← get node (knot node size); link (rr)← qq ; qq ← rr ; pp ← link (pp);
end;

exit : end;

267. 〈Global variables 13 〉 +≡
path tail : pointer ; { the node that links to the beginning of a path }

268. When a cyclic list of knot nodes is no longer needed, it can be recycled by calling the following
subroutine.

〈Declare the recycling subroutines 268 〉 ≡
procedure toss knot list (p : pointer);

var q: pointer ; { the node being freed }
r: pointer ; { the next node }

begin q ← p;
repeat r ← link (q); free node (q, knot node size); q ← r;
until q = p;
end;

See also sections 385, 487, 620, and 809.

This code is used in section 246.

§269 METAFONT PART 18: CHOOSING CONTROL POINTS 111

269. Choosing control points. Now we must actually delve into one of METAFONT’s more difficult
routines, the make choices procedure that chooses angles and control points for the splines of a curve when
the user has not specified them explicitly. The parameter to make choices points to a list of knots and path
information, as described above.

A path decomposes into independent segments at “breakpoint” knots, which are knots whose left and
right angles are both prespecified in some way (i.e., their left type and right type aren’t both open).

〈Declare the procedure called solve choices 284 〉
procedure make choices (knots : pointer);

label done ;
var h: pointer ; { the first breakpoint }
p, q: pointer ; { consecutive breakpoints being processed }
〈Other local variables for make choices 280 〉

begin check arith ; {make sure that arith error = false }
if internal [tracing choices] > 0 then print path (knots , ", before choices", true);
〈 If consecutive knots are equal, join them explicitly 271 〉;
〈Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken

cycle 272 〉;
p← h;
repeat 〈Fill in the control points between p and the next breakpoint, then advance p to that

breakpoint 273 〉;
until p = h;
if internal [tracing choices] > 0 then print path (knots , ", after choices", true);
if arith error then 〈Report an unexpected problem during the choice-making 270 〉;
end;

270. 〈Report an unexpected problem during the choice-making 270 〉 ≡
begin print err ("Some number got too big");
help2 ("The path that I just computed is out of range.")
("So it will probably look funny. Proceed, for a laugh."); put get error ; arith error ← false ;
end

This code is used in section 269.

112 PART 18: CHOOSING CONTROL POINTS METAFONT §271

271. Two knots in a row with the same coordinates will always be joined by an explicit “curve” whose
control points are identical with the knots.

〈 If consecutive knots are equal, join them explicitly 271 〉 ≡
p← knots ;
repeat q ← link (p);

if x coord (p) = x coord (q) then
if y coord (p) = y coord (q) then

if right type (p) > explicit then
begin right type (p)← explicit ;
if left type (p) = open then

begin left type (p)← curl ; left curl (p)← unity ;
end;

left type (q)← explicit ;
if right type (q) = open then

begin right type (q)← curl ; right curl (q)← unity ;
end;

right x (p)← x coord (p); left x (q)← x coord (p);
right y (p)← y coord (p); left y (q)← y coord (p);
end;

p← q;
until p = knots

This code is used in section 269.

272. If there are no breakpoints, it is necessary to compute the direction angles around an entire cycle. In
this case the left type of the first node is temporarily changed to end cycle .

define end cycle = open + 1

〈Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken
cycle 272 〉 ≡

h← knots ;
loop begin if left type (h) 6= open then goto done ;

if right type (h) 6= open then goto done ;
h← link (h);
if h = knots then

begin left type (h)← end cycle ; goto done ;
end;

end;
done :

This code is used in section 269.

273. If right type (p) < given and q = link (p), we must have right type (p) = left type (q) = explicit or
endpoint .

〈Fill in the control points between p and the next breakpoint, then advance p to that breakpoint 273 〉 ≡
q ← link (p);
if right type (p) ≥ given then

begin while (left type (q) = open) ∧ (right type (q) = open) do q ← link (q);
〈Fill in the control information between consecutive breakpoints p and q 278 〉;
end;

p← q

This code is used in section 269.

§274 METAFONT PART 18: CHOOSING CONTROL POINTS 113

274. Before we can go further into the way choices are made, we need to consider the underlying theory.
The basic ideas implemented in make choices are due to John Hobby, who introduced the notion of “mock
curvature” at a knot. Angles are chosen so that they preserve mock curvature when a knot is passed, and
this has been found to produce excellent results.

It is convenient to introduce some notations that simplify the necessary formulas. Let dk,k+1 = |zk+1−zk|
be the (nonzero) distance between knots k and k + 1; and let

zk+1 − zk
zk − zk−1

=
dk,k+1

dk−1,k
eiψk

so that a polygonal line from zk−1 to zk to zk+1 turns left through an angle of ψk. We assume that
|ψk| ≤ 180◦. The control points for the spline from zk to zk+1 will be denoted by

z+k = zk + 1
3ρke

iθk(zk+1 − zk),

z−k+1 = zk+1 − 1
3σk+1e

−iφk+1(zk+1 − zk),

where ρk and σk+1 are nonnegative “velocity ratios” at the beginning and end of the curve, while θk and
φk+1 are the corresponding “offset angles.” These angles satisfy the condition

θk + φk + ψk = 0, (∗)

whenever the curve leaves an intermediate knot k in the direction that it enters.

275. Let αk and βk+1 be the reciprocals of the “tension” of the curve at its beginning and ending points.
This means that ρk = αkf(θk, φk+1) and σk+1 = βk+1f(φk+1, θk), where f(θ, φ) is METAFONT’s standard
velocity function defined in the velocity subroutine. The cubic spline B(zk , z

+
k , z

−
k+1, zk+1; t) has curvature

2σk+1 sin(θk + φk+1)− 6 sin θk
ρ2kdk,k+1

and
2ρk sin(θk + φk+1)− 6 sinφk+1

σ2
k+1dk,k+1

at t = 0 and t = 1, respectively. The mock curvature is the linear approximation to this true curvature that
arises in the limit for small θk and φk+1, if second-order terms are discarded. The standard velocity function
satisfies

f(θ, φ) = 1 +O(θ2 + θφ+ φ2);

hence the mock curvatures are respectively

2βk+1(θk + φk+1)− 6θk
α2
kdk,k+1

and
2αk(θk + φk+1)− 6φk+1

β2
k+1dk,k+1

. (∗∗)

114 PART 18: CHOOSING CONTROL POINTS METAFONT §276

276. The turning angles ψk are given, and equation (∗) above determines φk when θk is known, so the
task of angle selection is essentially to choose appropriate values for each θk. When equation (∗) is used to
eliminate φ variables from (∗∗), we obtain a system of linear equations of the form

Akθk−1 + (Bk + Ck)θk +Dkθk+1 = −Bkψk −Dkψk+1,

where

Ak =
αk−1

β2
kdk−1,k

, Bk =
3− αk−1
β2
kdk−1,k

, Ck =
3− βk+1

α2
kdk,k+1

, Dk =
βk+1

α2
kdk,k+1

.

The tensions are always 3
4 or more, hence each α and β will be at most 4

3 . It follows that Bk ≥ 5
4Ak and

Ck ≥ 5
4Dk; hence the equations are diagonally dominant; hence they have a unique solution. Moreover, in

most cases the tensions are equal to 1, so that Bk = 2Ak and Ck = 2Dk. This makes the solution numerically
stable, and there is an exponential damping effect: The data at knot k ± j affects the angle at knot k by a
factor of O(2−j).

277. However, we still must consider the angles at the starting and ending knots of a non-cyclic path.
These angles might be given explicitly, or they might be specified implicitly in terms of an amount of “curl.”

Let’s assume that angles need to be determined for a non-cyclic path starting at z0 and ending at zn.
Then equations of the form

Akθk−1 + (Bk + Ck)θk +Dkθk+1 = Rk

have been given for 0 < k < n, and it will be convenient to introduce equations of the same form for k = 0
and k = n, where

A0 = B0 = Cn = Dn = 0.

If θ0 is supposed to have a given value E0, we simply define C0 = 1, D0 = 0, and R0 = E0. Otherwise a curl
parameter, γ0, has been specified at z0; this means that the mock curvature at z0 should be γ0 times the
mock curvature at z1; i.e.,

2β1(θ0 + φ1)− 6θ0
α2
0d01

= γ0
2α0(θ0 + φ1)− 6φ1

β2
1d01

.

This equation simplifies to

(α0χ0 + 3− β1)θ0 +
(
(3− α0)χ0 + β1

)
θ1 = −

(
(3− α0)χ0 + β1

)
ψ1,

where χ0 = α2
0γ0/β

2
1 ; so we can set C0 = χ0α0 + 3 − β1, D0 = (3 − α0)χ0 + β1, R0 = −D0ψ1. It can be

shown that C0 > 0 and C0B1 −A1D0 > 0 when γ0 ≥ 0, hence the linear equations remain nonsingular.
Similar considerations apply at the right end, when the final angle φn may or may not need to be

determined. It is convenient to let ψn = 0, hence θn = −φn. We either have an explicit equation θn = En,
or we have (

(3− βn)χn + αn−1
)
θn−1 + (βnχn + 3− αn−1)θn = 0, χn =

β2
nγn
α2
n−1

.

When make choices chooses angles, it must compute the coefficients of these linear equations, then solve
the equations. To compute the coefficients, it is necessary to compute arctangents of the given turning
angles ψk. When the equations are solved, the chosen directions θk are put back into the form of control
points by essentially computing sines and cosines.

§278 METAFONT PART 18: CHOOSING CONTROL POINTS 115

278. OK, we are ready to make the hard choices of make choices . Most of the work is relegated to
an auxiliary procedure called solve choices , which has been introduced to keep make choices from being
extremely long.

〈Fill in the control information between consecutive breakpoints p and q 278 〉 ≡
〈Calculate the turning angles ψk and the distances dk,k+1; set n to the length of the path 281 〉;
〈Remove open types at the breakpoints 282 〉;
solve choices (p, q, n)

This code is used in section 273.

279. It’s convenient to precompute quantities that will be needed several times later. The values of
delta x [k] and delta y [k] will be the coordinates of zk+1 − zk, and the magnitude of this vector will be
delta [k] = dk,k+1. The path angle ψk between zk − zk−1 and zk+1 − zk will be stored in psi [k].

〈Global variables 13 〉 +≡
delta x , delta y , delta : array [0 . . path size] of scaled ; { knot differences }
psi : array [1 . . path size] of angle ; { turning angles }

280. 〈Other local variables for make choices 280 〉 ≡
k, n: 0 . . path size ; { current and final knot numbers }
s, t: pointer ; { registers for list traversal }
delx , dely : scaled ; { directions where open meets explicit }
sine , cosine : fraction ; { trig functions of various angles }
This code is used in section 269.

281. 〈Calculate the turning angles ψk and the distances dk,k+1; set n to the length of the path 281 〉 ≡
k ← 0; s← p; n← path size ;
repeat t← link (s); delta x [k]← x coord (t)− x coord (s); delta y [k]← y coord (t)− y coord (s);

delta [k]← pyth add (delta x [k], delta y [k]);
if k > 0 then

begin sine ← make fraction (delta y [k − 1], delta [k − 1]);
cosine ← make fraction (delta x [k − 1], delta [k − 1]);
psi [k]← n arg (take fraction (delta x [k], cosine) + take fraction (delta y [k], sine),

take fraction (delta y [k], cosine)− take fraction (delta x [k], sine));
end;

incr (k); s← t;
if k = path size then overflow ("path size", path size);
if s = q then n← k;

until (k ≥ n) ∧ (left type (s) 6= end cycle);
if k = n then psi [n]← 0 else psi [k]← psi [1]

This code is used in section 278.

116 PART 18: CHOOSING CONTROL POINTS METAFONT §282

282. When we get to this point of the code, right type (p) is either given or curl or open . If it is open , we
must have left type (p) = end cycle or left type (p) = explicit . In the latter case, the open type is converted
to given ; however, if the velocity coming into this knot is zero, the open type is converted to a curl , since
we don’t know the incoming direction.

Similarly, left type (q) is either given or curl or open or end cycle . The open possibility is reduced either
to given or to curl .

〈Remove open types at the breakpoints 282 〉 ≡
if left type (q) = open then

begin delx ← right x (q)− x coord (q); dely ← right y (q)− y coord (q);
if (delx = 0) ∧ (dely = 0) then

begin left type (q)← curl ; left curl (q)← unity ;
end

else begin left type (q)← given ; left given (q)← n arg (delx , dely);
end;

end;
if (right type (p) = open) ∧ (left type (p) = explicit) then

begin delx ← x coord (p)− left x (p); dely ← y coord (p)− left y (p);
if (delx = 0) ∧ (dely = 0) then

begin right type (p)← curl ; right curl (p)← unity ;
end

else begin right type (p)← given ; right given (p)← n arg (delx , dely);
end;

end

This code is used in section 278.

283. Linear equations need to be solved whenever n > 1; and also when n = 1 and exactly one of the
breakpoints involves a curl. The simplest case occurs when n = 1 and there is a curl at both breakpoints;
then we simply draw a straight line.

But before coding up the simple cases, we might as well face the general case, since we must deal with
it sooner or later, and since the general case is likely to give some insight into the way simple cases can be
handled best.

When there is no cycle, the linear equations to be solved form a tri-diagonal system, and we can apply the
standard technique of Gaussian elimination to convert that system to a sequence of equations of the form

θ0 + u0θ1 = v0, θ1 + u1θ2 = v1, . . . , θn−1 + un−1θn = vn−1, θn = vn.

It is possible to do this diagonalization while generating the equations. Once θn is known, it is easy to
determine θn−1, . . . , θ1, θ0; thus, the equations will be solved.

The procedure is slightly more complex when there is a cycle, but the basic idea will be nearly the same.
In the cyclic case the right-hand sides will be vk+wkθ0 instead of simply vk, and we will start the process off
with u0 = v0 = 0, w0 = 1. The final equation will be not θn = vn but θn+unθ1 = vn+wnθ0; an appropriate
ending routine will take account of the fact that θn = θ0 and eliminate the w’s from the system, after which
the solution can be obtained as before.

When uk, vk, and wk are being computed, the three pointer variables r, s, t will point respectively to
knots k − 1, k, and k + 1. The u’s and w’s are scaled by 228, i.e., they are of type fraction ; the θ’s and v’s
are of type angle .

〈Global variables 13 〉 +≡
theta : array [0 . . path size] of angle ; { values of θk }
uu : array [0 . . path size] of fraction ; { values of uk }
vv : array [0 . . path size] of angle ; { values of vk }
ww : array [0 . . path size] of fraction ; { values of wk }

§284 METAFONT PART 18: CHOOSING CONTROL POINTS 117

284. Our immediate problem is to get the ball rolling by setting up the first equation or by realizing that
no equations are needed, and to fit this initialization into a framework suitable for the overall computation.

〈Declare the procedure called solve choices 284 〉 ≡
〈Declare subroutines needed by solve choices 296 〉
procedure solve choices (p, q : pointer ; n : halfword);

label found , exit ;
var k: 0 . . path size ; { current knot number }
r, s, t: pointer ; { registers for list traversal }
〈Other local variables for solve choices 286 〉

begin k ← 0; s← p;
loop begin t← link (s);

if k = 0 then 〈Get the linear equations started; or return with the control points in place, if linear
equations needn’t be solved 285 〉

else case left type (s) of
end cycle , open : 〈Set up equation to match mock curvatures at zk; then goto found with θn

adjusted to equal θ0, if a cycle has ended 287 〉;
curl : 〈Set up equation for a curl at θn and goto found 295 〉;
given : 〈Calculate the given value of θn and goto found 292 〉;
end; { there are no other cases }

r ← s; s← t; incr (k);
end;

found : 〈Finish choosing angles and assigning control points 297 〉;
exit : end;

This code is used in section 269.

285. On the first time through the loop, we have k = 0 and r is not yet defined. The first linear equation,
if any, will have A0 = B0 = 0.

〈Get the linear equations started; or return with the control points in place, if linear equations needn’t be
solved 285 〉 ≡

case right type (s) of
given : if left type (t) = given then 〈Reduce to simple case of two givens and return 301 〉

else 〈Set up the equation for a given value of θ0 293 〉;
curl : if left type (t) = curl then 〈Reduce to simple case of straight line and return 302 〉

else 〈Set up the equation for a curl at θ0 294 〉;
open : begin uu [0]← 0; vv [0]← 0; ww [0]← fraction one ;

end; { this begins a cycle }
end { there are no other cases }

This code is used in section 284.

118 PART 18: CHOOSING CONTROL POINTS METAFONT §286

286. The general equation that specifies equality of mock curvature at zk is

Akθk−1 + (Bk + Ck)θk +Dkθk+1 = −Bkψk −Dkψk+1,

as derived above. We want to combine this with the already-derived equation θk−1+uk−1θk = vk−1+wk−1θ0
in order to obtain a new equation θk + ukθk+1 = vk + wkθ0. This can be done by dividing the equation

(Bk − uk−1Ak + Ck)θk +Dkθk+1 = −Bkψk −Dkψk+1 −Akvk−1 −Akwk−1θ0

by Bk − uk−1Ak + Ck. The trick is to do this carefully with fixed-point arithmetic, avoiding the chance of
overflow while retaining suitable precision.

The calculations will be performed in several registers that provide temporary storage for intermediate
quantities.

〈Other local variables for solve choices 286 〉 ≡
aa , bb , cc ,ff , acc : fraction ; { temporary registers }
dd , ee : scaled ; { likewise, but scaled }
lt , rt : scaled ; { tension values }
This code is used in section 284.

287. 〈Set up equation to match mock curvatures at zk; then goto found with θn adjusted to equal θ0, if
a cycle has ended 287 〉 ≡

begin 〈Calculate the values aa = Ak/Bk, bb = Dk/Ck, dd = (3− αk−1)dk,k+1, ee = (3− βk+1)dk−1,k,
and cc = (Bk − uk−1Ak)/Bk 288 〉;

〈Calculate the ratio ff = Ck/(Ck +Bk − uk−1Ak) 289 〉;
uu [k]← take fraction (ff , bb); 〈Calculate the values of vk and wk 290 〉;
if left type (s) = end cycle then 〈Adjust θn to equal θ0 and goto found 291 〉;
end

This code is used in section 284.

288. Since tension values are never less than 3/4, the values aa and bb computed here are never more
than 4/5.

〈Calculate the values aa = Ak/Bk, bb = Dk/Ck, dd = (3 − αk−1)dk,k+1, ee = (3 − βk+1)dk−1,k, and
cc = (Bk − uk−1Ak)/Bk 288 〉 ≡

if abs (right tension (r)) = unity then
begin aa ← fraction half ; dd ← 2 ∗ delta [k];
end

else begin aa ← make fraction (unity , 3 ∗ abs (right tension (r))− unity);
dd ← take fraction (delta [k], fraction three −make fraction (unity , abs (right tension (r))));
end;

if abs (left tension (t)) = unity then
begin bb ← fraction half ; ee ← 2 ∗ delta [k − 1];
end

else begin bb ← make fraction (unity , 3 ∗ abs (left tension (t))− unity);
ee ← take fraction (delta [k − 1], fraction three −make fraction (unity , abs (left tension (t))));
end;

cc ← fraction one − take fraction (uu [k − 1], aa)

This code is used in section 287.

§289 METAFONT PART 18: CHOOSING CONTROL POINTS 119

289. The ratio to be calculated in this step can be written in the form

β2
k · ee

β2
k · ee + α2

k · cc · dd ,

because of the quantities just calculated. The values of dd and ee will not be needed after this step has been
performed.

〈Calculate the ratio ff = Ck/(Ck +Bk − uk−1Ak) 289 〉 ≡
dd ← take fraction (dd , cc); lt ← abs (left tension (s)); rt ← abs (right tension (s));
if lt 6= rt then {β−1k 6= α−1k }

if lt < rt then
begin ff ← make fraction (lt , rt); ff ← take fraction (ff ,ff); {α2

k/β
2
k }

dd ← take fraction (dd ,ff);
end

else begin ff ← make fraction (rt , lt); ff ← take fraction (ff ,ff); {β2
k/α

2
k }

ee ← take fraction (ee ,ff);
end;

ff ← make fraction (ee , ee + dd)

This code is used in section 287.

290. The value of uk−1 will be ≤ 1 except when k = 1 and the previous equation was specified by a curl.
In that case we must use a special method of computation to prevent overflow.

Fortunately, the calculations turn out to be even simpler in this “hard” case. The curl equation makes
w0 = 0 and v0 = −u0ψ1, hence −B1ψ1 −A1v0 = −(B1 − u0A1)ψ1 = −cc ·B1ψ1.

〈Calculate the values of vk and wk 290 〉 ≡
acc ← −take fraction (psi [k + 1], uu [k]);
if right type (r) = curl then

begin ww [k]← 0; vv [k]← acc − take fraction (psi [1], fraction one − ff);
end

else begin ff ← make fraction (fraction one − ff , cc); { this is Bk/(Ck +Bk − uk−1Ak) < 5 }
acc ← acc − take fraction (psi [k],ff); ff ← take fraction (ff , aa); { this is Ak/(Ck +Bk − uk−1Ak) }
vv [k]← acc − take fraction (vv [k − 1],ff);
if ww [k − 1] = 0 then ww [k]← 0
else ww [k]← −take fraction (ww [k − 1],ff);
end

This code is used in section 287.

120 PART 18: CHOOSING CONTROL POINTS METAFONT §291

291. When a complete cycle has been traversed, we have θk + ukθk+1 = vk + wkθ0, for 1 ≤ k ≤ n. We
would like to determine the value of θn and reduce the system to the form θk + ukθk+1 = vk for 0 ≤ k < n,
so that the cyclic case can be finished up just as if there were no cycle.

The idea in the following code is to observe that

θn = vn + wnθ0 − unθ1 = · · ·
= vn + wnθ0 − un

(
v1 + w1θ0 − u1(v2 + · · · − un−2(vn−1 + wn−1θ0 − un−1θ0) . . .)

)
,

so we can solve for θn = θ0.

〈Adjust θn to equal θ0 and goto found 291 〉 ≡
begin aa ← 0; bb ← fraction one ; {we have k = n }
repeat decr (k);

if k = 0 then k ← n;
aa ← vv [k]− take fraction (aa , uu [k]); bb ← ww [k]− take fraction (bb , uu [k]);

until k = n; {now θn = aa + bb · θn }
aa ← make fraction (aa , fraction one − bb); theta [n]← aa ; vv [0]← aa ;
for k ← 1 to n− 1 do vv [k]← vv [k] + take fraction (aa ,ww [k]);
goto found ;
end

This code is used in section 287.

292. define reduce angle (#) ≡
if abs (#) > one eighty deg then

if # > 0 then #← #− three sixty deg else #← # + three sixty deg

〈Calculate the given value of θn and goto found 292 〉 ≡
begin theta [n]← left given (s)−n arg (delta x [n−1], delta y [n−1]); reduce angle (theta [n]); goto found ;
end

This code is used in section 284.

293. 〈Set up the equation for a given value of θ0 293 〉 ≡
begin vv [0]← right given (s)− n arg (delta x [0], delta y [0]); reduce angle (vv [0]); uu [0]← 0; ww [0]← 0;
end

This code is used in section 285.

294. 〈Set up the equation for a curl at θ0 294 〉 ≡
begin cc ← right curl (s); lt ← abs (left tension (t)); rt ← abs (right tension (s));
if (rt = unity) ∧ (lt = unity) then uu [0]← make fraction (cc + cc + unity , cc + two)
else uu [0]← curl ratio(cc , rt , lt);
vv [0]← −take fraction (psi [1], uu [0]); ww [0]← 0;
end

This code is used in section 285.

295. 〈Set up equation for a curl at θn and goto found 295 〉 ≡
begin cc ← left curl (s); lt ← abs (left tension (s)); rt ← abs (right tension (r));
if (rt = unity) ∧ (lt = unity) then ff ← make fraction (cc + cc + unity , cc + two)
else ff ← curl ratio(cc , lt , rt);
theta [n]← −make fraction (take fraction (vv [n− 1],ff), fraction one − take fraction (ff , uu [n− 1]));
goto found ;
end

This code is used in section 284.

§296 METAFONT PART 18: CHOOSING CONTROL POINTS 121

296. The curl ratio subroutine has three arguments, which our previous notation encourages us to call γ,
α−1, and β−1. It is a somewhat tedious program to calculate

(3− α)α2γ + β3

α3γ + (3− β)β2
,

with the result reduced to 4 if it exceeds 4. (This reduction of curl is necessary only if the curl and tension
are both large.) The values of α and β will be at most 4/3.

〈Declare subroutines needed by solve choices 296 〉 ≡
function curl ratio(gamma , a tension , b tension : scaled): fraction ;

var alpha , beta ,num , denom ,ff : fraction ; { registers }
begin alpha ← make fraction (unity , a tension); beta ← make fraction (unity , b tension);
if alpha ≤ beta then

begin ff ← make fraction (alpha , beta); ff ← take fraction (ff ,ff);
gamma ← take fraction (gamma ,ff);
beta ← beta div 1́0000 ; { convert fraction to scaled }
denom ← take fraction (gamma , alpha) + three − beta ;
num ← take fraction (gamma , fraction three − alpha) + beta ;
end

else begin ff ← make fraction (beta , alpha); ff ← take fraction (ff ,ff);
beta ← take fraction (beta ,ff) div 1́0000 ; { convert fraction to scaled }
denom ← take fraction (gamma , alpha) + (ff div 1365)− beta ; { 1365 ≈ 212/3 }
num ← take fraction (gamma , fraction three − alpha) + beta ;
end;

if num ≥ denom + denom + denom + denom then curl ratio ← fraction four
else curl ratio ← make fraction (num , denom);
end;

See also section 299.

This code is used in section 284.

297. We’re in the home stretch now.

〈Finish choosing angles and assigning control points 297 〉 ≡
for k ← n− 1 downto 0 do theta [k]← vv [k]− take fraction (theta [k + 1], uu [k]);
s← p; k ← 0;
repeat t← link (s);

n sin cos (theta [k]); st ← n sin ; ct ← n cos ;
n sin cos (−psi [k + 1]− theta [k + 1]); sf ← n sin ; cf ← n cos ;
set controls (s, t, k);
incr (k); s← t;

until k = n

This code is used in section 284.

298. The set controls routine actually puts the control points into a pair of consecutive nodes p and q.
Global variables are used to record the values of sin θ, cos θ, sinφ, and cosφ needed in this calculation.

〈Global variables 13 〉 +≡
st , ct , sf , cf : fraction ; { sines and cosines }

122 PART 18: CHOOSING CONTROL POINTS METAFONT §299

299. 〈Declare subroutines needed by solve choices 296 〉 +≡
procedure set controls (p, q : pointer ; k : integer);

var rr , ss : fraction ; { velocities, divided by thrice the tension }
lt , rt : scaled ; { tensions }
sine : fraction ; { sin(θ + φ) }

begin lt ← abs (left tension (q)); rt ← abs (right tension (p)); rr ← velocity (st , ct , sf , cf , rt);
ss ← velocity (sf , cf , st , ct , lt);
if (right tension (p) < 0) ∨ (left tension (q) < 0) then
〈Decrease the velocities, if necessary, to stay inside the bounding triangle 300 〉;

right x (p)← x coord (p) + take fraction (take fraction (delta x [k], ct)− take fraction (delta y [k], st), rr);
right y (p)← y coord (p) + take fraction (take fraction (delta y [k], ct) + take fraction (delta x [k], st), rr);
left x (q)← x coord (q)− take fraction (take fraction (delta x [k], cf) + take fraction (delta y [k], sf), ss);
left y (q)← y coord (q)− take fraction (take fraction (delta y [k], cf)− take fraction (delta x [k], sf), ss);
right type (p)← explicit ; left type (q)← explicit ;
end;

300. The boundedness conditions rr ≤ sinφ / sin(θ + φ) and ss ≤ sin θ / sin(θ + φ) are to be enforced if
sin θ, sinφ, and sin(θ + φ) all have the same sign. Otherwise there is no “bounding triangle.”

〈Decrease the velocities, if necessary, to stay inside the bounding triangle 300 〉 ≡
if ((st ≥ 0) ∧ (sf ≥ 0)) ∨ ((st ≤ 0) ∧ (sf ≤ 0)) then

begin sine ← take fraction (abs (st), cf) + take fraction (abs (sf), ct);
if sine > 0 then

begin sine ← take fraction (sine , fraction one + unity); { safety factor }
if right tension (p) < 0 then

if ab vs cd (abs (sf), fraction one , rr , sine) < 0 then rr ← make fraction (abs (sf), sine);
if left tension (q) < 0 then

if ab vs cd (abs (st), fraction one , ss , sine) < 0 then ss ← make fraction (abs (st), sine);
end;

end

This code is used in section 299.

301. Only the simple cases remain to be handled.

〈Reduce to simple case of two givens and return 301 〉 ≡
begin aa ← n arg (delta x [0], delta y [0]);
n sin cos (right given (p)− aa); ct ← n cos ; st ← n sin ;
n sin cos (left given (q)− aa); cf ← n cos ; sf ← −n sin ;
set controls (p, q, 0); return;
end

This code is used in section 285.

§302 METAFONT PART 18: CHOOSING CONTROL POINTS 123

302. 〈Reduce to simple case of straight line and return 302 〉 ≡
begin right type (p)← explicit ; left type (q)← explicit ; lt ← abs (left tension (q));
rt ← abs (right tension (p));
if rt = unity then

begin if delta x [0] ≥ 0 then right x (p)← x coord (p) + ((delta x [0] + 1) div 3)
else right x (p)← x coord (p) + ((delta x [0]− 1) div 3);
if delta y [0] ≥ 0 then right y (p)← y coord (p) + ((delta y [0] + 1) div 3)
else right y (p)← y coord (p) + ((delta y [0]− 1) div 3);
end

else begin ff ← make fraction (unity , 3 ∗ rt); {α/3 }
right x (p)← x coord (p) + take fraction (delta x [0],ff);
right y (p)← y coord (p) + take fraction (delta y [0],ff);
end;

if lt = unity then
begin if delta x [0] ≥ 0 then left x (q)← x coord (q)− ((delta x [0] + 1) div 3)
else left x (q)← x coord (q)− ((delta x [0]− 1) div 3);
if delta y [0] ≥ 0 then left y (q)← y coord (q)− ((delta y [0] + 1) div 3)
else left y (q)← y coord (q)− ((delta y [0]− 1) div 3);
end

else begin ff ← make fraction (unity , 3 ∗ lt); {β/3 }
left x (q)← x coord (q)− take fraction (delta x [0],ff);
left y (q)← y coord (q)− take fraction (delta y [0],ff);
end;

return;
end

This code is used in section 285.

124 PART 19: GENERATING DISCRETE MOVES METAFONT §303

303. Generating discrete moves. The purpose of the next part of METAFONT is to compute discrete
approximations to curves described as parametric polynomial functions z(t). We shall start with the low
level first, because an efficient “engine” is needed to support the high-level constructions.

Most of the subroutines are based on variations of a single theme, namely the idea of bisection. Given a
Bernshtĕın polynomial

B(z0, z1, . . . , zn; t) =
∑
k

(
n

k

)
tk(1− t)n−kzk,

we can conveniently bisect its range as follows:

1) Let z
(0)
k = zk, for 0 ≤ k ≤ n.

2) Let z
(j+1)
k = 1

2 (z
(j)
k + z

(j)
k+1), for 0 ≤ k < n− j, for 0 ≤ j < n.

Then
B(z0, z1, . . . , zn; t) = B(z

(0)
0 , z

(1)
0 , . . . , z

(n)
0 ; 2t) = B(z

(n)
0 , z

(n−1)
1 , . . . , z(0)n ; 2t− 1).

This formula gives us the coefficients of polynomials to use over the ranges 0 ≤ t ≤ 1
2 and 1

2 ≤ t ≤ 1.
In our applications it will usually be possible to work indirectly with numbers that allow us to deduce

relevant properties of the polynomials without actually computing the polynomial values. We will deal with
coefficients Zk = 2l(zk − zk−1) for 1 ≤ k ≤ n, instead of the actual numbers z0, z1, . . . , zn, and the value
of l will increase by 1 at each bisection step. This technique reduces the amount of calculation needed for
bisection and also increases the accuracy of evaluation (since one bit of precision is gained at each bisection).
Indeed, the bisection process now becomes one level shorter:

1′) Let Z
(1)
k = Zk, for 1 ≤ k ≤ n.

2′) Let Z
(j+1)
k = 1

2 (Z
(j)
k + Z

(j)
k+1), for 1 ≤ k ≤ n− j, for 1 ≤ j < n.

The relevant coefficients (Z ′1, . . . , Z
′
n) and (Z ′′1 , . . . , Z

′′
n) for the two subintervals after bisection are respectively

(Z
(1)
1 , Z

(2)
1 , . . . , Z

(n)
1) and (Z

(n)
1 , Z

(n−1)
2 , . . . , Z

(1)
n). And the values of z0 appropriate for the bisected interval

are z′0 = z0 and z′′0 = z0 + (Z ′1 + Z ′2 + · · ·+ Z ′n)/2l+1.
Step 2′ involves division by 2, which introduces computational errors of at most 1

2 at each step; thus after
l levels of bisection the integers Zk will differ from their true values by at most (n − 1)l/2. This error rate
is quite acceptable, considering that we have l more bits of precision in the Z’s by comparison with the z’s.
Note also that the Z’s remain bounded; there’s no danger of integer overflow, even though we have the
identity Zk = 2l(zk − zk−1) for arbitrarily large l.

In fact, we can show not only that the Z’s remain bounded, but also that they become nearly equal, since
they are control points for a polynomial of one less degree. If |Zk+1−Zk| ≤M initially, it is possible to prove
that |Zk+1 − Zk| ≤ dM/2le after l levels of bisection, even in the presence of rounding errors. Here’s the
proof [cf. Lane and Riesenfeld, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-2 (1980),
35–46]: Assuming that |Zk+1 − Zk| ≤ M before bisection, we want to prove that |Zk+1 − Zk| ≤ dM/2e
afterward. First we show that |Z(j)

k+1 − Z
(j)
k | ≤ M for all j and k, by induction on j; this follows from the

fact that ∣∣half (a+ b)− half (b+ c)
∣∣ ≤ max

(
|a− b|, |b− c|

)
holds for both of the rounding rules half (x) = bx/2c and half (x) = sign(x)b|x/2|c. (If |a − b| and |b − c|
are equal, then a + b and b + c are both even or both odd. The rounding errors either cancel or round the
numbers toward each other; hence∣∣half (a+ b)− half (b+ c)

∣∣ ≤ ∣∣ 12 (a+ b)− 1
2 (b+ c)

∣∣
=
∣∣ 1
2 (a− b) + 1

2 (b− c)
∣∣ ≤ max

(
|a− b|, |b− c|

)
,

as required. A simpler argument applies if |a − b| and |b − c| are unequal.) Now it is easy to see that

|Z(j+1)
1 − Z(j)

1 | ≤
⌊
1
2 |Z

(j)
2 − Z(j)

1 |+ 1
2

⌋
≤
⌊
1
2 (M + 1)

⌋
= dM/2e.

Another interesting fact about bisection is the identity

Z ′1 + · · ·+ Z ′n + Z ′′1 + · · ·+ Z ′′n = 2(Z1 + · · ·+ Zn + E),

where E is the sum of the rounding errors in all of the halving operations (|E| ≤ n(n− 1)/4).

§304 METAFONT PART 19: GENERATING DISCRETE MOVES 125

304. We will later reduce the problem of digitizing a complex cubic z(t) = B(z0, z1, z2, z3; t) to the following
simpler problem: Given two real cubics x(t) = B(x0, x1, x2, x3; t) and y(t) = B(y0, y1, y2, y3; t) that are
monotone nondecreasing, determine the set of integer points

P =
{(
bx(t)c, by(t)c

) ∣∣ 0 ≤ t ≤ 1
}
.

Well, the problem isn’t actually quite so clean as this; when the path goes very near an integer point (a, b),
computational errors may make us think that P contains (a−1, b) while in reality it should contain (a, b−1).
Furthermore, if the path goes exactly through the integer points (a− 1, b− 1) and (a, b), we will want P to
contain one of the two points (a − 1, b) or (a, b − 1), so that P can be described entirely by “rook moves”
upwards or to the right; no diagonal moves from (a− 1, b− 1) to (a, b) will be allowed.

Thus, the set P we wish to compute will merely be an approximation to the set described in the formula
above. It will consist of bx(1)c − bx(0)c rightward moves and by(1)c − by(0)c upward moves, intermixed in
some order. Our job will be to figure out a suitable order.

The following recursive strategy suggests itself, when we recall that x(0) = x0, x(1) = x3, y(0) = y0, and
y(1) = y3:

If bx0c = bx3c then take by3c − by0c steps up.
Otherwise if by0c = by3c then take bx3c − bx0c steps to the right.
Otherwise bisect the current cubics and repeat the process on both halves.

This intuitively appealing formulation does not quite solve the problem, because it may never terminate. For
example, it’s not hard to see that no steps will ever be taken if (x0, x1, x2, x3) = (y0, y1, y2, y3)! However, we
can surmount this difficulty with a bit of care; so let’s proceed to flesh out the algorithm as stated, before
worrying about such details.

The bisect-and-double strategy discussed above suggests that we represent (x0, x1, x2, x3) by (X1, X2, X3),
where Xk = 2l(xk − xk−1) for some l. Initially l = 16, since the x’s are scaled . In order to deal with other
aspects of the algorithm we will want to maintain also the quantities m = bx3c−bx0c and R = 2l(x0 mod 1).
Similarly, (y0, y1, y2, y3) will be represented by (Y1, Y2, Y3), n = by3c − by0c, and S = 2l(y0 mod 1). The
algorithm now takes the following form:

If m = 0 then take n steps up.
Otherwise if n = 0 then take m steps to the right.
Otherwise bisect the current cubics and repeat the process on both halves.

The bisection process for (X1, X2, X3,m,R, l) reduces, in essence, to the following formulas:

X ′2 = half (X1 +X2), X ′′2 = half (X2 +X3), X ′3 = half (X ′2 +X ′′2),
X ′1 = X1, X ′′1 = X ′3, X ′′3 = X3,
R′ = 2R, T = X ′1 +X ′2 +X ′3 +R′, R′′ = T mod 2l+1,
m′ = bT/2l+1c, m′′ = m−m′.

126 PART 19: GENERATING DISCRETE MOVES METAFONT §305

305. When m = n = 1, the computation can be speeded up because we simply need to decide between
two alternatives, (up, right) versus (right, up). There appears to be no simple, direct way to make the
correct decision by looking at the values of (X1, X2, X3, R) and (Y1, Y2, Y3, S); but we can streamline the
bisection process, and we can use the fact that only one of the two descendants needs to be examined after
each bisection. Furthermore, we observed earlier that after several levels of bisection the X’s and Y ’s will
be nearly equal; so we will be justified in assuming that the curve is essentially a straight line. (This,
incidentally, solves the problem of infinite recursion mentioned earlier.)

It is possible to show that
m =

⌊
(X1 +X2 +X3 +R+ E) / 2l

⌋
,

where E is an accumulated rounding error that is at most 3 · (2l−16 − 1) in absolute value. We will make
sure that the X’s are less than 228; hence when l = 30 we must have m ≤ 1. This proves that the special
case m = n = 1 is bound to be reached by the time l = 30. Furthermore l = 30 is a suitable time to make
the straight line approximation, if the recursion hasn’t already died out, because the maximum difference
between X’s will then be < 214; this corresponds to an error of < 1 with respect to the original scaling.
(Stating this another way, each bisection makes the curve two bits closer to a straight line, hence 14 bisections
are sufficient for 28-bit accuracy.)

In the case of a straight line, the curve goes first right, then up, if and only if (T − 2l)(2l − S) >
(U − 2l)(2l −R), where T = X1 +X2 +X3 +R and U = Y1 + Y2 + Y3 + S. For the actual curve essentially
runs from (R/2l, S/2l) to (T/2l, U/2l), and we are testing whether or not (1, 1) is above the straight line
connecting these two points. (This formula assumes that (1, 1) is not exactly on the line.)

306. We have glossed over the problem of tie-breaking in ambiguous cases when the cubic curve passes
exactly through integer points. METAFONT finesses this problem by assuming that coordinates (x, y) actually
stand for slightly perturbed values (x+ ξ, y+ η), where ξ and η are infinitesimals whose signs will determine
what to do when x and/or y are exact integers. The quantities bxc and byc in the formulas above should
actually read bx+ ξc and by + ηc.

If x is a scaled value, we have bx+ ξc = bxc if ξ > 0, and bx+ ξc = bx− 2−16c if ξ < 0. It is convenient
to represent ξ by the integer xi corr , defined to be 0 if ξ > 0 and 1 if ξ < 0; then, for example, the integer
bx+ ξc can be computed as floor unscaled (x− xi corr). Similarly, η is conveniently represented by eta corr .

In our applications the sign of ξ − η will always be the same as the sign of ξ. Therefore it turns out
that the rule for straight lines, as stated above, should be modified as follows in the case of ties: The line
goes first right, then up, if and only if (T − 2l)(2l − S) + ξ > (U − 2l)(2l − R). And this relation holds iff
ab vs cd (T − 2l, 2l − S,U − 2l, 2l −R)− xi corr ≥ 0.

These conventions for rounding are symmetrical, in the sense that the digitized moves obtained from
(x0, x1, x2, x3, y0, y1, y2, y3, ξ, η) will be exactly complementary to the moves that would be obtained from
(−x3,−x2,−x1,−x0,−y3,−y2,−y1,−y0,−ξ,−η), if arithmetic is exact. However, truncation errors in the
bisection process might upset the symmetry. We can restore much of the lost symmetry by adding xi corr
or eta corr when halving the data.

§307 METAFONT PART 19: GENERATING DISCRETE MOVES 127

307. One further possibility needs to be mentioned: The algorithm will be applied only to cubic polyno-
mials B(x0, x1, x2, x3; t) that are nondecreasing as t varies from 0 to 1; this condition turns out to hold if
and only if x0 ≤ x1 and x2 ≤ x3, and either x1 ≤ x2 or (x1 − x2)2 ≤ (x1 − x0)(x3 − x2). If bisection were
carried out with perfect accuracy, these relations would remain invariant. But rounding errors can creep in,
hence the bisection algorithm can produce non-monotonic subproblems from monotonic initial conditions.
This leads to the potential danger that m or n could become negative in the algorithm described above.

For example, if we start with (x1 − x0, x2 − x1, x3 − x2) = (X1, X2, X3) = (7,−16, 39), the corresponding
polynomial is monotonic, because 162 < 7 · 39. But the bisection algorithm produces the left descendant
(7,−5, 3), which is nonmonotonic; its right descendant is (0,−1, 3).

Fortunately we can prove that such rounding errors will never cause the algorithm to make a tragic
mistake. At every stage we are working with numbers corresponding to a cubic polynomial B(x̃0, x̃1, x̃2, x̃3)
that approximates some monotonic polynomial B(x0, x1, x2, x3). The accumulated errors are controlled so
that |xk− x̃k| < ε = 3 ·2−16. If bisection is done at some stage of the recursion, we have m = bx̃3c−bx̃0c > 0,
and the algorithm computes a bisection value x̄ such that m′ = bx̄c−bx̃0c and m′′ = bx̃3c−bx̄c. We want to
prove that neither m′ nor m′′ can be negative. Since x̄ is an approximation to a value in the interval [x0, x3],
we have x̄ > x0 − ε and x̄ < x3 + ε, hence x̄ > x̃0 − 2ε and x̄ < x̃3 + 2ε. If m′ is negative we must have
x̃0 mod 1 < 2ε; if m′′ is negative we must have x̃3 mod 1 > 1−2ε. In either case the condition bx̃3c−bx̃0c > 0
implies that x̃3 − x̃0 > 1 − 2ε, hence x3 − x0 > 1 − 4ε. But it can be shown that if B(x0, x1, x2, x3; t) is a
monotonic cubic, then B(x0, x1, x2, x3; 1

2) is always between .06[x0, x3] and .94[x0, x3]; and it is impossible

for x̄ to be within ε of such a number. Contradiction! (The constant .06 is actually (2 −
√

3)/4; the worst
case occurs for polynomials like B(0, 2−

√
3, 1−

√
3, 3; t).)

308. OK, now that a long theoretical preamble has justified the bisection-and-doubling algorithm, we are
ready to proceed with its actual coding. But we still haven’t discussed the form of the output.

For reasons to be discussed later, we shall find it convenient to record the output as follows: Moving one
step up is represented by appending a ‘1’ to a list; moving one step right is represented by adding unity to
the element at the end of the list. Thus, for example, the net effect of “(up, right, right, up, right)” is to
append (3, 2).

The list is kept in a global array called move . Before starting the algorithm, METAFONT should check
that move ptr + by3c − by0c ≤ move size , so that the list won’t exceed the bounds of this array.

〈Global variables 13 〉 +≡
move : array [0 . . move size] of integer ; { the recorded moves }
move ptr : 0 . . move size ; { the number of items in the move list }

128 PART 19: GENERATING DISCRETE MOVES METAFONT §309

309. When bisection occurs, we “push” the subproblem corresponding to the right-hand subinterval onto
the bisect stack while we continue to work on the left-hand subinterval. Thus, the bisect stack will hold
(X1, X2, X3, R,m, Y1, Y2, Y3, S, n, l) values for subproblems yet to be tackled.

At most 15 subproblems will be on the stack at once (namely, for l = 15, 16, . . . , 29); but the stack is
bigger than this, because it is used also for more complicated bisection algorithms.

define stack x1 ≡ bisect stack [bisect ptr] { stacked value of X1 }
define stack x2 ≡ bisect stack [bisect ptr + 1] { stacked value of X2 }
define stack x3 ≡ bisect stack [bisect ptr + 2] { stacked value of X3 }
define stack r ≡ bisect stack [bisect ptr + 3] { stacked value of R }
define stack m ≡ bisect stack [bisect ptr + 4] { stacked value of m }
define stack y1 ≡ bisect stack [bisect ptr + 5] { stacked value of Y1 }
define stack y2 ≡ bisect stack [bisect ptr + 6] { stacked value of Y2 }
define stack y3 ≡ bisect stack [bisect ptr + 7] { stacked value of Y3 }
define stack s ≡ bisect stack [bisect ptr + 8] { stacked value of S }
define stack n ≡ bisect stack [bisect ptr + 9] { stacked value of n }
define stack l ≡ bisect stack [bisect ptr + 10] { stacked value of l }
define move increment = 11 { number of items pushed by make moves }

〈Global variables 13 〉 +≡
bisect stack : array [0 . . bistack size] of integer ;
bisect ptr : 0 . . bistack size ;

310. 〈Check the “constant” values for consistency 14 〉 +≡
if 15 ∗move increment > bistack size then bad ← 31;

§311 METAFONT PART 19: GENERATING DISCRETE MOVES 129

311. The make moves subroutine is given scaled values (x0, x1, x2, x3) and (y0, y1, y2, y3) that represent
monotone-nondecreasing polynomials; it makes bx3 + ξc − bx0 + ξc rightward moves and by3 + ηc − by0 + ηc
upward moves, as explained earlier. (Here bx+ ξc actually stands for bx/216 − xi corr c, if x is regarded as
an integer without scaling.) The unscaled integers xk and yk should be less than 228 in magnitude.

It is assumed that move ptr + by3 + ηc − by0 + ηc < move size when this procedure is called, so that the
capacity of the move array will not be exceeded.

The variables r and s in this procedure stand respectively for R− xi corr and S − eta corr in the theory
discussed above.

procedure make moves (xx0 , xx1 , xx2 , xx3 , yy0 , yy1 , yy2 , yy3 : scaled ; xi corr , eta corr : small number);
label continue , done , exit ;
var x1 , x2 , x3 ,m, r, y1 , y2 , y3 , n, s, l: integer ; { bisection variables explained above }
q, t, u, x2a , x3a , y2a , y3a : integer ; { additional temporary registers }

begin if (xx3 < xx0) ∨ (yy3 < yy0) then confusion ("m");
l← 16; bisect ptr ← 0;
x1 ← xx1 − xx0 ; x2 ← xx2 − xx1 ; x3 ← xx3 − xx2 ;
if xx0 ≥ xi corr then r ← (xx0 − xi corr) mod unity
else r ← unity − 1− ((−xx0 + xi corr − 1) mod unity);
m← (xx3 − xx0 + r) div unity ;
y1 ← yy1 − yy0 ; y2 ← yy2 − yy1 ; y3 ← yy3 − yy2 ;
if yy0 ≥ eta corr then s← (yy0 − eta corr) mod unity
else s← unity − 1− ((−yy0 + eta corr − 1) mod unity);
n← (yy3 − yy0 + s) div unity ;
if (xx3 − xx0 ≥ fraction one) ∨ (yy3 − yy0 ≥ fraction one) then
〈Divide the variables by two, to avoid overflow problems 313 〉;

loop begin continue : 〈Make moves for current subinterval; if bisection is necessary, push the second
subinterval onto the stack, and goto continue in order to handle the first subinterval 314 〉;

if bisect ptr = 0 then return;
〈Remove a subproblem for make moves from the stack 312 〉;
end;

exit : end;

312. 〈Remove a subproblem for make moves from the stack 312 〉 ≡
bisect ptr ← bisect ptr −move increment ;
x1 ← stack x1 ; x2 ← stack x2 ; x3 ← stack x3 ; r ← stack r ; m← stack m ;
y1 ← stack y1 ; y2 ← stack y2 ; y3 ← stack y3 ; s← stack s ; n← stack n ;
l← stack l

This code is used in section 311.

313. Our variables (x1 , x2 , x3) correspond to (X1, X2, X3) in the notation of the theory developed above.
We need to keep them less than 228 in order to avoid integer overflow in weird circumstances. For example,
data like x0 = −228 + 216 − 1 and x1 = x2 = x3 = 228 − 1 would otherwise be problematical. Hence this
part of the code is needed, if only to thwart malicious users.

〈Divide the variables by two, to avoid overflow problems 313 〉 ≡
begin x1 ← half (x1 + xi corr); x2 ← half (x2 + xi corr); x3 ← half (x3 + xi corr);
r ← half (r + xi corr);
y1 ← half (y1 + eta corr); y2 ← half (y2 + eta corr); y3 ← half (y3 + eta corr); s← half (s+ eta corr);
l← 15;
end

This code is used in section 311.

130 PART 19: GENERATING DISCRETE MOVES METAFONT §314

314. 〈Make moves for current subinterval; if bisection is necessary, push the second subinterval onto the
stack, and goto continue in order to handle the first subinterval 314 〉 ≡

if m = 0 then 〈Move upward n steps 315 〉
else if n = 0 then 〈Move to the right m steps 316 〉

else if m+ n = 2 then 〈Make one move of each kind 317 〉
else begin incr (l); stack l ← l;

stack x3 ← x3 ; stack x2 ← half (x2 + x3 + xi corr); x2 ← half (x1 + x2 + xi corr);
x3 ← half (x2 + stack x2 + xi corr); stack x1 ← x3 ;
r ← r + r + xi corr ; t← x1 + x2 + x3 + r;
q ← t div two to the [l]; stack r ← tmod two to the [l];
stack m ← m− q; m← q;
stack y3 ← y3 ; stack y2 ← half (y2 + y3 + eta corr); y2 ← half (y1 + y2 + eta corr);
y3 ← half (y2 + stack y2 + eta corr); stack y1 ← y3 ;
s← s+ s+ eta corr ; u← y1 + y2 + y3 + s;
q ← u div two to the [l]; stack s ← umod two to the [l];
stack n ← n− q; n← q;
bisect ptr ← bisect ptr + move increment ; goto continue ;
end

This code is used in section 311.

315. 〈Move upward n steps 315 〉 ≡
while n > 0 do

begin incr (move ptr); move [move ptr]← 1; decr (n);
end

This code is used in section 314.

316. 〈Move to the right m steps 316 〉 ≡
move [move ptr]← move [move ptr] +m

This code is used in section 314.

§317 METAFONT PART 19: GENERATING DISCRETE MOVES 131

317. 〈Make one move of each kind 317 〉 ≡
begin r ← two to the [l]− r; s← two to the [l]− s;
while l < 30 do

begin x3a ← x3 ; x2a ← half (x2 + x3 + xi corr); x2 ← half (x1 + x2 + xi corr);
x3 ← half (x2 + x2a + xi corr); t← x1 + x2 + x3 ; r ← r + r − xi corr ;
y3a ← y3 ; y2a ← half (y2 + y3 + eta corr); y2 ← half (y1 + y2 + eta corr);
y3 ← half (y2 + y2a + eta corr); u← y1 + y2 + y3 ; s← s+ s− eta corr ;
if t < r then

if u < s then 〈Switch to the right subinterval 318 〉
else begin 〈Move up then right 320 〉;

goto done ;
end

else if u < s then
begin 〈Move right then up 319 〉;
goto done ;
end;

incr (l);
end;

r ← r − xi corr ; s← s− eta corr ;
if ab vs cd (x1 + x2 + x3 , s, y1 + y2 + y3 , r)− xi corr ≥ 0 then 〈Move right then up 319 〉
else 〈Move up then right 320 〉;

done : end

This code is used in section 314.

318. 〈Switch to the right subinterval 318 〉 ≡
begin x1 ← x3 ; x2 ← x2a ; x3 ← x3a ; r ← r − t; y1 ← y3 ; y2 ← y2a ; y3 ← y3a ; s← s− u;
end

This code is used in section 317.

319. 〈Move right then up 319 〉 ≡
begin incr (move [move ptr]); incr (move ptr); move [move ptr]← 1;
end

This code is used in sections 317 and 317.

320. 〈Move up then right 320 〉 ≡
begin incr (move ptr); move [move ptr]← 2;
end

This code is used in sections 317 and 317.

132 PART 19: GENERATING DISCRETE MOVES METAFONT §321

321. After make moves has acted, possibly for several curves that move toward the same octant, a
“smoothing” operation might be done on the move array. This removes optical glitches that can arise
even when the curve has been digitized without rounding errors.

The smoothing process replaces the integers a0 . . . an in move [b . . t] by “smoothed” integers a′0 . . . a
′
n

defined as follows:

a′k = ak + δk+1 − δk; δk =

{
+1, if 1 < k < n and ak−2 ≥ ak−1 � ak ≥ ak+1;
−1, if 1 < k < n and ak−2 ≤ ak−1 � ak ≤ ak+1;
0, otherwise.

Here a� b means that a ≤ b− 2, and a� b means that a ≥ b+ 2.
The smoothing operation is symmetric in the sense that, if a0 . . . an smooths to a′0 . . . a

′
n, then the reverse

sequence an . . . a0 smooths to a′n . . . a
′
0; also the complementary sequence (m − a0) . . . (m − an) smooths to

(m− a′0) . . . (m− a′n). We have a′0 + · · ·+ a′n = a0 + · · ·+ an because δ0 = δn+1 = 0.

procedure smooth moves (b, t : integer);
var k: 1 . . move size ; { index into move }
a, aa , aaa : integer ; { original values of move [k],move [k − 1],move [k − 2] }

begin if t− b ≥ 3 then
begin k ← b+ 2; aa ← move [k − 1]; aaa ← move [k − 2];
repeat a← move [k];

if abs (a− aa) > 1 then 〈 Increase and decrease move [k − 1] and move [k] by δk 322 〉;
incr (k); aaa ← aa ; aa ← a;

until k = t;
end;

end;

322. 〈 Increase and decrease move [k − 1] and move [k] by δk 322 〉 ≡
if a > aa then

begin if aaa ≥ aa then
if a ≥ move [k + 1] then

begin incr (move [k − 1]); move [k]← a− 1;
end;

end
else begin if aaa ≤ aa then

if a ≤ move [k + 1] then
begin decr (move [k − 1]); move [k]← a+ 1;
end;

end

This code is used in section 321.

§323 METAFONT PART 20: EDGE STRUCTURES 133

323. Edge structures. Now we come to METAFONT’s internal scheme for representing what the user
can actually “see,” the edges between pixels. Each pixel has an integer weight, obtained by summing the
weights on all edges to its left. METAFONT represents only the nonzero edge weights, since most of the edges
are weightless; in this way, the data storage requirements grow only linearly with respect to the number of
pixels per point, even though two-dimensional data is being represented. (Well, the actual dependence on
the underlying resolution is order n log n, but the log n factor is buried in our implicit restriction on the
maximum raster size.) The sum of all edge weights in each row should be zero.

The data structure for edge weights must be compact and flexible, yet it should support efficient updating
and display operations. We want to be able to have many different edge structures in memory at once, and
we want the computer to be able to translate them, reflect them, and/or merge them together with relative
ease.

METAFONT’s solution to this problem requires one single-word node per nonzero edge weight, plus one
two-word node for each row in a contiguous set of rows. There’s also a header node that provides global
information about the entire structure.

324. Let’s consider the edge-weight nodes first. The info field of such nodes contains both an m value
and a weight w, in the form 8m + w + c, where c is a constant that depends on data found in the header.
We shall consider c in detail later; for now, it’s best just to think of it as a way to compensate for the
fact that m and w can be negative, together with the fact that an info field must have a value between
min halfword and max halfword . The m value is an unscaled x coordinate, so it satisfies |m| < 4096;
the w value is always in the range 1 ≤ |w| ≤ 3. We can unpack the data in the info field by fetching
ho(info(p)) = info(p) − min halfword and dividing this nonnegative number by 8; the constant c will be
chosen so that the remainder of this division is 4 + w. Thus, for example, a remainder of 3 will correspond
to the edge weight w = −1.

Every row of an edge structure contains two lists of such edge-weight nodes, called the sorted and unsorted
lists, linked together by their link fields in the normal way. The difference between them is that we always
have info(p) ≤ info(link (p)) in the sorted list, but there’s no such restriction on the elements of the unsorted
list. The reason for this distinction is that it would take unnecessarily long to maintain edge-weight lists in
sorted order while they’re being updated; but when we need to process an entire row from left to right in
order of the m values, it’s fairly easy and quick to sort a short list of unsorted elements and to merge them
into place among their sorted cohorts. Furthermore, the fact that the unsorted list is empty can sometimes
be used to good advantage, because it allows us to conclude that a particular row has not changed since the
last time we sorted it.

The final link of the sorted list will be sentinel , which points to a special one-word node whose info field
is essentially infinite; this facilitates the sorting and merging operations. The final link of the unsorted list
will be either null or void , where void = null + 1 is used to avoid redisplaying data that has not changed:
A void value is stored at the head of the unsorted list whenever the corresponding row has been displayed.

define zero w = 4
define void ≡ null + 1

〈 Initialize table entries (done by INIMF only) 176 〉 +≡
info(sentinel)← max halfword ; { link (sentinel) = null }

134 PART 20: EDGE STRUCTURES METAFONT §325

325. The rows themselves are represented by row header nodes that contain four link fields. Two of these
four, sorted and unsorted , point to the first items of the edge-weight lists just mentioned. The other two,
link and knil , point to the headers of the two adjacent rows. If p points to the header for row number n,
then link (p) points up to the header for row n + 1, and knil (p) points down to the header for row n − 1.
This double linking makes it convenient to move through consecutive rows either upward or downward; as
usual, we have link (knil (p)) = knil (link (p)) = p for all row headers p.

The row associated with a given value of n contains weights for edges that run between the lattice points
(m,n) and (m,n+ 1).

define knil ≡ info { inverse of the link field, in a doubly linked list }
define sorted loc(#) ≡ # + 1 {where the sorted link field resides }
define sorted (#) ≡ link (sorted loc(#)) { beginning of the list of sorted edge weights }
define unsorted (#) ≡ info(# + 1) {beginning of the list of unsorted edge weights }
define row node size = 2 { number of words in a row header node }

§326 METAFONT PART 20: EDGE STRUCTURES 135

326. The main header node h for an edge structure has link and knil fields that link it above the topmost
row and below the bottommost row. It also has fields called m min , m max , n min , and n max that bound
the current extent of the edge data: Allm values in edge-weight nodes should lie between m min (h)−4096 and
m max (h)− 4096, inclusive. Furthermore the topmost row header, pointed to by knil (h), is for row number
n max (h)− 4096; the bottommost row header, pointed to by link (h), is for row number n min (h)− 4096.

The offset constant c that’s used in all of the edge-weight data is represented implicitly in m offset (h); its
actual value is

c = min halfword + zero w + 8 ∗m offset (h).

Notice that it’s possible to shift an entire edge structure by an amount (∆m,∆n) by adding ∆n to n min (h)
and n max (h), adding ∆m to m min (h) and m max (h), and subtracting ∆m from m offset (h); none of
the other edge data needs to be modified. Initially the m offset field is 4096, but it will change if the user
requests such a shift. The contents of these five fields should always be positive and less than 8192; n max
should, in fact, be less than 8191. Furthermore m min + m offset −4096 and m max + m offset −4096 must
also lie strictly between 0 and 8192, so that the info fields of edge-weight nodes will fit in a halfword.

The header node of an edge structure also contains two somewhat unusual fields that are called
last window (h) and last window time (h). When this structure is displayed in window k of the user’s
screen, after that window has been updated t times, METAFONT sets last window (h) ← k and
last window time (h) ← t; it also sets unsorted (p) ← void for all row headers p, after merging any existing
unsorted weights with the sorted ones. A subsequent display in the same window will be able to avoid
redisplaying rows whose unsorted list is still void , if the window hasn’t been used for something else in the
meantime.

A pointer to the row header of row n pos (h) − 4096 is provided in n rover (h). Most of the algorithms
that update an edge structure are able to get by without random row references; they usually access rows
that are neighbors of each other or of the current n pos row. Exception: If link (h) = h (so that the edge
structure contains no rows), we have n rover (h) = h, and n pos (h) is irrelevant.

define zero field = 4096 { amount added to coordinates to make them positive }
define n min (#) ≡ info(# + 1) {minimum row number present, plus zero field }
define n max (#) ≡ link (# + 1) {maximum row number present, plus zero field }
define m min (#) ≡ info(# + 2) {minimum column number present, plus zero field }
define m max (#) ≡ link (# + 2) {maximum column number present, plus zero field }
define m offset (#) ≡ info(# + 3) { translation of m data in edge-weight nodes }
define last window (#) ≡ link (# + 3) { the last display went into this window }
define last window time (#) ≡ mem [# + 4].int { after this many window updates }
define n pos (#) ≡ info(# + 5) { the row currently in n rover , plus zero field }
define n rover (#) ≡ link (# + 5) { a row recently referenced }
define edge header size = 6 { number of words in an edge-structure header }
define valid range (#) ≡ (abs (#− 4096) < 4096) { is # strictly between 0 and 8192? }
define empty edges (#) ≡ link (#) = # { are there no rows in this edge header? }

procedure init edges (h : pointer); { initialize an edge header to null values }
begin knil (h)← h; link (h)← h;
n min (h)← zero field + 4095; n max (h)← zero field − 4095; m min (h)← zero field + 4095;
m max (h)← zero field − 4095; m offset (h)← zero field ;
last window (h)← 0; last window time (h)← 0;
n rover (h)← h; n pos (h)← 0;
end;

136 PART 20: EDGE STRUCTURES METAFONT §327

327. When a lot of work is being done on a particular edge structure, we plant a pointer to its main header
in the global variable cur edges . This saves us from having to pass this pointer as a parameter over and over
again between subroutines.

Similarly, cur wt is a global weight that is being used by several procedures at once.

〈Global variables 13 〉 +≡
cur edges : pointer ; { the edge structure of current interest }
cur wt : integer ; { the edge weight of current interest }

328. The fix offset routine goes through all the edge-weight nodes of cur edges and adds a constant to
their info fields, so that m offset (cur edges) can be brought back to zero field . (This is necessary only in
unusual cases when the offset has gotten too large or too small.)

procedure fix offset ;
var p, q: pointer ; { list traversers }

delta : integer ; { the amount of change }
begin delta ← 8 ∗ (m offset (cur edges)− zero field); m offset (cur edges)← zero field ;
q ← link (cur edges);
while q 6= cur edges do

begin p← sorted (q);
while p 6= sentinel do

begin info(p)← info(p)− delta ; p← link (p);
end;

p← unsorted (q);
while p > void do

begin info(p)← info(p)− delta ; p← link (p);
end;

q ← link (q);
end;

end;

329. The edge prep routine makes the cur edges structure ready to accept new data whose coordinates
satisfy ml ≤ m ≤ mr and nl ≤ n ≤ nr − 1, assuming that −4096 < ml ≤ mr < 4096 and −4096 < nl ≤
nr < 4096. It makes appropriate adjustments to m min , m max , n min , and n max , adding new empty
rows if necessary.

procedure edge prep(ml ,mr ,nl ,nr : integer);
var delta : halfword ; { amount of change }
p, q: pointer ; { for list manipulation }

begin ml ← ml + zero field ; mr ← mr + zero field ; nl ← nl + zero field ; nr ← nr − 1 + zero field ;
if ml < m min (cur edges) then m min (cur edges)← ml ;
if mr > m max (cur edges) then m max (cur edges)← mr ;
if ¬valid range (m min (cur edges) + m offset (cur edges)− zero field) ∨

¬valid range (m max (cur edges) + m offset (cur edges)− zero field) then fix offset ;
if empty edges (cur edges) then { there are no rows }

begin n min (cur edges)← nr + 1; n max (cur edges)← nr ;
end;

if nl < n min (cur edges) then 〈 Insert exactly n min (cur edges)− nl empty rows at the bottom 330 〉;
if nr > n max (cur edges) then 〈 Insert exactly nr − n max (cur edges) empty rows at the top 331 〉;
end;

§330 METAFONT PART 20: EDGE STRUCTURES 137

330. 〈 Insert exactly n min (cur edges)− nl empty rows at the bottom 330 〉 ≡
begin delta ← n min (cur edges)− nl ; n min (cur edges)← nl ; p← link (cur edges);
repeat q ← get node (row node size); sorted (q)← sentinel ; unsorted (q)← void ; knil (p)← q;

link (q)← p; p← q; decr (delta);
until delta = 0;
knil (p)← cur edges ; link (cur edges)← p;
if n rover (cur edges) = cur edges then n pos (cur edges)← nl − 1;
end

This code is used in section 329.

331. 〈 Insert exactly nr − n max (cur edges) empty rows at the top 331 〉 ≡
begin delta ← nr − n max (cur edges); n max (cur edges)← nr ; p← knil (cur edges);
repeat q ← get node (row node size); sorted (q)← sentinel ; unsorted (q)← void ; link (p)← q;

knil (q)← p; p← q; decr (delta);
until delta = 0;
link (p)← cur edges ; knil (cur edges)← p;
if n rover (cur edges) = cur edges then n pos (cur edges)← nr + 1;
end

This code is used in section 329.

332. The print edges subroutine gives a symbolic rendition of an edge structure, for use in ‘show’
commands. A rather terse output format has been chosen since edge structures can grow quite large.

〈Declare subroutines for printing expressions 257 〉 +≡
〈Declare the procedure called print weight 333 〉
procedure print edges (s : str number ; nuline : boolean ; x off , y off : integer);

var p, q, r: pointer ; { for list traversal }
n: integer ; { row number }

begin print diagnostic("Edge structure", s,nuline); p← knil (cur edges);
n← n max (cur edges)− zero field ;
while p 6= cur edges do

begin q ← unsorted (p); r ← sorted (p);
if (q > void) ∨ (r 6= sentinel) then

begin print nl ("row "); print int (n+ y off); print char (":");
while q > void do

begin print weight (q, x off); q ← link (q);
end;

print (" |");
while r 6= sentinel do

begin print weight (r, x off); r ← link (r);
end;

end;
p← knil (p); decr (n);
end;

end diagnostic(true);
end;

138 PART 20: EDGE STRUCTURES METAFONT §333

333. 〈Declare the procedure called print weight 333 〉 ≡
procedure print weight (q : pointer ; x off : integer);

var w,m: integer ; { unpacked weight and coordinate }
d: integer ; { temporary data register }

begin d← ho(info(q)); w ← dmod 8; m← (d div 8)−m offset (cur edges);
if file offset > max print line − 9 then print nl (" ")
else print char (" ");
print int (m+ x off);
while w > zero w do

begin print char ("+"); decr (w);
end;

while w < zero w do
begin print char ("−"); incr (w);
end;

end;

This code is used in section 332.

334. Here’s a trivial subroutine that copies an edge structure. (Let’s hope that the given structure isn’t
too gigantic.)

function copy edges (h : pointer): pointer ;
var p, r: pointer ; { variables that traverse the given structure }

hh , pp , qq , rr , ss : pointer ; { variables that traverse the new structure }
begin hh ← get node (edge header size); mem [hh + 1]← mem [h+ 1]; mem [hh + 2]← mem [h+ 2];
mem [hh + 3]← mem [h+ 3]; mem [hh + 4]← mem [h+ 4];
{we’ve now copied n min , n max , m min , m max , m offset , last window , and last window time }

n pos (hh)← n max (hh) + 1; n rover (hh)← hh ;
p← link (h); qq ← hh ;
while p 6= h do

begin pp ← get node (row node size); link (qq)← pp ; knil (pp)← qq ;
〈Copy both sorted and unsorted lists of p to pp 335 〉;
p← link (p); qq ← pp ;
end;

link (qq)← hh ; knil (hh)← qq ; copy edges ← hh ;
end;

335. 〈Copy both sorted and unsorted lists of p to pp 335 〉 ≡
r ← sorted (p); rr ← sorted loc(pp); { link (rr) = sorted (pp) }
while r 6= sentinel do

begin ss ← get avail ; link (rr)← ss ; rr ← ss ; info(rr)← info(r);
r ← link (r);
end;

link (rr)← sentinel ;
r ← unsorted (p); rr ← temp head ;
while r > void do

begin ss ← get avail ; link (rr)← ss ; rr ← ss ; info(rr)← info(r);
r ← link (r);
end;

link (rr)← r; unsorted (pp)← link (temp head)

This code is used in sections 334 and 341.

§336 METAFONT PART 20: EDGE STRUCTURES 139

336. Another trivial routine flips cur edges about the x-axis (i.e., negates all the y coordinates), assuming
that at least one row is present.

procedure y reflect edges ;
var p, q, r: pointer ; { list manipulation registers }
begin p← n min (cur edges); n min (cur edges)← zero field + zero field − 1− n max (cur edges);
n max (cur edges)← zero field + zero field − 1− p;
n pos (cur edges)← zero field + zero field − 1− n pos (cur edges);
p← link (cur edges); q ← cur edges ; {we assume that p 6= q }
repeat r ← link (p); link (p)← q; knil (q)← p; q ← p; p← r;
until q = cur edges ;
last window time (cur edges)← 0;
end;

337. It’s somewhat more difficult, yet not too hard, to reflect about the y-axis.

procedure x reflect edges ;
var p, q, r, s: pointer ; { list manipulation registers }
m: integer ; { info fields will be reflected with respect to this number }

begin p← m min (cur edges); m min (cur edges)← zero field + zero field −m max (cur edges);
m max (cur edges)← zero field + zero field − p;
m← (zero field + m offset (cur edges)) ∗ 8 + zero w + min halfword + zero w + min halfword ;
m offset (cur edges)← zero field ; p← link (cur edges);
repeat 〈Reflect the edge-and-weight data in sorted (p) 339 〉;
〈Reflect the edge-and-weight data in unsorted (p) 338 〉;
p← link (p);

until p = cur edges ;
last window time (cur edges)← 0;
end;

338. We want to change the sign of the weight as we change the sign of the x coordinate. Fortunately, it’s
easier to do this than to negate one without the other.

〈Reflect the edge-and-weight data in unsorted (p) 338 〉 ≡
q ← unsorted (p);
while q > void do

begin info(q)← m− info(q); q ← link (q);
end

This code is used in section 337.

339. Reversing the order of a linked list is best thought of as the process of popping nodes off one stack
and pushing them on another. In this case we pop from stack q and push to stack r.

〈Reflect the edge-and-weight data in sorted (p) 339 〉 ≡
q ← sorted (p); r ← sentinel ;
while q 6= sentinel do

begin s← link (q); link (q)← r; r ← q; info(r)← m− info(q); q ← s;
end;

sorted (p)← r

This code is used in section 337.

140 PART 20: EDGE STRUCTURES METAFONT §340

340. Now let’s multiply all the y coordinates of a nonempty edge structure by a small integer s > 1:

procedure y scale edges (s : integer);
var p, q, pp , r, rr , ss : pointer ; { list manipulation registers }
t: integer ; { replication counter }

begin if (s ∗ (n max (cur edges) + 1− zero field) ≥ 4096)∨ (s ∗ (n min (cur edges)− zero field) ≤ −4096)
then

begin print err ("Scaled picture would be too big");
help3 ("I can´t yscale the picture as requested−−−it would")
("make some coordinates too large or too small.")
("Proceed, and I´ll omit the transformation."); put get error ;
end

else begin n max (cur edges)← s ∗ (n max (cur edges) + 1− zero field)− 1 + zero field ;
n min (cur edges)← s ∗ (n min (cur edges)− zero field) + zero field ;
〈Replicate every row exactly s times 341 〉;
last window time (cur edges)← 0;
end;

end;

341. 〈Replicate every row exactly s times 341 〉 ≡
p← cur edges ;
repeat q ← p; p← link (p);

for t← 2 to s do
begin pp ← get node (row node size); link (q)← pp ; knil (p)← pp ; link (pp)← p; knil (pp)← q;
q ← pp ; 〈Copy both sorted and unsorted lists of p to pp 335 〉;
end;

until link (p) = cur edges

This code is used in section 340.

342. Scaling the x coordinates is, of course, our next task.

procedure x scale edges (s : integer);
var p, q: pointer ; { list manipulation registers }
t: 0 . . 65535; { unpacked info field }
w: 0 . . 7; {unpacked weight }
delta : integer ; { amount added to scaled info }

begin if (s ∗ (m max (cur edges)− zero field) ≥ 4096) ∨ (s ∗ (m min (cur edges)− zero field) ≤ −4096)
then

begin print err ("Scaled picture would be too big");
help3 ("I can´t xscale the picture as requested−−−it would")
("make some coordinates too large or too small.")
("Proceed, and I´ll omit the transformation."); put get error ;
end

else if (m max (cur edges) 6= zero field) ∨ (m min (cur edges) 6= zero field) then
begin m max (cur edges)← s ∗ (m max (cur edges)− zero field) + zero field ;
m min (cur edges)← s ∗ (m min (cur edges)− zero field) + zero field ;
delta ← 8 ∗ (zero field − s ∗m offset (cur edges)) + min halfword ; m offset (cur edges)← zero field ;
〈Scale the x coordinates of each row by s 343 〉;
last window time (cur edges)← 0;
end;

end;

§343 METAFONT PART 20: EDGE STRUCTURES 141

343. The multiplications cannot overflow because we know that s < 4096.

〈Scale the x coordinates of each row by s 343 〉 ≡
q ← link (cur edges);
repeat p← sorted (q);

while p 6= sentinel do
begin t← ho(info(p)); w ← tmod 8; info(p)← (t− w) ∗ s+ w + delta ; p← link (p);
end;

p← unsorted (q);
while p > void do

begin t← ho(info(p)); w ← tmod 8; info(p)← (t− w) ∗ s+ w + delta ; p← link (p);
end;

q ← link (q);
until q = cur edges

This code is used in section 342.

344. Here is a routine that changes the signs of all the weights, without changing anything else.

procedure negate edges (h : pointer);
label done ;
var p, q, r, s, t, u: pointer ; { structure traversers }
begin p← link (h);
while p 6= h do

begin q ← unsorted (p);
while q > void do

begin info(q)← 8− 2 ∗ ((ho(info(q))) mod 8) + info(q); q ← link (q);
end;

q ← sorted (p);
if q 6= sentinel then

begin repeat info(q)← 8− 2 ∗ ((ho(info(q))) mod 8) + info(q); q ← link (q);
until q = sentinel ;
〈Put the list sorted (p) back into sort 345 〉;
end;

p← link (p);
end;

last window time (h)← 0;
end;

142 PART 20: EDGE STRUCTURES METAFONT §345

345. METAFONT would work even if the code in this section were omitted, because a list of edge-and-
weight data that is sorted only by m but not w turns out to be good enough for correct operation. However,
the author decided not to make the program even trickier than it is already, since negate edges isn’t needed
very often. The simpler-to-state condition, “keep the sorted list fully sorted,” is therefore being preserved
at the cost of extra computation.

〈Put the list sorted (p) back into sort 345 〉 ≡
u← sorted loc(p); q ← link (u); r ← q; s← link (r); { q = sorted (p) }
loop if info(s) > info(r) then

begin link (u)← q;
if s = sentinel then goto done ;
u← r; q ← s; r ← q; s← link (r);
end

else begin t← s; s← link (t); link (t)← q; q ← t;
end;

done : link (r)← sentinel

This code is used in section 344.

346. The unsorted edges of a row are merged into the sorted ones by a subroutine called sort edges . It
uses simple insertion sort, followed by a merge, because the unsorted list is supposedly quite short. However,
the unsorted list is assumed to be nonempty.

procedure sort edges (h : pointer); {h is a row header }
label done ;
var k: halfword ; { key register that we compare to info(q) }
p, q, r, s: pointer ;

begin r ← unsorted (h); unsorted (h)← null ; p← link (r); link (r)← sentinel ; link (temp head)← r;
while p > void do { sort node p into the list that starts at temp head }

begin k ← info(p); q ← temp head ;
repeat r ← q; q ← link (r);
until k ≤ info(q);
link (r)← p; r ← link (p); link (p)← q; p← r;
end;
〈Merge the temp head list into sorted (h) 347 〉;
end;

347. In this step we use the fact that sorted (h) = link (sorted loc(h)).

〈Merge the temp head list into sorted (h) 347 〉 ≡
begin r ← sorted loc(h); q ← link (r); p← link (temp head);
loop begin k ← info(p);

while k > info(q) do
begin r ← q; q ← link (r);
end;

link (r)← p; s← link (p); link (p)← q;
if s = sentinel then goto done ;
r ← p; p← s;
end;

done : end

This code is used in section 346.

§348 METAFONT PART 20: EDGE STRUCTURES 143

348. The cull edges procedure “optimizes” an edge structure by making all the pixel weights either w out
or w in . The weight will be w in after the operation if and only if it was in the closed interval [w lo ,w hi]
before, where w lo ≤ w hi . Either w out or w in is zero, while the other is ±1, ±2, or ±3. The parameters
will be such that zero-weight pixels will remain of weight zero. (This is fortunate, because there are infinitely
many of them.)

The procedure also computes the tightest possible bounds on the resulting data, by updating m min ,
m max , n min , and n max .

procedure cull edges (w lo ,w hi ,w out ,w in : integer);
label done ;
var p, q, r, s: pointer ; { for list manipulation }
w: integer ; { new weight after culling }
d: integer ; { data register for unpacking }
m: integer ; { the previous column number, including m offset }
mm : integer ; { the next column number, including m offset }
ww : integer ; { accumulated weight before culling }
prev w : integer ; { value of w before column m }
n,min n ,max n : pointer ; { current and extreme row numbers }
min d ,max d : pointer ; { extremes of the new edge-and-weight data }

begin min d ← max halfword ; max d ← min halfword ; min n ← max halfword ;
max n ← min halfword ;
p← link (cur edges); n← n min (cur edges);
while p 6= cur edges do

begin if unsorted (p) > void then sort edges (p);
if sorted (p) 6= sentinel then 〈Cull superfluous edge-weight entries from sorted (p) 349 〉;
p← link (p); incr (n);
end;
〈Delete empty rows at the top and/or bottom; update the boundary values in the header 352 〉;
last window time (cur edges)← 0;
end;

144 PART 20: EDGE STRUCTURES METAFONT §349

349. The entire sorted list is returned to available memory in this step; a new list is built starting
(temporarily) at temp head . Since several edges can occur at the same column, we need to be looking
ahead of where the actual culling takes place. This means that it’s slightly tricky to get the iteration started
and stopped.

〈Cull superfluous edge-weight entries from sorted (p) 349 〉 ≡
begin r ← temp head ; q ← sorted (p); ww ← 0; m← 1000000; prev w ← 0;
loop begin if q = sentinel then mm ← 1000000

else begin d← ho(info(q)); mm ← d div 8; ww ← ww + (dmod 8)− zero w ;
end;

if mm > m then
begin 〈 Insert an edge-weight for edge m, if the new pixel weight has changed 350 〉;
if q = sentinel then goto done ;
end;

m← mm ;
if ww ≥ w lo then

if ww ≤ w hi then w ← w in
else w ← w out

else w ← w out ;
s← link (q); free avail (q); q ← s;
end;

done : link (r)← sentinel ; sorted (p)← link (temp head);
if r 6= temp head then 〈Update the max/min amounts 351 〉;
end

This code is used in section 348.

350. 〈 Insert an edge-weight for edge m, if the new pixel weight has changed 350 〉 ≡
if w 6= prev w then

begin s← get avail ; link (r)← s; info(s)← 8 ∗m+ min halfword + zero w + w − prev w ; r ← s;
prev w ← w;
end

This code is used in section 349.

351. 〈Update the max/min amounts 351 〉 ≡
begin if min n = max halfword then min n ← n;
max n ← n;
if min d > info(link (temp head)) then min d ← info(link (temp head));
if max d < info(r) then max d ← info(r);
end

This code is used in section 349.

§352 METAFONT PART 20: EDGE STRUCTURES 145

352. 〈Delete empty rows at the top and/or bottom; update the boundary values in the header 352 〉 ≡
if min n > max n then 〈Delete all the row headers 353 〉
else begin n← n min (cur edges); n min (cur edges)← min n ;

while min n > n do
begin p← link (cur edges); link (cur edges)← link (p); knil (link (p))← cur edges ;
free node (p, row node size); incr (n);
end;

n← n max (cur edges); n max (cur edges)← max n ; n pos (cur edges)← max n + 1;
n rover (cur edges)← cur edges ;
while max n < n do

begin p← knil (cur edges); knil (cur edges)← knil (p); link (knil (p))← cur edges ;
free node (p, row node size); decr (n);
end;

m min (cur edges)← ((ho(min d)) div 8)−m offset (cur edges) + zero field ;
m max (cur edges)← ((ho(max d)) div 8)−m offset (cur edges) + zero field ;
end

This code is used in section 348.

353. We get here if the edges have been entirely culled away.

〈Delete all the row headers 353 〉 ≡
begin p← link (cur edges);
while p 6= cur edges do

begin q ← link (p); free node (p, row node size); p← q;
end;

init edges (cur edges);
end

This code is used in section 352.

146 PART 20: EDGE STRUCTURES METAFONT §354

354. The last and most difficult routine for transforming an edge structure—and the most interesting
one!—is xy swap edges , which interchanges the rôles of rows and columns. Its task can be viewed as the job
of creating an edge structure that contains only horizontal edges, linked together in columns, given an edge
structure that contains only vertical edges linked together in rows; we must do this without changing the
implied pixel weights.

Given any two adjacent rows of an edge structure, it is not difficult to determine the horizontal edges that
lie “between” them: We simply look for vertically adjacent pixels that have different weight, and insert a
horizontal edge containing the difference in weights. Every horizontal edge determined in this way should
be put into an appropriate linked list. Since random access to these linked lists is desirable, we use the
move array to hold the list heads. If we work through the given edge structure from top to bottom, the
constructed lists will not need to be sorted, since they will already be in order.

The following algorithm makes use of some ideas suggested by John Hobby. It assumes that the edge
structure is non-null, i.e., that link (cur edges) 6= cur edges , hence m max (cur edges) ≥ m min (cur edges).

procedure xy swap edges ; { interchange x and y in cur edges }
label done ;
var m magic ,n magic : integer ; { special values that account for offsets }
p, q, r, s: pointer ; { pointers that traverse the given structure }
〈Other local variables for xy swap edges 357 〉

begin 〈 Initialize the array of new edge list heads 356 〉;
〈 Insert blank rows at the top and bottom, and set p to the new top row 355 〉;
〈Compute the magic offset values 365 〉;
repeat q ← knil (p); if unsorted (q) > void then sort edges (q);
〈 Insert the horizontal edges defined by adjacent rows p, q, and destroy row p 358 〉;
p← q; n magic ← n magic − 8;

until knil (p) = cur edges ;
free node (p, row node size); { now all original rows have been recycled }
〈Adjust the header to reflect the new edges 364 〉;
end;

355. Here we don’t bother to keep the link entries up to date, since the procedure looks only at the knil
fields as it destroys the former edge structure.

〈 Insert blank rows at the top and bottom, and set p to the new top row 355 〉 ≡
p← get node (row node size); sorted (p)← sentinel ; unsorted (p)← null ;
knil (p)← cur edges ; knil (link (cur edges))← p; { the new bottom row }
p← get node (row node size); sorted (p)← sentinel ; knil (p)← knil (cur edges); { the new top row }

This code is used in section 354.

356. The new lists will become sorted lists later, so we initialize empty lists to sentinel .

〈 Initialize the array of new edge list heads 356 〉 ≡
m spread ← m max (cur edges)−m min (cur edges); { this is ≥ 0 by assumption }
if m spread > move size then overflow ("move table size",move size);
for j ← 0 to m spread do move [j]← sentinel

This code is used in section 354.

§357 METAFONT PART 20: EDGE STRUCTURES 147

357. 〈Other local variables for xy swap edges 357 〉 ≡
m spread : integer ; { the difference between m max and m min }
j, jj : 0 . . move size ; { indices into move }
m,mm : integer ; {m values at vertical edges }
pd , rd : integer ; {data fields from edge-and-weight nodes }
pm , rm : integer ; {m values from edge-and-weight nodes }
w: integer ; { the difference in accumulated weight }
ww : integer ; { as much of w that can be stored in a single node }
dw : integer ; { an increment to be added to w }
See also section 363.

This code is used in section 354.

358. At the point where we test w 6= 0, variable w contains the accumulated weight from edges already
passed in row p minus the accumulated weight from edges already passed in row q.

〈 Insert the horizontal edges defined by adjacent rows p, q, and destroy row p 358 〉 ≡
r ← sorted (p); free node (p, row node size); p← r;
pd ← ho(info(p)); pm ← pd div 8;
r ← sorted (q); rd ← ho(info(r)); rm ← rd div 8; w ← 0;
loop begin if pm < rm then mm ← pm else mm ← rm ;

if w 6= 0 then 〈 Insert horizontal edges of weight w between m and mm 362 〉;
if pd < rd then

begin dw ← (pd mod 8)− zero w ;
〈Advance pointer p to the next vertical edge, after destroying the previous one 360 〉;
end

else begin if r = sentinel then goto done ; { rd = pd = ho(max halfword) }
dw ← −((rd mod 8)− zero w); 〈Advance pointer r to the next vertical edge 359 〉;
end;

m← mm ; w ← w + dw ;
end;

done :

This code is used in section 354.

359. 〈Advance pointer r to the next vertical edge 359 〉 ≡
r ← link (r); rd ← ho(info(r)); rm ← rd div 8

This code is used in section 358.

360. 〈Advance pointer p to the next vertical edge, after destroying the previous one 360 〉 ≡
s← link (p); free avail (p); p← s; pd ← ho(info(p)); pm ← pd div 8

This code is used in section 358.

361. Certain “magic” values are needed to make the following code work, because of the various offsets
in our data structure. For now, let’s not worry about their precise values; we shall compute m magic and
n magic later, after we see what the code looks like.

148 PART 20: EDGE STRUCTURES METAFONT §362

362. 〈 Insert horizontal edges of weight w between m and mm 362 〉 ≡
if m 6= mm then

begin if mm −m magic ≥ move size then confusion ("xy");
extras ← (abs (w)− 1) div 3;
if extras > 0 then

begin if w > 0 then xw ← +3 else xw ← −3;
ww ← w − extras ∗ xw ;
end

else ww ← w;
repeat j ← m−m magic ;

for k ← 1 to extras do
begin s← get avail ; info(s)← n magic + xw ; link (s)← move [j]; move [j]← s;
end;

s← get avail ; info(s)← n magic + ww ; link (s)← move [j]; move [j]← s;
incr (m);

until m = mm ;
end

This code is used in section 358.

363. 〈Other local variables for xy swap edges 357 〉 +≡
extras : integer ; { the number of additional nodes to make weights > 3 }
xw : −3 . . 3; { the additional weight in extra nodes }
k: integer ; { loop counter for inserting extra nodes }

364. At the beginning of this step, move [m spread] = sentinel , because no horizontal edges will extend to
the right of column m max (cur edges).

〈Adjust the header to reflect the new edges 364 〉 ≡
move [m spread]← 0; j ← 0;
while move [j] = sentinel do incr (j);
if j = m spread then init edges (cur edges) { all edge weights are zero }
else begin mm ← m min (cur edges); m min (cur edges)← n min (cur edges);

m max (cur edges)← n max (cur edges) + 1; m offset (cur edges)← zero field ; jj ← m spread − 1;
while move [jj] = sentinel do decr (jj);
n min (cur edges)← j + mm ; n max (cur edges)← jj + mm ; q ← cur edges ;
repeat p← get node (row node size); link (q)← p; knil (p)← q; sorted (p)← move [j];

unsorted (p)← null ; incr (j); q ← p;
until j > jj ;
link (q)← cur edges ; knil (cur edges)← q; n pos (cur edges)← n max (cur edges) + 1;
n rover (cur edges)← cur edges ; last window time (cur edges)← 0;
end;

This code is used in section 354.

365. The values of m magic and n magic can be worked out by trying the code above on a small example;
if they work correctly in simple cases, they should work in general.

〈Compute the magic offset values 365 〉 ≡
m magic ← m min (cur edges) + m offset (cur edges)− zero field ;
n magic ← 8 ∗ n max (cur edges) + 8 + zero w + min halfword

This code is used in section 354.

§366 METAFONT PART 20: EDGE STRUCTURES 149

366. Now let’s look at the subroutine that merges the edges from a given edge structure into cur edges .
The given edge structure loses all its edges.

procedure merge edges (h : pointer);
label done ;
var p, q, r, pp , qq , rr : pointer ; { list manipulation registers }
n: integer ; { row number }
k: halfword ; { key register that we compare to info(q) }
delta : integer ; { change to the edge/weight data }

begin if link (h) 6= h then
begin if (m min (h) < m min (cur edges)) ∨ (m max (h) > m max (cur edges)) ∨

(n min (h) < n min (cur edges)) ∨ (n max (h) > n max (cur edges)) then
edge prep(m min (h)−zero field ,m max (h)−zero field ,n min (h)−zero field ,n max (h)−zero field +1);

if m offset (h) 6= m offset (cur edges) then
〈Adjust the data of h to account for a difference of offsets 367 〉;

n← n min (cur edges); p← link (cur edges); pp ← link (h);
while n < n min (h) do

begin incr (n); p← link (p);
end;

repeat 〈Merge row pp into row p 368 〉;
pp ← link (pp); p← link (p);

until pp = h;
end;

end;

367. 〈Adjust the data of h to account for a difference of offsets 367 〉 ≡
begin pp ← link (h); delta ← 8 ∗ (m offset (cur edges)−m offset (h));
repeat qq ← sorted (pp);

while qq 6= sentinel do
begin info(qq)← info(qq) + delta ; qq ← link (qq);
end;

qq ← unsorted (pp);
while qq > void do

begin info(qq)← info(qq) + delta ; qq ← link (qq);
end;

pp ← link (pp);
until pp = h;
end

This code is used in section 366.

150 PART 20: EDGE STRUCTURES METAFONT §368

368. The sorted and unsorted lists are merged separately. After this step, row pp will have no edges
remaining, since they will all have been merged into row p.

〈Merge row pp into row p 368 〉 ≡
qq ← unsorted (pp);
if qq > void then

if unsorted (p) ≤ void then unsorted (p)← qq
else begin while link (qq) > void do qq ← link (qq);

link (qq)← unsorted (p); unsorted (p)← unsorted (pp);
end;

unsorted (pp)← null ; qq ← sorted (pp);
if qq 6= sentinel then

begin if unsorted (p) = void then unsorted (p)← null ;
sorted (pp)← sentinel ; r ← sorted loc(p); q ← link (r); { q = sorted (p) }
if q = sentinel then sorted (p)← qq
else loop begin k ← info(qq);

while k > info(q) do
begin r ← q; q ← link (r);
end;

link (r)← qq ; rr ← link (qq); link (qq)← q;
if rr = sentinel then goto done ;
r ← qq ; qq ← rr ;
end;

end;
done :

This code is used in section 366.

369. The total weight routine computes the total of all pixel weights in a given edge structure. It’s not
difficult to prove that this is the sum of (−w) times x taken over all edges, where w and x are the weight
and x coordinates stored in an edge. It’s not necessary to worry that this quantity will overflow the size of
an integer register, because it will be less than 231 unless the edge structure has more than 174,762 edges.
However, we had better not try to compute it as a scaled integer, because a total weight of almost 12× 212

can be produced by only four edges.

function total weight (h : pointer): integer ; {h is an edge header }
var p, q: pointer ; { variables that traverse the given structure }
n: integer ; { accumulated total so far }
m: 0 . . 65535; { packed x and w values, including offsets }

begin n← 0; p← link (h);
while p 6= h do

begin q ← sorted (p);
while q 6= sentinel do 〈Add the contribution of node q to the total weight, and set q ← link (q) 370 〉;
q ← unsorted (p);
while q > void do 〈Add the contribution of node q to the total weight, and set q ← link (q) 370 〉;
p← link (p);
end;

total weight ← n;
end;

§370 METAFONT PART 20: EDGE STRUCTURES 151

370. It’s not necessary to add the offsets to the x coordinates, because an entire edge structure can be
shifted without affecting its total weight. Similarly, we don’t need to subtract zero field .

〈Add the contribution of node q to the total weight, and set q ← link (q) 370 〉 ≡
begin m← ho(info(q)); n← n− ((mmod 8)− zero w) ∗ (m div 8); q ← link (q);
end

This code is used in sections 369 and 369.

371. So far we’ve done lots of things to edge structures assuming that edges are actually present, but we
haven’t seen how edges get created in the first place. Let’s turn now to the problem of generating new edges.

METAFONT will display new edges as they are being computed, if tracing edges is positive. In order to
keep such data reasonably compact, only the points at which the path makes a 90◦ or 180◦ turn are listed.

The tracing algorithm must remember some past history in order to suppress unnecessary data. Three vari-
ables trace x , trace y , and trace yy provide this history: The last coordinates printed were (trace x , trace y),
and the previous edge traced ended at (trace x , trace yy). Before anything at all has been traced, trace x =
−4096.

〈Global variables 13 〉 +≡
trace x : integer ; {x coordinate most recently shown in a trace }
trace y : integer ; { y coordinate most recently shown in a trace }
trace yy : integer ; { y coordinate most recently encountered }

372. Edge tracing is initiated by the begin edge tracing routine, continued by the trace a corner routine,
and terminated by the end edge tracing routine.

procedure begin edge tracing ;
begin print diagnostic("Tracing edges", "", true); print (" (weight "); print int (cur wt);
print char (")"); trace x ← −4096;
end;

procedure trace a corner ;
begin if file offset > max print line − 13 then print nl ("");
print char ("("); print int (trace x); print char (","); print int (trace yy); print char (")");
trace y ← trace yy ;
end;

procedure end edge tracing ;
begin if trace x = −4096 then print nl ("(No new edges added.)")
else begin trace a corner ; print char (".");

end;
end diagnostic(true);
end;

152 PART 20: EDGE STRUCTURES METAFONT §373

373. Just after a new edge weight has been put into the info field of node r, in row n, the following routine
continues an ongoing trace.

procedure trace new edge (r : pointer ; n : integer);
var d: integer ; { temporary data register }
w: −3 . . 3; {weight associated with an edge transition }
m,n0 ,n1 : integer ; { column and row numbers }

begin d← ho(info(r)); w ← (dmod 8)− zero w ; m← (d div 8)−m offset (cur edges);
if w = cur wt then

begin n0 ← n+ 1; n1 ← n;
end

else begin n0 ← n; n1 ← n+ 1;
end; { the edges run from (m,n0) to (m,n1) }

if m 6= trace x then
begin if trace x = −4096 then

begin print nl (""); trace yy ← n0 ;
end

else if trace yy 6= n0 then print char ("?") { shouldn’t happen }
else trace a corner ;

trace x ← m; trace a corner ;
end

else begin if n0 6= trace yy then print char ("!"); { shouldn’t happen }
if ((n0 < n1) ∧ (trace y > trace yy)) ∨ ((n0 > n1) ∧ (trace y < trace yy)) then trace a corner ;
end;

trace yy ← n1 ;
end;

§374 METAFONT PART 20: EDGE STRUCTURES 153

374. One way to put new edge weights into an edge structure is to use the following routine, which simply
draws a straight line from (x0 , y0) to (x1 , y1). More precisely, it introduces weights for the edges of the
discrete path

(
bt[x0, x1] + 1

2 + εc, bt[y0, y1] + 1
2 + εδc

)
, as t varies from 0 to 1, where ε and δ are extremely

small positive numbers.
The structure header is assumed to be cur edges ; downward edge weights will be cur wt , while upward

ones will be −cur wt .
Of course, this subroutine will be called only in connection with others that eventually draw a complete

cycle, so that the sum of the edge weights in each row will be zero whenever the row is displayed.

procedure line edges (x0 , y0 , x1 , y1 : scaled);
label done , done1 ;
var m0 ,n0 ,m1 ,n1 : integer ; { rounded and unscaled coordinates }

delx , dely : scaled ; { the coordinate differences of the line }
yt : scaled ; { smallest y coordinate that rounds the same as y0 }
tx : scaled ; { tentative change in x }
p, r: pointer ; { list manipulation registers }
base : integer ; { amount added to edge-and-weight data }
n: integer ; { current row number }

begin n0 ← round unscaled (y0); n1 ← round unscaled (y1);
if n0 6= n1 then

begin m0 ← round unscaled (x0); m1 ← round unscaled (x1); delx ← x1 − x0 ; dely ← y1 − y0 ;
yt ← n0 ∗ unity − half unit ; y0 ← y0 − yt ; y1 ← y1 − yt ;
if n0 < n1 then 〈 Insert upward edges for a line 375 〉
else 〈 Insert downward edges for a line 376 〉;
n rover (cur edges)← p; n pos (cur edges)← n+ zero field ;
end;

end;

375. Here we are careful to cancel any effect of rounding error.

〈 Insert upward edges for a line 375 〉 ≡
begin base ← 8 ∗m offset (cur edges) + min halfword + zero w − cur wt ;
if m0 ≤ m1 then edge prep(m0 ,m1 ,n0 ,n1) else edge prep(m1 ,m0 ,n0 ,n1);
〈Move to row n0 , pointed to by p 377 〉;
y0 ← unity − y0 ;
loop begin r ← get avail ; link (r)← unsorted (p); unsorted (p)← r;

tx ← take fraction (delx ,make fraction (y0 , dely));
if ab vs cd (delx , y0 , dely , tx) < 0 then decr (tx); { now tx = by0 · delx /dely c }
info(r)← 8 ∗ round unscaled (x0 + tx) + base ;
y1 ← y1 − unity ;
if internal [tracing edges] > 0 then trace new edge (r, n);
if y1 < unity then goto done ;
p← link (p); y0 ← y0 + unity ; incr (n);
end;

done : end

This code is used in section 374.

154 PART 20: EDGE STRUCTURES METAFONT §376

376. 〈 Insert downward edges for a line 376 〉 ≡
begin base ← 8 ∗m offset (cur edges) + min halfword + zero w + cur wt ;
if m0 ≤ m1 then edge prep(m0 ,m1 ,n1 ,n0) else edge prep(m1 ,m0 ,n1 ,n0);
decr (n0); 〈Move to row n0 , pointed to by p 377 〉;
loop begin r ← get avail ; link (r)← unsorted (p); unsorted (p)← r;

tx ← take fraction (delx ,make fraction (y0 , dely));
if ab vs cd (delx , y0 , dely , tx) < 0 then incr (tx); {now tx = dy0 · delx /dely e, since dely < 0 }
info(r)← 8 ∗ round unscaled (x0 − tx) + base ;
y1 ← y1 + unity ;
if internal [tracing edges] > 0 then trace new edge (r, n);
if y1 ≥ 0 then goto done1 ;
p← knil (p); y0 ← y0 + unity ; decr (n);
end;

done1 : end

This code is used in section 374.

377. 〈Move to row n0 , pointed to by p 377 〉 ≡
n← n pos (cur edges)− zero field ; p← n rover (cur edges);
if n 6= n0 then

if n < n0 then
repeat incr (n); p← link (p);
until n = n0

else repeat decr (n); p← knil (p);
until n = n0

This code is used in sections 375, 376, 381, 382, 383, and 384.

§378 METAFONT PART 20: EDGE STRUCTURES 155

378. METAFONT inserts most of its edges into edge structures via the move to edges subroutine, which
uses the data stored in the move array to specify a sequence of “rook moves.” The starting point (m0 ,n0)
and finishing point (m1 ,n1) of these moves, as seen from the standpoint of the first octant, are supplied
as parameters; the moves should, however, be rotated into a given octant. (We’re going to study octant
transformations in great detail later; the reader may wish to come back to this part of the program after
mastering the mysteries of octants.)

The rook moves themselves are defined as follows, from a first octant point of view: “Go right move [k]
steps, then go up one, for 0 ≤ k < n1 − n0 ; then go right move [n1 − n0] steps and stop.” The sum of
move [k] for 0 ≤ k ≤ n1 − n0 will be equal to m1 −m0 .

As in the line edges routine, we use +cur wt as the weight of all downward edges and −cur wt as the
weight of all upward edges, after the moves have been rotated to the proper octant direction.

There are two main cases to consider: fast case is for moves that travel in the direction of octants 1, 4,
5, and 8, while slow case is for moves that travel toward octants 2, 3, 6, and 7. The latter directions are
comparatively cumbersome because they generate more upward or downward edges; a curve that travels
horizontally doesn’t produce any edges at all, but a curve that travels vertically touches lots of rows.

define fast case up = 60 { for octants 1 and 4 }
define fast case down = 61 { for octants 5 and 8 }
define slow case up = 62 { for octants 2 and 3 }
define slow case down = 63 { for octants 6 and 7 }

procedure move to edges (m0 ,n0 ,m1 ,n1 : integer);
label fast case up , fast case down , slow case up , slow case down , done ;
var delta : 0 . . move size ; { extent of move data }
k: 0 . . move size ; { index into move }
p, r: pointer ; { list manipulation registers }
dx : integer ; { change in edge-weight info when x changes by 1 }
edge and weight : integer ; { info to insert }
j: integer ; { number of consecutive vertical moves }
n: integer ; { the current row pointed to by p }

debug sum : integer ; gubed
begin delta ← n1 − n0 ;
debug sum ← move [0];
for k ← 1 to delta do sum ← sum + abs (move [k]);
if sum 6= m1 −m0 then confusion ("0");
gubed
〈Prepare for and switch to the appropriate case, based on octant 380 〉;

fast case up : 〈Add edges for first or fourth octants, then goto done 381 〉;
fast case down : 〈Add edges for fifth or eighth octants, then goto done 382 〉;
slow case up : 〈Add edges for second or third octants, then goto done 383 〉;
slow case down : 〈Add edges for sixth or seventh octants, then goto done 384 〉;
done : n pos (cur edges)← n+ zero field ; n rover (cur edges)← p;

end;

379. The current octant code appears in a global variable. If, for example, we have octant = third octant ,
it means that a curve traveling in a north to north-westerly direction has been rotated for the purposes
of internal calculations so that the move data travels in an east to north-easterly direction. We want to
unrotate as we update the edge structure.

〈Global variables 13 〉 +≡
octant : first octant . . sixth octant ; { the current octant of interest }

156 PART 20: EDGE STRUCTURES METAFONT §380

380. 〈Prepare for and switch to the appropriate case, based on octant 380 〉 ≡
case octant of
first octant : begin dx ← 8; edge prep(m0 ,m1 ,n0 ,n1); goto fast case up ;

end;
second octant : begin dx ← 8; edge prep(n0 ,n1 ,m0 ,m1); goto slow case up ;

end;
third octant : begin dx ← −8; edge prep(−n1 ,−n0 ,m0 ,m1); negate (n0); goto slow case up ;

end;
fourth octant : begin dx ← −8; edge prep(−m1 ,−m0 ,n0 ,n1); negate (m0); goto fast case up ;

end;
fifth octant : begin dx ← −8; edge prep(−m1 ,−m0 ,−n1 ,−n0); negate (m0); goto fast case down ;

end;
sixth octant : begin dx ← −8; edge prep(−n1 ,−n0 ,−m1 ,−m0); negate (n0); goto slow case down ;

end;
seventh octant : begin dx ← 8; edge prep(n0 ,n1 ,−m1 ,−m0); goto slow case down ;

end;
eighth octant : begin dx ← 8; edge prep(m0 ,m1 ,−n1 ,−n0); goto fast case down ;

end;
end; { there are only eight octants }

This code is used in section 378.

381. 〈Add edges for first or fourth octants, then goto done 381 〉 ≡
〈Move to row n0 , pointed to by p 377 〉;
if delta > 0 then

begin k ← 0; edge and weight ← 8 ∗ (m0 + m offset (cur edges)) + min halfword + zero w − cur wt ;
repeat edge and weight ← edge and weight + dx ∗move [k]; fast get avail (r); link (r)← unsorted (p);

info(r)← edge and weight ;
if internal [tracing edges] > 0 then trace new edge (r, n);
unsorted (p)← r; p← link (p); incr (k); incr (n);

until k = delta ;
end;

goto done

This code is used in section 378.

382. 〈Add edges for fifth or eighth octants, then goto done 382 〉 ≡
n0 ← −n0 − 1; 〈Move to row n0 , pointed to by p 377 〉;
if delta > 0 then

begin k ← 0; edge and weight ← 8 ∗ (m0 + m offset (cur edges)) + min halfword + zero w + cur wt ;
repeat edge and weight ← edge and weight + dx ∗move [k]; fast get avail (r); link (r)← unsorted (p);

info(r)← edge and weight ;
if internal [tracing edges] > 0 then trace new edge (r, n);
unsorted (p)← r; p← knil (p); incr (k); decr (n);

until k = delta ;
end;

goto done

This code is used in section 378.

§383 METAFONT PART 20: EDGE STRUCTURES 157

383. 〈Add edges for second or third octants, then goto done 383 〉 ≡
edge and weight ← 8 ∗ (n0 + m offset (cur edges)) + min halfword + zero w − cur wt ; n0 ← m0 ; k ← 0;
〈Move to row n0 , pointed to by p 377 〉;
repeat j ← move [k];

while j > 0 do
begin fast get avail (r); link (r)← unsorted (p); info(r)← edge and weight ;
if internal [tracing edges] > 0 then trace new edge (r, n);
unsorted (p)← r; p← link (p); decr (j); incr (n);
end;

edge and weight ← edge and weight + dx ; incr (k);
until k > delta ;
goto done

This code is used in section 378.

384. 〈Add edges for sixth or seventh octants, then goto done 384 〉 ≡
edge and weight ← 8 ∗ (n0 + m offset (cur edges)) + min halfword + zero w + cur wt ; n0 ← −m0 − 1;
k ← 0; 〈Move to row n0 , pointed to by p 377 〉;
repeat j ← move [k];

while j > 0 do
begin fast get avail (r); link (r)← unsorted (p); info(r)← edge and weight ;
if internal [tracing edges] > 0 then trace new edge (r, n);
unsorted (p)← r; p← knil (p); decr (j); decr (n);
end;

edge and weight ← edge and weight + dx ; incr (k);
until k > delta ;
goto done

This code is used in section 378.

385. All the hard work of building an edge structure is undone by the following subroutine.

〈Declare the recycling subroutines 268 〉 +≡
procedure toss edges (h : pointer);

var p, q: pointer ; { for list manipulation }
begin q ← link (h);
while q 6= h do

begin flush list (sorted (q));
if unsorted (q) > void then flush list (unsorted (q));
p← q; q ← link (q); free node (p, row node size);
end;

free node (h, edge header size);
end;

158 PART 21: SUBDIVISION INTO OCTANTS METAFONT §386

386. Subdivision into octants. When METAFONT digitizes a path, it reduces the problem to the
special case of paths that travel in “first octant” directions; i.e., each cubic z(t) =

(
x(t), y(t)

)
being digitized

will have the property that 0 ≤ y′(t) ≤ x′(t). This assumption makes digitizing simpler and faster than if
the direction of motion has to be tested repeatedly.

When z(t) is cubic, x′(t) and y′(t) are quadratic, hence the four polynomials x′(t), y′(t), x′(t) − y′(t),
and x′(t) + y′(t) cross through 0 at most twice each. If we subdivide the given cubic at these places, we
get at most nine subintervals in each of which x′(t), y′(t), x′(t)− y′(t), and x′(t) + y′(t) all have a constant
sign. The curve can be transformed in each of these subintervals so that it travels entirely in first octant
directions, if we reflect x ↔ −x, y ↔ −y, and/or x ↔ y as necessary. (Incidentally, it can be shown that a
cubic such that x′(t) = 16(2t− 1)2 + 2(2t− 1)− 1 and y′(t) = 8(2t− 1)2 + 4(2t− 1) does indeed split into
nine subintervals.)

387. The transformation that rotates coordinates, so that first octant motion can be assumed, is defined
by the skew subroutine, which sets global variables cur x and cur y to the values that are appropriate in a
given octant. (Octants are encoded as they were in the n arg subroutine.)

This transformation is “skewed” by replacing (x, y) by (x − y, y), once first octant motion has been
established. It turns out that skewed coordinates are somewhat better to work with when curves are actually
digitized.

define set two end (#) ≡ cur y ← #; end
define set two(#) ≡

begin cur x ← #; set two end

procedure skew (x, y : scaled ; octant : small number);
begin case octant of
first octant : set two(x− y)(y);
second octant : set two(y − x)(x);
third octant : set two(y + x)(−x);
fourth octant : set two(−x− y)(y);
fifth octant : set two(−x+ y)(−y);
sixth octant : set two(−y + x)(−x);
seventh octant : set two(−y − x)(x);
eighth octant : set two(x+ y)(−y);
end; { there are no other cases }
end;

388. Conversely, the following subroutine sets cur x and cur y to the original coordinate values of a point,
given an octant code and the point’s coordinates (x, y) after they have been mapped into the first octant
and skewed.

〈Declare subroutines for printing expressions 257 〉 +≡
procedure unskew (x, y : scaled ; octant : small number);

begin case octant of
first octant : set two(x+ y)(y);
second octant : set two(y)(x+ y);
third octant : set two(−y)(x+ y);
fourth octant : set two(−x− y)(y);
fifth octant : set two(−x− y)(−y);
sixth octant : set two(−y)(−x− y);
seventh octant : set two(y)(−x− y);
eighth octant : set two(x+ y)(−y);
end; { there are no other cases }
end;

§389 METAFONT PART 21: SUBDIVISION INTO OCTANTS 159

389. 〈Global variables 13 〉 +≡
cur x , cur y : scaled ; { outputs of skew , unskew , and a few other routines }

390. The conversion to skewed and rotated coordinates takes place in stages, and at one point in the
transformation we will have negated the x and/or y coordinates so as to make curves travel in the first
quadrant. At this point the relevant “octant” code will be either first octant (when no transformation
has been done), or fourth octant = first octant + negate x (when x has been negated), or fifth octant =
first octant + negate x + negate y (when both have been negated), or eighth octant = first octant + negate y
(when y has been negated). The abnegate routine is sometimes needed to convert from one of these
transformations to another.

procedure abnegate (x, y : scaled ; octant before , octant after : small number);
begin if odd (octant before) = odd (octant after) then cur x ← x
else cur x ← −x;
if (octant before > negate y) = (octant after > negate y) then cur y ← y
else cur y ← −y;
end;

391. Now here’s a subroutine that’s handy for subdivision: Given a quadratic polynomial B(a, b, c; t), the
crossing point function returns the unique fraction value t between 0 and 1 at which B(a, b, c; t) changes
from positive to negative, or returns t = fraction one + 1 if no such value exists. If a < 0 (so that B(a, b, c; t)
is already negative at t = 0), crossing point returns the value zero.

define no crossing ≡
begin crossing point ← fraction one + 1; return;
end

define one crossing ≡
begin crossing point ← fraction one ; return;
end

define zero crossing ≡
begin crossing point ← 0; return;
end

function crossing point (a, b, c : integer): fraction ;
label exit ;
var d: integer ; { recursive counter }
x, xx , x0 , x1 , x2 : integer ; { temporary registers for bisection }

begin if a < 0 then zero crossing ;
if c ≥ 0 then

begin if b ≥ 0 then
if c > 0 then no crossing
else if (a = 0) ∧ (b = 0) then no crossing

else one crossing ;
if a = 0 then zero crossing ;
end

else if a = 0 then
if b ≤ 0 then zero crossing ;

〈Use bisection to find the crossing point, if one exists 392 〉;
exit : end;

160 PART 21: SUBDIVISION INTO OCTANTS METAFONT §392

392. The general bisection method is quite simple when n = 2, hence crossing point does not take much
time. At each stage in the recursion we have a subinterval defined by l and j such that B(a, b, c; 2−l(j+ t)) =
B(x0, x1, x2; t), and we want to “zero in” on the subinterval where x0 ≥ 0 and min(x1, x2) < 0.

It is convenient for purposes of calculation to combine the values of l and j in a single variable d = 2l + j,
because the operation of bisection then corresponds simply to doubling d and possibly adding 1. Furthermore
it proves to be convenient to modify our previous conventions for bisection slightly, maintaining the variables
X0 = 2lx0, X1 = 2l(x0 − x1), and X2 = 2l(x1 − x2). With these variables the conditions x0 ≥ 0 and
min(x1, x2) < 0 are equivalent to max(X1, X1 +X2) > X0 ≥ 0.

The following code maintains the invariant relations 0 ≤ x0 < max(x1 , x1 + x2), |x1 | < 230, |x2 | < 230;
it has been constructed in such a way that no arithmetic overflow will occur if the inputs satisfy a < 230,
|a− b| < 230, and |b− c| < 230.

〈Use bisection to find the crossing point, if one exists 392 〉 ≡
d← 1; x0 ← a; x1 ← a− b; x2 ← b− c;
repeat x← half (x1 + x2);

if x1 − x0 > x0 then
begin x2 ← x; double (x0); double (d);
end

else begin xx ← x1 + x− x0 ;
if xx > x0 then

begin x2 ← x; double (x0); double (d);
end

else begin x0 ← x0 − xx ;
if x ≤ x0 then

if x+ x2 ≤ x0 then no crossing ;
x1 ← x; d← d+ d+ 1;
end;

end;
until d ≥ fraction one ;
crossing point ← d− fraction one

This code is used in section 391.

§393 METAFONT PART 21: SUBDIVISION INTO OCTANTS 161

393. Octant subdivision is applied only to cycles, i.e., to closed paths. A “cycle spec” is a data structure
that contains specifications of cubic curves and octant mappings for the cycle that has been subdivided
into segments belonging to single octants. It is composed entirely of knot nodes, similar to those in the
representation of paths; but the explicit type indications have been replaced by positive numbers that give
further information. Additional endpoint data is also inserted at the octant boundaries.

Recall that a cubic polynomial is represented by four control points that appear in adjacent nodes p and q
of a knot list. The x coordinates are x coord (p), right x (p), left x (q), and x coord (q); the y coordinates are
similar. We shall call this “the cubic following p” or “the cubic between p and q” or “the cubic preceding q.”

Cycle specs are circular lists of cubic curves mixed with octant boundaries. Like cubics, the octant
boundaries are represented in consecutive knot nodes p and q. In such cases right type (p) = left type (q) =
endpoint , and the fields right x (p), right y (p), left x (q), and left y (q) are replaced by other fields called
right octant (p), right transition (p), left octant (q), and left transition (q), respectively. For example, when the
curve direction moves from the third octant to the fourth octant, the boundary nodes say right octant (p) =
third octant , left octant (q) = fourth octant , and right transition (p) = left transition (q) = diagonal . A
diagonal transition occurs when moving between octants 1 & 2, 3 & 4, 5 & 6, or 7 & 8; an axis transition
occurs when moving between octants 8 & 1, 2 & 3, 4 & 5, 6 & 7. (Such transition information is redundant
but convenient.) Fields x coord (p) and y coord (p) will contain coordinates of the transition point after
rotation from third octant to first octant; i.e., if the true coordinates are (x, y), the coordinates (y,−x) will
appear in node p. Similarly, a fourth-octant transformation will have been applied after the transition, so
we will have x coord (q) = −x and y coord (q) = y.

The cubic between p and q will contain positive numbers in the fields right type (p) and left type (q); this
makes cubics distinguishable from octant boundaries, because endpoint = 0. The value of right type (p) will
be the current octant code, during the time that cycle specs are being constructed; it will refer later to a
pen offset position, if the envelope of a cycle is being computed. A cubic that comes from some subinterval
of the kth step in the original cyclic path will have left type (q) = k.

define right octant ≡ right x { the octant code before a transition }
define left octant ≡ left x { the octant after a transition }
define right transition ≡ right y { the type of transition }
define left transition ≡ left y { ditto, either axis or diagonal }
define axis = 0 { a transition across the x′- or y′-axis }
define diagonal = 1 { a transition where y′ = ±x′ }

162 PART 21: SUBDIVISION INTO OCTANTS METAFONT §394

394. Here’s a routine that prints a cycle spec in symbolic form, so that it is possible to see what subdivision
has been made. The point coordinates are converted back from METAFONT’s internal “rotated” form to
the external “true” form. The global variable cur spec should point to a knot just after the beginning of an
octant boundary, i.e., such that left type (cur spec) = endpoint .

define print two true (#) ≡ unskew (#, octant); print two(cur x , cur y)

procedure print spec(s : str number);
label not found , done ;
var p, q: pointer ; { for list traversal }

octant : small number ; { the current octant code }
begin print diagnostic("Cycle spec", s, true); p← cur spec ; octant ← left octant (p); print ln ;
print two true (x coord (cur spec), y coord (cur spec)); print (" % beginning in octant `");
loop begin print (octant dir [octant]); print char ("´");

loop begin q ← link (p);
if right type (p) = endpoint then goto not found ;
〈Print the cubic between p and q 397 〉;
p← q;
end;

not found : if q = cur spec then goto done ;
p← q; octant ← left octant (p); print nl ("% entering octant `");
end;

done : print nl (" & cycle"); end diagnostic(true);
end;

395. Symbolic octant direction names are kept in the octant dir array.

〈Global variables 13 〉 +≡
octant dir : array [first octant . . sixth octant] of str number ;

396. 〈Set initial values of key variables 21 〉 +≡
octant dir [first octant]← "ENE"; octant dir [second octant]← "NNE"; octant dir [third octant]← "NNW";
octant dir [fourth octant]← "WNW"; octant dir [fifth octant]← "WSW"; octant dir [sixth octant]← "SSW";
octant dir [seventh octant]← "SSE"; octant dir [eighth octant]← "ESE";

397. 〈Print the cubic between p and q 397 〉 ≡
begin print nl (" ..controls "); print two true (right x (p), right y (p)); print (" and ");
print two true (left x (q), left y (q)); print nl (" .."); print two true (x coord (q), y coord (q));
print (" % segment "); print int (left type (q)− 1);
end

This code is used in section 394.

§398 METAFONT PART 21: SUBDIVISION INTO OCTANTS 163

398. A much more compact version of a spec is printed to help users identify “strange paths.”

procedure print strange (s : str number);
var p: pointer ; { for list traversal }
f : pointer ; { starting point in the cycle }
q: pointer ; { octant boundary to be printed }
t: integer ; { segment number, plus 1 }

begin if interaction = error stop mode then wake up terminal ;
print nl (">"); 〈Find the starting point, f 399 〉;
〈Determine the octant boundary q that precedes f 400 〉;
t← 0;
repeat if left type (p) 6= endpoint then

begin if left type (p) 6= t then
begin t← left type (p); print char (" "); print int (t− 1);
end;

if q 6= null then
begin 〈Print the turns, if any, that start at q, and advance q 401 〉;
print char (" "); print (octant dir [left octant (q)]); q ← null ;
end;

end
else if q = null then q ← p;
p← link (p);

until p = f ;
print char (" "); print int (left type (p)− 1);
if q 6= null then 〈Print the turns, if any, that start at q, and advance q 401 〉;
print err (s);
end;

399. If the segment numbers on the cycle are t1, t2, . . . , tm, and if m ≤ max quarterword , we have
tk−1 ≤ tk except for at most one value of k. If there are no exceptions, f will point to t1; otherwise it will
point to the exceptional tk.

There is at least one segment number (i.e., we always have m > 0), because print strange is never called
upon to display an entirely “dead” cycle.

〈Find the starting point, f 399 〉 ≡
p← cur spec ; t← max quarterword + 1;
repeat p← link (p);

if left type (p) 6= endpoint then
begin if left type (p) < t then f ← p;
t← left type (p);
end;

until p = cur spec

This code is used in section 398.

400. 〈Determine the octant boundary q that precedes f 400 〉 ≡
p← cur spec ; q ← p;
repeat p← link (p);

if left type (p) = endpoint then q ← p;
until p = f

This code is used in section 398.

164 PART 21: SUBDIVISION INTO OCTANTS METAFONT §401

401. When two octant boundaries are adjacent, the path is simply changing direction without moving.
Such octant directions are shown in parentheses.

〈Print the turns, if any, that start at q, and advance q 401 〉 ≡
if left type (link (q)) = endpoint then

begin print (" ("); print (octant dir [left octant (q)]); q ← link (q);
while left type (link (q)) = endpoint do

begin print char (" "); print (octant dir [left octant (q)]); q ← link (q);
end;

print char (")");
end

This code is used in sections 398 and 398.

402. The make spec routine is what subdivides paths into octants: Given a pointer cur spec to a cyclic
path, make spec mungs the path data and returns a pointer to the corresponding cyclic spec. All “dead”
cubics (i.e., cubics that don’t move at all from their starting points) will have been removed from the result.

The idea of make spec is fairly simple: Each cubic is first subdivided, if necessary, into pieces belonging to
single octants; then the octant boundaries are inserted. But some of the details of this transformation are
not quite obvious.

If autorounding > 0, the path will be adjusted so that critical tangent directions occur at “good” points
with respect to the pen called cur pen .

The resulting spec will have all x and y coordinates at most 228−half unit −1− safety margin in absolute
value. The pointer that is returned will start some octant, as required by print spec .

〈Declare subroutines needed by make spec 405 〉
function make spec(h : pointer ; safety margin : scaled ; tracing : integer): pointer ;

{ converts a path to a cycle spec }
label continue , done ;
var p, q, r, s: pointer ; { for traversing the lists }
k: integer ; { serial number of path segment, or octant code }
chopped : integer ; { positive if data truncated, negative if data dangerously large }
〈Other local variables for make spec 453 〉

begin cur spec ← h;
if tracing > 0 then print path (cur spec , ", before subdivision into octants", true);
max allowed ← fraction one − half unit − 1− safety margin ; 〈Truncate the values of all coordinates that

exceed max allowed , and stamp segment numbers in each left type field 404 〉;
quadrant subdivide ; { subdivide each cubic into pieces belonging to quadrants }
if (internal [autorounding] > 0) ∧ (chopped = 0) then xy round ;
octant subdivide ; { complete the subdivision }
if (internal [autorounding] > unity) ∧ (chopped = 0) then diag round ;
〈Remove dead cubics 447 〉;
〈 Insert octant boundaries and compute the turning number 450 〉;
while left type (cur spec) 6= endpoint do cur spec ← link (cur spec);
if tracing > 0 then

if (internal [autorounding] ≤ 0) ∨ (chopped 6= 0) then print spec(", after subdivision")
else if internal [autorounding] > unity then

print spec(", after subdivision and double autorounding")
else print spec(", after subdivision and autorounding");

make spec ← cur spec ;
end;

§403 METAFONT PART 21: SUBDIVISION INTO OCTANTS 165

403. The make spec routine has an interesting side effect, namely to set the global variable turning number
to the number of times the tangent vector of the given cyclic path winds around the origin.

Another global variable cur spec points to the specification as it is being made, since several subroutines
must go to work on it.

And there are two global variables that affect the rounding decisions, as we’ll see later; they are called
cur pen and cur path type . The latter will be double path code if make spec is being applied to a double
path.

define double path code = 0 { command modifier for ‘doublepath’ }
define contour code = 1 { command modifier for ‘contour’ }
define also code = 2 { command modifier for ‘also’ }

〈Global variables 13 〉 +≡
cur spec : pointer ; { the principal output of make spec }
turning number : integer ; { another output of make spec }
cur pen : pointer ; { an implicit input of make spec , used in autorounding }
cur path type : double path code . . contour code ; { likewise }
max allowed : scaled ; { coordinates must be at most this big }

404. First we do a simple preprocessing step. The segment numbers inserted here will propagate to all
descendants of cubics that are split into subintervals. These numbers must be nonzero, but otherwise they
are present merely for diagnostic purposes. The cubic from p to q that represents “time interval” (t− 1) . . t
usually has left type (q) = t, except when t is too large to be stored in a quarterword.

define procrustes (#) ≡ if abs (#) ≥ dmax then
if abs (#) > max allowed then

begin chopped ← 1;
if # > 0 then #← max allowed else #← −max allowed ;
end

else if chopped = 0 then chopped ← −1

〈Truncate the values of all coordinates that exceed max allowed , and stamp segment numbers in each
left type field 404 〉 ≡

p← cur spec ; k ← 1; chopped ← 0; dmax ← half (max allowed);
repeat procrustes (left x (p)); procrustes (left y (p)); procrustes (x coord (p)); procrustes (y coord (p));

procrustes (right x (p)); procrustes (right y (p));
p← link (p); left type (p)← k;
if k < max quarterword then incr (k) else k ← 1;

until p = cur spec ;
if chopped > 0 then

begin print err ("Curve out of range");
help4 ("At least one of the coordinates in the path I´m about to")
("digitize was really huge (potentially bigger than 4095).")
("So I´ve cut it back to the maximum size.")
("The results will probably be pretty wild."); put get error ;
end

This code is used in section 402.

166 PART 21: SUBDIVISION INTO OCTANTS METAFONT §405

405. We may need to get rid of constant “dead” cubics that clutter up the data structure and interfere
with autorounding.

〈Declare subroutines needed by make spec 405 〉 ≡
procedure remove cubic(p : pointer); { removes the cubic following p }

var q: pointer ; { the node that disappears }
begin q ← link (p); right type (p)← right type (q); link (p)← link (q);
x coord (p)← x coord (q); y coord (p)← y coord (q);
right x (p)← right x (q); right y (p)← right y (q);
free node (q, knot node size);
end;

See also sections 406, 419, 426, 429, 431, 432, 433, 440, and 451.

This code is used in section 402.

406. The subdivision process proceeds by first swapping x↔ −x, if necessary, to ensure that x′ ≥ 0; then
swapping y ↔ −y, if necessary, to ensure that y′ ≥ 0; and finally swapping x ↔ y, if necessary, to ensure
that x′ ≥ y′.

Recall that the octant codes have been defined in such a way that, for example, third octant = first octant +
negate x + switch x and y . The program uses the fact that negate x < negate y < switch x and y to
handle “double negation”: If c is an octant code that possibly involves negate x and/or negate y , but not
switch x and y , then negating y changes c either to c + negate y or c − negate y , depending on whether
c ≤ negate y or c > negate y . Octant codes are always greater than zero.

The first step is to subdivide on x and y only, so that horizontal and vertical autorounding can be done
before we compare x′ to y′.

〈Declare subroutines needed by make spec 405 〉 +≡
〈Declare the procedure called split cubic 410 〉
procedure quadrant subdivide ;

label continue , exit ;
var p, q, r, s, pp , qq : pointer ; { for traversing the lists }

first x ,first y : scaled ; {unnegated coordinates of node cur spec }
del1 , del2 , del3 , del , dmax : scaled ;

{proportional to the control points of a quadratic derived from a cubic }
t: fraction ; {where a quadratic crosses zero }
dest x , dest y : scaled ; { final values of x and y in the current cubic }
constant x : boolean ; { is x constant between p and q? }

begin p← cur spec ; first x ← x coord (cur spec); first y ← y coord (cur spec);
repeat continue : q ← link (p);
〈Subdivide the cubic between p and q so that the results travel toward the right halfplane 407 〉;
〈Subdivide all cubics between p and q so that the results travel toward the first quadrant; but return

or goto continue if the cubic from p to q was dead 413 〉;
p← q;

until p = cur spec ;
exit : end;

§407 METAFONT PART 21: SUBDIVISION INTO OCTANTS 167

407. All three subdivision processes are similar, so it’s possible to get the general idea by studying the
first one (which is the simplest). The calculation makes use of the fact that the derivatives of Bernshtĕın
polynomials satisfy B′(z0, z1, . . . , zn; t) = nB(z1 − z0, . . . , zn − zn−1; t).

When this routine begins, right type (p) is explicit ; we should set right type (p) ← first octant . However,
no assignment is made, because explicit = first octant . The author apologizes for using such trickery here;
it is really hard to do redundant computations just for the sake of purity.

〈Subdivide the cubic between p and q so that the results travel toward the right halfplane 407 〉 ≡
if q = cur spec then

begin dest x ← first x ; dest y ← first y ;
end

else begin dest x ← x coord (q); dest y ← y coord (q);
end;

del1 ← right x (p)− x coord (p); del2 ← left x (q)− right x (p);
del3 ← dest x − left x (q); 〈Scale up del1 , del2 , and del3 for greater accuracy; also set del to the first

nonzero element of (del1 , del2 , del3) 408 〉;
if del = 0 then constant x ← true
else begin constant x ← false ;

if del < 0 then 〈Complement the x coordinates of the cubic between p and q 409 〉;
t← crossing point (del1 , del2 , del3);
if t < fraction one then 〈Subdivide the cubic with respect to x′, possibly twice 411 〉;
end

This code is used in section 406.

408. If del1 = del2 = del3 = 0, it’s impossible to obey the title of this section. We just set del = 0 in
that case.

〈Scale up del1 , del2 , and del3 for greater accuracy; also set del to the first nonzero element of
(del1 , del2 , del3) 408 〉 ≡

if del1 6= 0 then del ← del1
else if del2 6= 0 then del ← del2

else del ← del3 ;
if del 6= 0 then

begin dmax ← abs (del1);
if abs (del2) > dmax then dmax ← abs (del2);
if abs (del3) > dmax then dmax ← abs (del3);
while dmax < fraction half do

begin double (dmax); double (del1); double (del2); double (del3);
end;

end

This code is used in sections 407, 413, and 420.

409. During the subdivision phases of make spec , the x coord and y coord fields of node q are not
transformed to agree with the octant stated in right type (p); they remain consistent with right type (q).
But left x (q) and left y (q) are governed by right type (p).

〈Complement the x coordinates of the cubic between p and q 409 〉 ≡
begin negate (x coord (p)); negate (right x (p)); negate (left x (q));
negate (del1); negate (del2); negate (del3);
negate (dest x); right type (p)← first octant + negate x ;
end

This code is used in section 407.

168 PART 21: SUBDIVISION INTO OCTANTS METAFONT §410

410. When a cubic is split at a fraction value t, we obtain two cubics whose Bézier control points are

obtained by a generalization of the bisection process: The formula ‘z
(j+1)
k = 1

2 (z
(j)
k + z

(j)
k+1)’ becomes

‘z
(j+1)
k = t[z

(j)
k , z

(j)
k+1]’.

It is convenient to define a WEB macro t of the way such that t of the way (a)(b) expands to a− (a− b) ∗ t,
i.e., to t[a, b].

If 0 ≤ t ≤ 1, the quantity t[a, b] is always between a and b, even in the presence of rounding errors. Our
subroutines also obey the identity t[a, b] + t[b, a] = a+ b.

define t of the way end (#) ≡ #, t)

define t of the way (#) ≡ #− take fraction (#− t of the way end

〈Declare the procedure called split cubic 410 〉 ≡
procedure split cubic(p : pointer ; t : fraction ; xq , yq : scaled); { splits the cubic after p }

var v: scaled ; { an intermediate value }
q, r: pointer ; { for list manipulation }

begin q ← link (p); r ← get node (knot node size); link (p)← r; link (r)← q;
left type (r)← left type (q); right type (r)← right type (p);

v ← t of the way (right x (p))(left x (q)); right x (p)← t of the way (x coord (p))(right x (p));
left x (q)← t of the way (left x (q))(xq); left x (r)← t of the way (right x (p))(v);
right x (r)← t of the way (v)(left x (q)); x coord (r)← t of the way (left x (r))(right x (r));

v ← t of the way (right y (p))(left y (q)); right y (p)← t of the way (y coord (p))(right y (p));
left y (q)← t of the way (left y (q))(yq); left y (r)← t of the way (right y (p))(v);
right y (r)← t of the way (v)(left y (q)); y coord (r)← t of the way (left y (r))(right y (r));
end;

This code is used in section 406.

411. Since x′(t) is a quadratic equation, it can cross through zero at most twice. When it does cross zero,
we make doubly sure that the derivative is really zero at the splitting point, in case rounding errors have
caused the split cubic to have an apparently nonzero derivative. We also make sure that the split cubic is
monotonic.

〈Subdivide the cubic with respect to x′, possibly twice 411 〉 ≡
begin split cubic(p, t, dest x , dest y); r ← link (p);
if right type (r) > negate x then right type (r)← first octant
else right type (r)← first octant + negate x ;
if x coord (r) < x coord (p) then x coord (r)← x coord (p);
left x (r)← x coord (r);
if right x (p) > x coord (r) then right x (p)← x coord (r); {we always have x coord (p) ≤ right x (p) }
negate (x coord (r)); right x (r)← x coord (r); negate (left x (q)); negate (dest x);
del2 ← t of the way (del2)(del3); {now 0, del2 , del3 represent x′ on the remaining interval }
if del2 > 0 then del2 ← 0;
t← crossing point (0,−del2 ,−del3);
if t < fraction one then 〈Subdivide the cubic a second time with respect to x′ 412 〉
else begin if x coord (r) > dest x then

begin x coord (r)← dest x ; left x (r)← −x coord (r); right x (r)← x coord (r);
end;

if left x (q) > dest x then left x (q)← dest x
else if left x (q) < x coord (r) then left x (q)← x coord (r);
end;

end

This code is used in section 407.

§412 METAFONT PART 21: SUBDIVISION INTO OCTANTS 169

412. 〈Subdivide the cubic a second time with respect to x′ 412 〉 ≡
begin split cubic(r, t, dest x , dest y); s← link (r);
if x coord (s) < dest x then x coord (s)← dest x ;
if x coord (s) < x coord (r) then x coord (s)← x coord (r);
right type (s)← right type (p); left x (s)← x coord (s); { now x coord (r) = right x (r) ≤ left x (s) }
if left x (q) < dest x then left x (q)← −dest x
else if left x (q) > x coord (s) then left x (q)← −x coord (s)

else negate (left x (q));
negate (x coord (s)); right x (s)← x coord (s);
end

This code is used in section 411.

413. The process of subdivision with respect to y′ is like that with respect to x′, with the slight additional
complication that two or three cubics might now appear between p and q.

〈Subdivide all cubics between p and q so that the results travel toward the first quadrant; but return or
goto continue if the cubic from p to q was dead 413 〉 ≡

pp ← p;
repeat qq ← link (pp); abnegate (x coord (qq), y coord (qq), right type (qq), right type (pp));

dest x ← cur x ; dest y ← cur y ;
del1 ← right y (pp)− y coord (pp); del2 ← left y (qq)− right y (pp);
del3 ← dest y − left y (qq); 〈Scale up del1 , del2 , and del3 for greater accuracy; also set del to the

first nonzero element of (del1 , del2 , del3) 408 〉;
if del 6= 0 then { they weren’t all zero }

begin if del < 0 then 〈Complement the y coordinates of the cubic between pp and qq 414 〉;
t← crossing point (del1 , del2 , del3);
if t < fraction one then 〈Subdivide the cubic with respect to y′, possibly twice 415 〉;
end

else 〈Do any special actions needed when y is constant; return or goto continue if a dead cubic from
p to q is removed 417 〉;

pp ← qq ;
until pp = q;
if constant x then 〈Correct the octant code in segments with decreasing y 418 〉

This code is used in section 406.

414. 〈Complement the y coordinates of the cubic between pp and qq 414 〉 ≡
begin negate (y coord (pp)); negate (right y (pp)); negate (left y (qq));
negate (del1); negate (del2); negate (del3);
negate (dest y); right type (pp)← right type (pp) + negate y ;
end

This code is used in sections 413 and 417.

170 PART 21: SUBDIVISION INTO OCTANTS METAFONT §415

415. 〈Subdivide the cubic with respect to y′, possibly twice 415 〉 ≡
begin split cubic(pp , t, dest x , dest y); r ← link (pp);
if right type (r) > negate y then right type (r)← right type (r)− negate y
else right type (r)← right type (r) + negate y ;
if y coord (r) < y coord (pp) then y coord (r)← y coord (pp);
left y (r)← y coord (r);
if right y (pp) > y coord (r) then right y (pp)← y coord (r);

{we always have y coord (pp) ≤ right y (pp) }
negate (y coord (r)); right y (r)← y coord (r); negate (left y (qq)); negate (dest y);
if x coord (r) < x coord (pp) then x coord (r)← x coord (pp)
else if x coord (r) > dest x then x coord (r)← dest x ;
if left x (r) > x coord (r) then

begin left x (r)← x coord (r);
if right x (pp) > x coord (r) then right x (pp)← x coord (r);
end;

if right x (r) < x coord (r) then
begin right x (r)← x coord (r);
if left x (qq) < x coord (r) then left x (qq)← x coord (r);
end;

del2 ← t of the way (del2)(del3); {now 0, del2 , del3 represent y′ on the remaining interval }
if del2 > 0 then del2 ← 0;
t← crossing point (0,−del2 ,−del3);
if t < fraction one then 〈Subdivide the cubic a second time with respect to y′ 416 〉
else begin if y coord (r) > dest y then

begin y coord (r)← dest y ; left y (r)← −y coord (r); right y (r)← y coord (r);
end;

if left y (qq) > dest y then left y (qq)← dest y
else if left y (qq) < y coord (r) then left y (qq)← y coord (r);
end;

end

This code is used in section 413.

§416 METAFONT PART 21: SUBDIVISION INTO OCTANTS 171

416. 〈Subdivide the cubic a second time with respect to y′ 416 〉 ≡
begin split cubic(r, t, dest x , dest y); s← link (r);
if y coord (s) < dest y then y coord (s)← dest y ;
if y coord (s) < y coord (r) then y coord (s)← y coord (r);
right type (s)← right type (pp); left y (s)← y coord (s); { now y coord (r) = right y (r) ≤ left y (s) }
if left y (qq) < dest y then left y (qq)← −dest y
else if left y (qq) > y coord (s) then left y (qq)← −y coord (s)

else negate (left y (qq));
negate (y coord (s)); right y (s)← y coord (s);
if x coord (s) < x coord (r) then x coord (s)← x coord (r)
else if x coord (s) > dest x then x coord (s)← dest x ;
if left x (s) > x coord (s) then

begin left x (s)← x coord (s);
if right x (r) > x coord (s) then right x (r)← x coord (s);
end;

if right x (s) < x coord (s) then
begin right x (s)← x coord (s);
if left x (qq) < x coord (s) then left x (qq)← x coord (s);
end;

end

This code is used in section 415.

417. If the cubic is constant in y and increasing in x, we have classified it as traveling in the first octant. If
the cubic is constant in y and decreasing in x, it is desirable to classify it as traveling in the fifth octant (not
the fourth), because autorounding will be consistent with respect to doublepaths only if the octant number
changes by four when the path is reversed. Therefore we negate the y coordinates when they are constant
but the curve is decreasing in x; this gives the desired result except in pathological paths.

If the cubic is “dead,” i.e., constant in both x and y, we remove it unless it is the only cubic in the entire
path. We goto continue if it wasn’t the final cubic, so that the test p = cur spec does not falsely imply that
all cubics have been processed.

〈Do any special actions needed when y is constant; return or goto continue if a dead cubic from p to q is
removed 417 〉 ≡

if constant x then { p = pp , q = qq , and the cubic is dead }
begin if q 6= p then

begin remove cubic(p); { remove the dead cycle and recycle node q }
if cur spec 6= q then goto continue
else begin cur spec ← p; return;

end; { the final cubic was dead and is gone }
end;

end
else if ¬odd (right type (pp)) then { the x coordinates were negated }

〈Complement the y coordinates of the cubic between pp and qq 414 〉
This code is used in section 413.

172 PART 21: SUBDIVISION INTO OCTANTS METAFONT §418

418. A similar correction to octant codes deserves to be made when x is constant and y is decreasing.

〈Correct the octant code in segments with decreasing y 418 〉 ≡
begin pp ← p;
repeat qq ← link (pp);

if right type (pp) > negate y then { the y coordinates were negated }
begin right type (pp)← right type (pp) + negate x ; negate (x coord (pp)); negate (right x (pp));
negate (left x (qq));
end;

pp ← qq ;
until pp = q;
end

This code is used in section 413.

419. Finally, the process of subdividing to make x′ ≥ y′ is like the other two subdivisions, with a few new
twists. We skew the coordinates at this time.

〈Declare subroutines needed by make spec 405 〉 +≡
procedure octant subdivide ;

var p, q, r, s: pointer ; { for traversing the lists }
del1 , del2 , del3 , del , dmax : scaled ;

{proportional to the control points of a quadratic derived from a cubic }
t: fraction ; {where a quadratic crosses zero }
dest x , dest y : scaled ; { final values of x and y in the current cubic }

begin p← cur spec ;
repeat q ← link (p);

x coord (p)← x coord (p)− y coord (p); right x (p)← right x (p)− right y (p);
left x (q)← left x (q)− left y (q);
〈Subdivide the cubic between p and q so that the results travel toward the first octant 420 〉;
p← q;

until p = cur spec ;
end;

420. 〈Subdivide the cubic between p and q so that the results travel toward the first octant 420 〉 ≡
〈Set up the variables (del1 , del2 , del3) to represent x′ − y′ 421 〉;
〈Scale up del1 , del2 , and del3 for greater accuracy; also set del to the first nonzero element of

(del1 , del2 , del3) 408 〉;
if del 6= 0 then { they weren’t all zero }

begin if del < 0 then 〈Swap the x and y coordinates of the cubic between p and q 423 〉;
t← crossing point (del1 , del2 , del3);
if t < fraction one then 〈Subdivide the cubic with respect to x′ − y′, possibly twice 424 〉;
end

This code is used in section 419.

421. 〈Set up the variables (del1 , del2 , del3) to represent x′ − y′ 421 〉 ≡
if q = cur spec then

begin unskew (x coord (q), y coord (q), right type (q)); skew (cur x , cur y , right type (p));
dest x ← cur x ; dest y ← cur y ;
end

else begin abnegate (x coord (q), y coord (q), right type (q), right type (p)); dest x ← cur x − cur y ;
dest y ← cur y ;
end;

del1 ← right x (p)− x coord (p); del2 ← left x (q)− right x (p); del3 ← dest x − left x (q)

This code is used in section 420.

§422 METAFONT PART 21: SUBDIVISION INTO OCTANTS 173

422. The swapping here doesn’t simply interchange x and y values, because the coordinates are skewed.
It turns out that this is easier than ordinary swapping, because it can be done in two assignment statements
rather than three.

423. 〈Swap the x and y coordinates of the cubic between p and q 423 〉 ≡
begin y coord (p)← x coord (p) + y coord (p); negate (x coord (p));
right y (p)← right x (p) + right y (p); negate (right x (p));
left y (q)← left x (q) + left y (q); negate (left x (q));
negate (del1); negate (del2); negate (del3);
dest y ← dest x + dest y ; negate (dest x);
right type (p)← right type (p) + switch x and y ;
end

This code is used in section 420.

174 PART 21: SUBDIVISION INTO OCTANTS METAFONT §424

424. A somewhat tedious case analysis is carried out here to make sure that nasty rounding errors don’t
destroy our assumptions of monotonicity.

〈Subdivide the cubic with respect to x′ − y′, possibly twice 424 〉 ≡
begin split cubic(p, t, dest x , dest y); r ← link (p);
if right type (r) > switch x and y then right type (r)← right type (r)− switch x and y
else right type (r)← right type (r) + switch x and y ;
if y coord (r) < y coord (p) then y coord (r)← y coord (p)
else if y coord (r) > dest y then y coord (r)← dest y ;
if x coord (p) + y coord (r) > dest x + dest y then y coord (r)← dest x + dest y − x coord (p);
if left y (r) > y coord (r) then

begin left y (r)← y coord (r);
if right y (p) > y coord (r) then right y (p)← y coord (r);
end;

if right y (r) < y coord (r) then
begin right y (r)← y coord (r);
if left y (q) < y coord (r) then left y (q)← y coord (r);
end;

if x coord (r) < x coord (p) then x coord (r)← x coord (p)
else if x coord (r) + y coord (r) > dest x + dest y then x coord (r)← dest x + dest y − y coord (r);
left x (r)← x coord (r);
if right x (p) > x coord (r) then right x (p)← x coord (r); {we always have x coord (p) ≤ right x (p) }
y coord (r)← y coord (r) + x coord (r); right y (r)← right y (r) + x coord (r);
negate (x coord (r)); right x (r)← x coord (r);
left y (q)← left y (q) + left x (q); negate (left x (q));
dest y ← dest y + dest x ; negate (dest x);
if right y (r) < y coord (r) then

begin right y (r)← y coord (r);
if left y (q) < y coord (r) then left y (q)← y coord (r);
end;

del2 ← t of the way (del2)(del3); {now 0, del2 , del3 represent x′ − y′ on the remaining interval }
if del2 > 0 then del2 ← 0;
t← crossing point (0,−del2 ,−del3);
if t < fraction one then 〈Subdivide the cubic a second time with respect to x′ − y′ 425 〉
else begin if x coord (r) > dest x then

begin x coord (r)← dest x ; left x (r)← −x coord (r); right x (r)← x coord (r);
end;

if left x (q) > dest x then left x (q)← dest x
else if left x (q) < x coord (r) then left x (q)← x coord (r);
end;

end

This code is used in section 420.

§425 METAFONT PART 21: SUBDIVISION INTO OCTANTS 175

425. 〈Subdivide the cubic a second time with respect to x′ − y′ 425 〉 ≡
begin split cubic(r, t, dest x , dest y); s← link (r);
if y coord (s) < y coord (r) then y coord (s)← y coord (r)
else if y coord (s) > dest y then y coord (s)← dest y ;
if x coord (r) + y coord (s) > dest x + dest y then y coord (s)← dest x + dest y − x coord (r);
if left y (s) > y coord (s) then

begin left y (s)← y coord (s);
if right y (r) > y coord (s) then right y (r)← y coord (s);
end;

if right y (s) < y coord (s) then
begin right y (s)← y coord (s);
if left y (q) < y coord (s) then left y (q)← y coord (s);
end;

if x coord (s) + y coord (s) > dest x + dest y then x coord (s)← dest x + dest y − y coord (s)
else begin if x coord (s) < dest x then x coord (s)← dest x ;

if x coord (s) < x coord (r) then x coord (s)← x coord (r);
end;

right type (s)← right type (p); left x (s)← x coord (s); { now x coord (r) = right x (r) ≤ left x (s) }
if left x (q) < dest x then

begin left y (q)← left y (q) + dest x ; left x (q)← −dest x ; end
else if left x (q) > x coord (s) then

begin left y (q)← left y (q) + x coord (s); left x (q)← −x coord (s); end
else begin left y (q)← left y (q) + left x (q); negate (left x (q)); end;

y coord (s)← y coord (s) + x coord (s); right y (s)← right y (s) + x coord (s);
negate (x coord (s)); right x (s)← x coord (s);
if right y (s) < y coord (s) then

begin right y (s)← y coord (s);
if left y (q) < y coord (s) then left y (q)← y coord (s);
end;

end

This code is used in section 424.

176 PART 21: SUBDIVISION INTO OCTANTS METAFONT §426

426. It’s time now to consider “autorounding,” which tries to make horizontal, vertical, and diagonal
tangents occur at places that will produce appropriate images after the curve is digitized.

The first job is to fix things so that x(t) plus the horizontal pen offset is an integer multiple of the current
“granularity” when the derivative x′(t) crosses through zero. The given cyclic path contains regions where
x′(t) ≥ 0 and regions where x′(t) ≤ 0. The quadrant subdivide routine is called into action before any
of the path coordinates have been skewed, but some of them may have been negated. In regions where
x′(t) ≥ 0 we have right type = first octant or right type = eighth octant ; in regions where x′(t) ≤ 0, we have
right type = fifth octant or right type = fourth octant .

Within any such region the transformed x values increase monotonically from, say, x0 to x1. We want to
modify things by applying a linear transformation to all x coordinates in the region, after which the x values
will increase monotonically from round(x0) to round(x1).

This rounding scheme sounds quite simple, and it usually is. But several complications can arise that
might make the task more difficult. In the first place, autorounding is inappropriate at cusps where x′

jumps discontinuously past zero without ever being zero. In the second place, the current pen might be
unsymmetric in such a way that x coordinates should round differently in different parts of the curve. These
considerations imply that round(x0) might be greater than round(x1), even though x0 ≤ x1; in such cases we
do not want to carry out the linear transformation. Furthermore, it’s possible to have round(x1)−round(x0)
positive but much greater than x1 − x0; then the transformation might distort the curve drastically, and
again we want to avoid it. Finally, the rounded points must be consistent between adjacent regions, hence
we can’t transform one region without knowing about its neighbors.

To handle all these complications, we must first look at the whole cycle and choose rounded x values
that are “safe.” The following procedure does this: Given m values (b0, b1, . . . , bm−1) before rounding and
m corresponding values (a0, a1, . . . , am−1) that would be desirable after rounding, the make safe routine
sets a’s to b’s if necessary so that 0 ≤ (ak+1 − ak)/(bk+1 − bk) ≤ 2 afterwards. It is symmetric under cyclic
permutation, reversal, and/or negation of the inputs. (Instead of a, b, and m, the program uses the names
after , before , and cur rounding ptr .)

〈Declare subroutines needed by make spec 405 〉 +≡
procedure make safe ;

var k: 0 . . max wiggle ; { runs through the list of inputs }
all safe : boolean ; { does everything look OK so far? }
next a : scaled ; { after [k] before it might have changed }
delta a , delta b : scaled ; { after [k + 1]− after [k] and before [k + 1]− before [k] }

begin before [cur rounding ptr]← before [0]; {wrap around }
node to round [cur rounding ptr]← node to round [0];
repeat after [cur rounding ptr]← after [0]; all safe ← true ; next a ← after [0];

for k ← 0 to cur rounding ptr − 1 do
begin delta b ← before [k + 1]− before [k];
if delta b ≥ 0 then delta a ← after [k + 1]− next a
else delta a ← next a − after [k + 1];
next a ← after [k + 1];
if (delta a < 0) ∨ (delta a > abs (delta b + delta b)) then

begin all safe ← false ; after [k]← before [k];
if k = cur rounding ptr − 1 then after [0]← before [0]
else after [k + 1]← before [k + 1];
end;

end;
until all safe ;
end;

§427 METAFONT PART 21: SUBDIVISION INTO OCTANTS 177

427. The global arrays used by make safe are accompanied by an array of pointers into the current knot
list.

〈Global variables 13 〉 +≡
before , after : array [0 . . max wiggle] of scaled ; {data for make safe }
node to round : array [0 . . max wiggle] of pointer ; { reference back to the path }
cur rounding ptr : 0 . . max wiggle ; { how many are being used }
max rounding ptr : 0 . . max wiggle ; { how many have been used }

428. 〈Set initial values of key variables 21 〉 +≡
max rounding ptr ← 0;

429. New entries go into the tables via the before and after routine:

〈Declare subroutines needed by make spec 405 〉 +≡
procedure before and after (b, a : scaled ; p : pointer);

begin if cur rounding ptr = max rounding ptr then
if max rounding ptr < max wiggle then incr (max rounding ptr)
else overflow ("rounding table size",max wiggle);

after [cur rounding ptr]← a; before [cur rounding ptr]← b; node to round [cur rounding ptr]← p;
incr (cur rounding ptr);
end;

430. A global variable called cur gran is used instead of internal [granularity], because we want to work
with a number that’s guaranteed to be positive.

〈Global variables 13 〉 +≡
cur gran : scaled ; { the current granularity (which normally is unity) }

431. The good val function computes a number a that’s as close as possible to b, with the property that
a+ o is a multiple of cur gran .

If we assume that cur gran is even (since it will in fact be a multiple of unity in all reasonable applications),
we have the identity good val (−b− 1,−o) = −good val (b, o).

〈Declare subroutines needed by make spec 405 〉 +≡
function good val (b, o : scaled): scaled ;

var a: scaled ; { accumulator }
begin a← b+ o;
if a ≥ 0 then a← a− (amod cur gran)− o
else a← a+ ((−(a+ 1)) mod cur gran)− cur gran + 1− o;
if b− a < a+ cur gran − b then good val ← a
else good val ← a+ cur gran ;
end;

432. When we’re rounding a doublepath, we might need to compromise between two opposing tendencies,
if the pen thickness is not a multiple of the granularity. The following “compromise” adjustment, suggested
by John Hobby, finds the best way out of the dilemma. (Only the value modulo cur gran is relevant in our
applications, so the result turns out to be essentially symmetric in u and v.)

〈Declare subroutines needed by make spec 405 〉 +≡
function compromise (u, v : scaled): scaled ;

begin compromise ← half (good val (u+ u,−u− v));
end;

178 PART 21: SUBDIVISION INTO OCTANTS METAFONT §433

433. Here, then, is the procedure that rounds x coordinates as described; it does the same for y coordinates
too, independently.

〈Declare subroutines needed by make spec 405 〉 +≡
procedure xy round ;

var p, q: pointer ; { list manipulation registers }
b, a: scaled ; {before and after values }
pen edge : scaled ; { offset that governs rounding }
alpha : fraction ; { coefficient of linear transformation }

begin cur gran ← abs (internal [granularity]);
if cur gran = 0 then cur gran ← unity ;
p← cur spec ; cur rounding ptr ← 0;
repeat q ← link (p); 〈 If node q is a transition point for x coordinates, compute and save its

before-and-after coordinates 434 〉;
p← q;

until p = cur spec ;
if cur rounding ptr > 0 then 〈Transform the x coordinates 436 〉;
p← cur spec ; cur rounding ptr ← 0;
repeat q ← link (p); 〈 If node q is a transition point for y coordinates, compute and save its

before-and-after coordinates 437 〉;
p← q;

until p = cur spec ;
if cur rounding ptr > 0 then 〈Transform the y coordinates 439 〉;
end;

434. When x has been negated, the octant codes are even. We allow for an error of up to .01 pixel (i.e.,
655 scaled units) in the derivative calculations at transition nodes.

〈 If node q is a transition point for x coordinates, compute and save its before-and-after coordinates 434 〉 ≡
if odd (right type (p)) 6= odd (right type (q)) then

begin if odd (right type (q)) then b← x coord (q) else b← −x coord (q);
if (abs (x coord (q)− right x (q)) < 655) ∨ (abs (x coord (q) + left x (q)) < 655) then
〈Compute before-and-after x values based on the current pen 435 〉

else a← b;
if abs (a) > max allowed then

if a > 0 then a← max allowed else a← −max allowed ;
before and after (b, a, q);
end

This code is used in section 433.

§435 METAFONT PART 21: SUBDIVISION INTO OCTANTS 179

435. When we study the data representation for pens, we’ll learn that the x coordinate of the current
pen’s west edge is

y coord (link (cur pen + seventh octant)),

and that there are similar ways to address other important offsets.

define north edge (#) ≡ y coord (link (# + fourth octant))
define south edge (#) ≡ y coord (link (# + first octant))
define east edge (#) ≡ y coord (link (# + second octant))
define west edge (#) ≡ y coord (link (# + seventh octant))

〈Compute before-and-after x values based on the current pen 435 〉 ≡
begin if cur pen = null pen then pen edge ← 0
else if cur path type = double path code then

pen edge ← compromise (east edge (cur pen),west edge (cur pen))
else if odd (right type (q)) then pen edge ← west edge (cur pen)

else pen edge ← east edge (cur pen);
a← good val (b, pen edge);
end

This code is used in section 434.

436. The monotone transformation computed here with fixed-point arithmetic is guaranteed to take
consecutive before values (b, b′) into consecutive after values (a, a′), even in the presence of rounding errors,
as long as |b− b′| < 228.

〈Transform the x coordinates 436 〉 ≡
begin make safe ;
repeat decr (cur rounding ptr);

if (after [cur rounding ptr] 6= before [cur rounding ptr]) ∨
(after [cur rounding ptr + 1] 6= before [cur rounding ptr + 1]) then

begin p← node to round [cur rounding ptr];
if odd (right type (p)) then

begin b← before [cur rounding ptr]; a← after [cur rounding ptr];
end

else begin b← −before [cur rounding ptr]; a← −after [cur rounding ptr];
end;

if before [cur rounding ptr] = before [cur rounding ptr + 1] then alpha ← fraction one
else alpha ← make fraction (after [cur rounding ptr + 1]− after [cur rounding ptr],

before [cur rounding ptr + 1]− before [cur rounding ptr]);
repeat x coord (p)← take fraction (alpha , x coord (p)− b) + a;

right x (p)← take fraction (alpha , right x (p)− b) + a; p← link (p);
left x (p)← take fraction (alpha , left x (p)− b) + a;

until p = node to round [cur rounding ptr + 1];
end;

until cur rounding ptr = 0;
end

This code is used in section 433.

180 PART 21: SUBDIVISION INTO OCTANTS METAFONT §437

437. When y has been negated, the octant codes are > negate y . Otherwise these routines are essentially
identical to the routines for x coordinates that we have just seen.

〈 If node q is a transition point for y coordinates, compute and save its before-and-after coordinates 437 〉 ≡
if (right type (p) > negate y) 6= (right type (q) > negate y) then

begin if right type (q) ≤ negate y then b← y coord (q) else b← −y coord (q);
if (abs (y coord (q)− right y (q)) < 655) ∨ (abs (y coord (q) + left y (q)) < 655) then
〈Compute before-and-after y values based on the current pen 438 〉

else a← b;
if abs (a) > max allowed then

if a > 0 then a← max allowed else a← −max allowed ;
before and after (b, a, q);
end

This code is used in section 433.

438. 〈Compute before-and-after y values based on the current pen 438 〉 ≡
begin if cur pen = null pen then pen edge ← 0
else if cur path type = double path code then

pen edge ← compromise (north edge (cur pen), south edge (cur pen))
else if right type (q) ≤ negate y then pen edge ← south edge (cur pen)

else pen edge ← north edge (cur pen);
a← good val (b, pen edge);
end

This code is used in section 437.

439. 〈Transform the y coordinates 439 〉 ≡
begin make safe ;
repeat decr (cur rounding ptr);

if (after [cur rounding ptr] 6= before [cur rounding ptr]) ∨
(after [cur rounding ptr + 1] 6= before [cur rounding ptr + 1]) then

begin p← node to round [cur rounding ptr];
if right type (p) ≤ negate y then

begin b← before [cur rounding ptr]; a← after [cur rounding ptr];
end

else begin b← −before [cur rounding ptr]; a← −after [cur rounding ptr];
end;

if before [cur rounding ptr] = before [cur rounding ptr + 1] then alpha ← fraction one
else alpha ← make fraction (after [cur rounding ptr + 1]− after [cur rounding ptr],

before [cur rounding ptr + 1]− before [cur rounding ptr]);
repeat y coord (p)← take fraction (alpha , y coord (p)− b) + a;

right y (p)← take fraction (alpha , right y (p)− b) + a; p← link (p);
left y (p)← take fraction (alpha , left y (p)− b) + a;

until p = node to round [cur rounding ptr + 1];
end;

until cur rounding ptr = 0;
end

This code is used in section 433.

§440 METAFONT PART 21: SUBDIVISION INTO OCTANTS 181

440. Rounding at diagonal tangents takes place after the subdivision into octants is complete, hence after
the coordinates have been skewed. The details are somewhat tricky, because we want to round to points
whose skewed coordinates are halfway between integer multiples of the granularity. Furthermore, both
coordinates change when they are rounded; this means we need a generalization of the make safe routine,
ensuring safety in both x and y.

In spite of these extra complications, we can take comfort in the fact that the basic structure of the routine
is the same as before.

〈Declare subroutines needed by make spec 405 〉 +≡
procedure diag round ;

var p, q, pp : pointer ; { list manipulation registers }
b, a, bb , aa , d, c, dd , cc : scaled ; { before and after values }
pen edge : scaled ; { offset that governs rounding }
alpha , beta : fraction ; { coefficients of linear transformation }
next a : scaled ; { after [k] before it might have changed }
all safe : boolean ; { does everything look OK so far? }
k: 0 . . max wiggle ; { runs through before-and-after values }
first x ,first y : scaled ; { coordinates before rounding }

begin p← cur spec ; cur rounding ptr ← 0;
repeat q ← link (p);
〈 If node q is a transition point between octants, compute and save its before-and-after coordinates 441 〉;
p← q;

until p = cur spec ;
if cur rounding ptr > 0 then 〈Transform the skewed coordinates 444 〉;
end;

441. We negate the skewed x coordinates in the before-and-after table when the octant code is greater
than switch x and y .

〈 If node q is a transition point between octants, compute and save its before-and-after coordinates 441 〉 ≡
if right type (p) 6= right type (q) then

begin if right type (q) > switch x and y then b← −x coord (q)
else b← x coord (q);
if abs (right type (q)− right type (p)) = switch x and y then

if (abs (x coord (q)− right x (q)) < 655) ∨ (abs (x coord (q) + left x (q)) < 655) then
〈Compute a good coordinate at a diagonal transition 442 〉

else a← b
else a← b;
before and after (b, a, q);
end

This code is used in section 440.

182 PART 21: SUBDIVISION INTO OCTANTS METAFONT §442

442. In octants whose code number is even, x has been negated; we want to round ambiguous cases
downward instead of upward, so that the rounding will be consistent with octants whose code number is
odd. This downward bias can be achieved by subtracting 1 from the first argument of good val .

define diag offset (#) ≡ x coord (knil (link (cur pen + #)))

〈Compute a good coordinate at a diagonal transition 442 〉 ≡
begin if cur pen = null pen then pen edge ← 0
else if cur path type = double path code then 〈Compute a compromise pen edge 443 〉

else if right type (q) ≤ switch x and y then pen edge ← diag offset (right type (q))
else pen edge ← −diag offset (right type (q));

if odd (right type (q)) then a← good val (b, pen edge + half (cur gran))
else a← good val (b− 1, pen edge + half (cur gran));
end

This code is used in section 441.

443. (It seems a shame to compute these compromise offsets repeatedly. The author would have stored
them directly in the pen data structure, if the granularity had been constant.)

〈Compute a compromise pen edge 443 〉 ≡
case right type (q) of
first octant , second octant : pen edge ← compromise (diag offset (first octant),−diag offset (fifth octant));
fifth octant , sixth octant : pen edge ← −compromise (diag offset (first octant),−diag offset (fifth octant));
third octant , fourth octant : pen edge ← compromise (diag offset (fourth octant),

−diag offset (eighth octant));
seventh octant , eighth octant : pen edge ← −compromise (diag offset (fourth octant),

−diag offset (eighth octant));
end { there are no other cases }

This code is used in section 442.

444. 〈Transform the skewed coordinates 444 〉 ≡
begin p← node to round [0]; first x ← x coord (p); first y ← y coord (p);
〈Make sure that all the diagonal roundings are safe 446 〉;
for k ← 0 to cur rounding ptr − 1 do

begin a← after [k]; b← before [k]; aa ← after [k + 1]; bb ← before [k + 1];
if (a 6= b) ∨ (aa 6= bb) then

begin p← node to round [k]; pp ← node to round [k + 1];
〈Determine the before-and-after values of both coordinates 445 〉;
if b = bb then alpha ← fraction one
else alpha ← make fraction (aa − a, bb − b);
if d = dd then beta ← fraction one
else beta ← make fraction (cc − c, dd − d);
repeat x coord (p)← take fraction (alpha , x coord (p)− b) + a;

y coord (p)← take fraction (beta , y coord (p)− d) + c;
right x (p)← take fraction (alpha , right x (p)− b) + a;
right y (p)← take fraction (beta , right y (p)− d) + c; p← link (p);
left x (p)← take fraction (alpha , left x (p)− b) + a; left y (p)← take fraction (beta , left y (p)− d) + c;

until p = pp ;
end;

end;
end

This code is used in section 440.

§445 METAFONT PART 21: SUBDIVISION INTO OCTANTS 183

445. In node p, the coordinates (b, d) will be rounded to (a, c); in node pp , the coordinates (bb , dd) will
be rounded to (aa , cc). (We transform the values from node pp so that they agree with the conventions of
node p.)

If aa 6= bb , we know that abs (right type (p)− right type (pp)) = switch x and y .

〈Determine the before-and-after values of both coordinates 445 〉 ≡
if aa = bb then

begin if pp = node to round [0] then unskew (first x ,first y , right type (pp))
else unskew (x coord (pp), y coord (pp), right type (pp));
skew (cur x , cur y , right type (p)); bb ← cur x ; aa ← bb ; dd ← cur y ; cc ← dd ;
if right type (p) > switch x and y then

begin b← −b; a← −a;
end;

end
else begin if right type (p) > switch x and y then

begin bb ← −bb ; aa ← −aa ; b← −b; a← −a;
end;

if pp = node to round [0] then dd ← first y − bb else dd ← y coord (pp)− bb ;
if odd (aa − bb) then

if right type (p) > switch x and y then cc ← dd − half (aa − bb + 1)
else cc ← dd − half (aa − bb − 1)

else cc ← dd − half (aa − bb);
end;

d← y coord (p);
if odd (a− b) then

if right type (p) > switch x and y then c← d− half (a− b− 1)
else c← d− half (a− b+ 1)

else c← d− half (a− b)
This code is used in sections 444 and 446.

446. 〈Make sure that all the diagonal roundings are safe 446 〉 ≡
before [cur rounding ptr]← before [0]; { cf. make safe }
node to round [cur rounding ptr]← node to round [0];
repeat after [cur rounding ptr]← after [0]; all safe ← true ; next a ← after [0];

for k ← 0 to cur rounding ptr − 1 do
begin a← next a ; b← before [k]; next a ← after [k + 1]; aa ← next a ; bb ← before [k + 1];
if (a 6= b) ∨ (aa 6= bb) then

begin p← node to round [k]; pp ← node to round [k + 1];
〈Determine the before-and-after values of both coordinates 445 〉;
if (aa < a) ∨ (cc < c) ∨ (aa − a > 2 ∗ (bb − b)) ∨ (cc − c > 2 ∗ (dd − d)) then

begin all safe ← false ; after [k]← before [k];
if k = cur rounding ptr − 1 then after [0]← before [0]
else after [k + 1]← before [k + 1];
end;

end;
end;

until all safe

This code is used in section 444.

184 PART 21: SUBDIVISION INTO OCTANTS METAFONT §447

447. Here we get rid of “dead” cubics, i.e., polynomials that don’t move at all when t changes, since the
subdivision process might have introduced such things. If the cycle reduces to a single point, however, we
are left with a single dead cubic that will not be removed until later.

〈Remove dead cubics 447 〉 ≡
p← cur spec ;
repeat continue : q ← link (p);

if p 6= q then
begin if x coord (p) = right x (p) then

if y coord (p) = right y (p) then
if x coord (p) = left x (q) then

if y coord (p) = left y (q) then
begin unskew (x coord (q), y coord (q), right type (q)); skew (cur x , cur y , right type (p));
if x coord (p) = cur x then

if y coord (p) = cur y then
begin remove cubic(p); { remove the cubic following p }
if q 6= cur spec then goto continue ;
cur spec ← p; q ← p;
end;

end;
end;

p← q;
until p = cur spec ;

This code is used in section 402.

448. Finally we come to the last steps of make spec , when boundary nodes are inserted between cubics
that move in different octants. The main complication remaining arises from consecutive cubics whose
octants are not adjacent; we should insert more than one octant boundary at such sharp turns, so that the
envelope-forming routine will work.

For this purpose, conversion tables between numeric and Gray codes for octants are desirable.

〈Global variables 13 〉 +≡
octant number : array [first octant . . sixth octant] of 1 . . 8;
octant code : array [1 . . 8] of first octant . . sixth octant ;

449. 〈Set initial values of key variables 21 〉 +≡
octant code [1]← first octant ; octant code [2]← second octant ; octant code [3]← third octant ;
octant code [4]← fourth octant ; octant code [5]← fifth octant ; octant code [6]← sixth octant ;
octant code [7]← seventh octant ; octant code [8]← eighth octant ;
for k ← 1 to 8 do octant number [octant code [k]]← k;

450. The main loop for boundary insertion deals with three consecutive nodes p, q, r.

〈 Insert octant boundaries and compute the turning number 450 〉 ≡
turning number ← 0; p← cur spec ; q ← link (p);
repeat r ← link (q);

if (right type (p) 6= right type (q)) ∨ (q = r) then
〈 Insert one or more octant boundary nodes just before q 452 〉;

p← q; q ← r;
until p = cur spec ;

This code is used in section 402.

§451 METAFONT PART 21: SUBDIVISION INTO OCTANTS 185

451. The new boundary subroutine comes in handy at this point. It inserts a new boundary node just
after a given node p, using a given octant code to transform the new node’s coordinates. The “transition”
fields are not computed here.

〈Declare subroutines needed by make spec 405 〉 +≡
procedure new boundary (p : pointer ; octant : small number);

var q, r: pointer ; { for list manipulation }
begin q ← link (p); {we assume that right type (q) 6= endpoint }
r ← get node (knot node size); link (r)← q; link (p)← r; left type (r)← left type (q);

{ but possibly left type (q) = endpoint }
left x (r)← left x (q); left y (r)← left y (q); right type (r)← endpoint ; left type (q)← endpoint ;
right octant (r)← octant ; left octant (q)← right type (q); unskew (x coord (q), y coord (q), right type (q));
skew (cur x , cur y , octant); x coord (r)← cur x ; y coord (r)← cur y ;
end;

452. The case q = r occurs if and only if p = q = r = cur spec , when we want to turn 360◦ in eight steps
and then remove a solitary dead cubic. The program below happens to work in that case, but the reader
isn’t expected to understand why.

〈 Insert one or more octant boundary nodes just before q 452 〉 ≡
begin new boundary (p, right type (p)); s← link (p); o1 ← octant number [right type (p)];
o2 ← octant number [right type (q)];
case o2 − o1 of
1,−7, 7,−1: goto done ;
2,−6: clockwise ← false ;
3,−5, 4,−4, 5,−3: 〈Decide whether or not to go clockwise 454 〉;
6,−2: clockwise ← true ;
0: clockwise ← rev turns ;
end; { there are no other cases }
〈 Insert additional boundary nodes, then goto done 458 〉;

done : if q = r then
begin q ← link (q); r ← q; p← s; link (s)← q; left octant (q)← right octant (q);
left type (q)← endpoint ; free node (cur spec , knot node size); cur spec ← q;
end;
〈Fix up the transition fields and adjust the turning number 459 〉;
end

This code is used in section 450.

453. 〈Other local variables for make spec 453 〉 ≡
o1 , o2 : small number ; { octant numbers }
clockwise : boolean ; { should we turn clockwise? }
dx1 , dy1 , dx2 , dy2 : integer ; { directions of travel at a cusp }
dmax , del : integer ; { temporary registers }
This code is used in section 402.

186 PART 21: SUBDIVISION INTO OCTANTS METAFONT §454

454. A tricky question arises when a path jumps four octants. We want the direction of turning to be
counterclockwise if the curve has changed direction by 180◦, or by something so close to 180◦ that the
difference is probably due to rounding errors; otherwise we want to turn through an angle of less than 180◦.
This decision needs to be made even when a curve seems to have jumped only three octants, since a curve
may approach direction (−1, 0) from the fourth octant, then it might leave from direction (+1, 0) into the
first.

The following code solves the problem by analyzing the incoming direction (dx1 , dy1) and the outgoing
direction (dx2 , dy2).

〈Decide whether or not to go clockwise 454 〉 ≡
begin 〈Compute the incoming and outgoing directions 457 〉;
unskew (dx1 , dy1 , right type (p)); del ← pyth add (cur x , cur y);
dx1 ← make fraction (cur x , del); dy1 ← make fraction (cur y , del); { cos θ1 and sin θ1 }
unskew (dx2 , dy2 , right type (q)); del ← pyth add (cur x , cur y);
dx2 ← make fraction (cur x , del); dy2 ← make fraction (cur y , del); { cos θ2 and sin θ2 }
del ← take fraction (dx1 , dy2)− take fraction (dx2 , dy1); { sin(θ2 − θ1) }
if del > 4684844 then clockwise ← false
else if del < −4684844 then clockwise ← true { 228 · sin 1◦ ≈ 4684844.68 }

else clockwise ← rev turns ;
end

This code is used in section 452.

455. Actually the turnarounds just computed will be clockwise, not counterclockwise, if the global variable
rev turns is true ; it is usually false .

〈Global variables 13 〉 +≡
rev turns : boolean ; { should we make U-turns in the English manner? }

456. 〈Set initial values of key variables 21 〉 +≡
rev turns ← false ;

§457 METAFONT PART 21: SUBDIVISION INTO OCTANTS 187

457. 〈Compute the incoming and outgoing directions 457 〉 ≡
dx1 ← x coord (s)− left x (s); dy1 ← y coord (s)− left y (s);
if dx1 = 0 then

if dy1 = 0 then
begin dx1 ← x coord (s)− right x (p); dy1 ← y coord (s)− right y (p);
if dx1 = 0 then

if dy1 = 0 then
begin dx1 ← x coord (s)− x coord (p); dy1 ← y coord (s)− y coord (p);
end; { and they can’t both be zero }

end;
dmax ← abs (dx1); if abs (dy1) > dmax then dmax ← abs (dy1);
while dmax < fraction one do

begin double (dmax); double (dx1); double (dy1);
end;

dx2 ← right x (q)− x coord (q); dy2 ← right y (q)− y coord (q);
if dx2 = 0 then

if dy2 = 0 then
begin dx2 ← left x (r)− x coord (q); dy2 ← left y (r)− y coord (q);
if dx2 = 0 then

if dy2 = 0 then
begin if right type (r) = endpoint then

begin cur x ← x coord (r); cur y ← y coord (r);
end

else begin unskew (x coord (r), y coord (r), right type (r)); skew (cur x , cur y , right type (q));
end;

dx2 ← cur x − x coord (q); dy2 ← cur y − y coord (q);
end; { and they can’t both be zero }

end;
dmax ← abs (dx2); if abs (dy2) > dmax then dmax ← abs (dy2);
while dmax < fraction one do

begin double (dmax); double (dx2); double (dy2);
end

This code is used in section 454.

458. 〈 Insert additional boundary nodes, then goto done 458 〉 ≡
loop begin if clockwise then

if o1 = 1 then o1 ← 8 else decr (o1)
else if o1 = 8 then o1 ← 1 else incr (o1);
if o1 = o2 then goto done ;
new boundary (s, octant code [o1]); s← link (s); left octant (s)← right octant (s);
end

This code is used in section 452.

188 PART 21: SUBDIVISION INTO OCTANTS METAFONT §459

459. Now it remains to insert the redundant transition information into the left transition and
right transition fields between adjacent octants, in the octant boundary nodes that have just been inserted
between link (p) and q. The turning number is easily computed from these transitions.

〈Fix up the transition fields and adjust the turning number 459 〉 ≡
p← link (p);
repeat s← link (p); o1 ← octant number [right octant (p)]; o2 ← octant number [left octant (s)];

if abs (o1 − o2) = 1 then
begin if o2 < o1 then o2 ← o1 ;
if odd (o2) then right transition (p)← axis
else right transition (p)← diagonal ;
end

else begin if o1 = 8 then incr (turning number) else decr (turning number);
right transition (p)← axis ;
end;

left transition (s)← right transition (p); p← s;
until p = q

This code is used in section 452.

§460 METAFONT PART 22: FILLING A CONTOUR 189

460. Filling a contour. Given the low-level machinery for making moves and for transforming a cyclic
path into a cycle spec, we’re almost able to fill a digitized path. All we need is a high-level routine that
walks through the cycle spec and controls the overall process.

Our overall goal is to plot the integer points
(
round(x(t)), round(y(t))

)
and to connect them by rook

moves, assuming that round(x(t)) and round(y(t)) don’t both jump simultaneously from one integer to
another as t varies; these rook moves will be the edge of the contour that will be filled. We have reduced this
problem to the case of curves that travel in first octant directions, i.e., curves such that 0 ≤ y′(t) ≤ x′(t),
by transforming the original coordinates.

Another transformation makes the problem still simpler. We shall say that we are working with biased
coordinates when (x, y) has been replaced by (x̃, ỹ) = (x − y, y + 1

2). When a curve travels in first octant
directions, the corresponding curve with biased coordinates travels in first quadrant directions; the latter
condition is symmetric in x and y, so it has advantages for the design of algorithms. The make spec routine
gives us skewed coordinates (x− y, y), hence we obtain biased coordinates by simply adding 1

2 to the second
component.

The most important fact about biased coordinates is that we can determine the rounded unbiased path(
round(x(t)), round(y(t))

)
from the truncated biased path

(
bx̃(t)c, bỹ(t)c

)
and information about the initial

and final endpoints. If the unrounded and unbiased path begins at (x0, y0) and ends at (x1, y1), it’s possible
to prove (by induction on the length of the truncated biased path) that the rounded unbiased path is obtained
by the following construction:

1) Start at
(
round(x0), round(y0)

)
.

2) If (x0 + 1
2) mod 1 ≥ (y0 + 1

2) mod 1, move one step right.

3) Whenever the path
(
bx̃(t)c, bỹ(t)c

)
takes an upward step (i.e., when bx̃(t+ε)c = bx̃(t)c and bỹ(t+ε)c =

bỹ(t)c+ 1), move one step up and then one step right.

4) Whenever the path
(
bx̃(t)c, bỹ(t)c

)
takes a rightward step (i.e., when bx̃(t + ε)c = bx̃(t)c + 1 and

bỹ(t+ ε)c = bỹ(t)c), move one step right.

5) Finally, if (x1 + 1
2) mod 1 ≥ (y1 + 1

2) mod 1, move one step left (thereby cancelling the previous move,
which was one step right). You will now be at the point

(
round(x1), round(y1)

)
.

461. In order to validate the assumption that round(x(t)) and round(y(t)) don’t both jump simultaneously,
we shall consider that a coordinate pair (x, y) actually represents (x+ ε, y+ εδ), where ε and δ are extremely
small positive numbers—so small that their precise values never matter. This convention makes rounding
unambiguous, since there is always a unique integer point nearest to any given scaled numbers (x, y).

When coordinates are transformed so that METAFONT needs to work only in “first octant” directions, the
transformations involve negating x, negating y, and/or interchanging x with y. Corresponding adjustments
to the rounding conventions must be made so that consistent values will be obtained. For example, suppose
that we’re working with coordinates that have been transformed so that a third-octant curve travels in
first-octant directions. The skewed coordinates (x, y) in our data structure represent unskewed coordinates
(−y, x+ y), which are actually (−y+ ε, x+ y+ εδ). We should therefore round as if our skewed coordinates
were (x + ε + εδ, y − ε) instead of (x, y). The following table shows how the skewed coordinates should be
perturbed when rounding decisions are made:

first octant (x+ ε− εδ, y + εδ) fifth octant (x− ε+ εδ, y − εδ)
second octant (x− ε+ εδ, y + ε) sixth octant (x+ ε− εδ, y − ε)
third octant (x+ ε+ εδ, y − ε) seventh octant (x− ε− εδ, y + ε)
fourth octant (x− ε− εδ, y + εδ) eighth octant (x+ ε+ εδ, y − εδ)

Four small arrays are set up so that the rounding operations will be fairly easy in any given octant.

〈Global variables 13 〉 +≡
y corr , xy corr , z corr : array [first octant . . sixth octant] of 0 . . 1;
x corr : array [first octant . . sixth octant] of −1 . . 1;

190 PART 22: FILLING A CONTOUR METAFONT §462

462. Here xy corr is 1 if and only if the x component of a skewed coordinate is to be decreased by an
infinitesimal amount; y corr is similar, but for the y components. The other tables are set up so that the
condition

(x+ y + half unit) mod unity ≥ (y + half unit) mod unity

is properly perturbed to the condition

(x+ y + half unit − x corr − y corr) mod unity ≥ (y + half unit − y corr) mod unity + z corr .

〈Set initial values of key variables 21 〉 +≡
x corr [first octant]← 0; y corr [first octant]← 0; xy corr [first octant]← 0;
x corr [second octant]← 0; y corr [second octant]← 0; xy corr [second octant]← 1;
x corr [third octant]← −1; y corr [third octant]← 1; xy corr [third octant]← 0;
x corr [fourth octant]← 1; y corr [fourth octant]← 0; xy corr [fourth octant]← 1;
x corr [fifth octant]← 0; y corr [fifth octant]← 1; xy corr [fifth octant]← 1;
x corr [sixth octant]← 0; y corr [sixth octant]← 1; xy corr [sixth octant]← 0;
x corr [seventh octant]← 1; y corr [seventh octant]← 0; xy corr [seventh octant]← 1;
x corr [eighth octant]← −1; y corr [eighth octant]← 1; xy corr [eighth octant]← 0;
for k ← 1 to 8 do z corr [k]← xy corr [k]− x corr [k];

463. Here’s a procedure that handles the details of rounding at the endpoints: Given skewed coordinates
(x, y), it sets (m1 ,n1) to the corresponding rounded lattice points, taking the current octant into account.
Global variable d1 is also set to 1 if (x+ y + 1

2) mod 1 ≥ (y + 1
2) mod 1.

procedure end round (x, y : scaled);
begin y ← y + half unit − y corr [octant]; x← x+ y − x corr [octant]; m1 ← floor unscaled (x);
n1 ← floor unscaled (y);
if x− unity ∗m1 ≥ y − unity ∗ n1 + z corr [octant] then d1 ← 1 else d1 ← 0;
end;

464. The outputs (m1 ,n1 , d1) of end round will sometimes be moved to (m0 ,n0 , d0).

〈Global variables 13 〉 +≡
m0 ,n0 ,m1 ,n1 : integer ; { lattice point coordinates }
d0 , d1 : 0 . . 1; { displacement corrections }

465. We’re ready now to fill the pixels enclosed by a given cycle spec h; the knot list that represents the
cycle is destroyed in the process. The edge structure that gets all the resulting data is cur edges , and the
edges are weighted by cur wt .

procedure fill spec(h : pointer);
var p, q, r, s: pointer ; { for list traversal }
begin if internal [tracing edges] > 0 then begin edge tracing ;
p← h; {we assume that left type (h) = endpoint }
repeat octant ← left octant (p); 〈Set variable q to the node at the end of the current octant 466 〉;

if q 6= p then
begin 〈Determine the starting and ending lattice points (m0 ,n0) and (m1 ,n1) 467 〉;
〈Make the moves for the current octant 468 〉;
move to edges (m0 ,n0 ,m1 ,n1);
end;

p← link (q);
until p = h;
toss knot list (h);
if internal [tracing edges] > 0 then end edge tracing ;
end;

§466 METAFONT PART 22: FILLING A CONTOUR 191

466. 〈Set variable q to the node at the end of the current octant 466 〉 ≡
q ← p;
while right type (q) 6= endpoint do q ← link (q)

This code is used in sections 465, 506, and 506.

467. 〈Determine the starting and ending lattice points (m0 ,n0) and (m1 ,n1) 467 〉 ≡
end round (x coord (p), y coord (p)); m0 ← m1 ; n0 ← n1 ; d0 ← d1 ;
end round (x coord (q), y coord (q))

This code is used in section 465.

468. Finally we perform the five-step process that was explained at the very beginning of this part of the
program.

〈Make the moves for the current octant 468 〉 ≡
if n1 − n0 ≥ move size then overflow ("move table size",move size);
move [0]← d0 ; move ptr ← 0; r ← p;
repeat s← link (r);

make moves (x coord (r), right x (r), left x (s), x coord (s),
y coord (r) + half unit , right y (r) + half unit , left y (s) + half unit , y coord (s) + half unit ,
xy corr [octant], y corr [octant]); r ← s;

until r = q;
move [move ptr]← move [move ptr]− d1 ;
if internal [smoothing] > 0 then smooth moves (0,move ptr)

This code is used in section 465.

192 PART 23: POLYGONAL PENS METAFONT §469

469. Polygonal pens. The next few parts of the program deal with the additional complications
associated with “envelopes,” leading up to an algorithm that fills a contour with respect to a pen whose
boundary is a convex polygon. The mathematics underlying this algorithm is based on simple aspects of
the theory of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi [“A kinetic framework for
computational geometry,” Proc. IEEE Symp. Foundations of Computer Science 24 (1983), 100–111].

If the vertices of the polygon are w0, w1, . . . , wn−1, wn = w0, in counterclockwise order, the convexity
condition requires that “left turns” are made at each vertex when a person proceeds from w0 to w1 to · · ·
to wn. The envelope is obtained if we offset a given curve z(t) by wk when that curve is traveling in a
direction z′(t) lying between the directions wk − wk−1 and wk+1 − wk. At times t when the curve direction
z′(t) increases past wk+1 − wk, we temporarily stop plotting the offset curve and we insert a straight line
from z(t) + wk to z(t) + wk+1; notice that this straight line is tangent to the offset curve. Similarly, when
the curve direction decreases past wk − wk−1, we stop plotting and insert a straight line from z(t) + wk to
z(t) + wk−1; the latter line is actually a “retrograde” step, which won’t be part of the final envelope under
METAFONT’s assumptions. The result of this construction is a continuous path that consists of alternating
curves and straight line segments. The segments are usually so short, in practice, that they blend with the
curves; after all, it’s possible to represent any digitized path as a sequence of digitized straight lines.

The nicest feature of this approach to envelopes is that it blends perfectly with the octant subdivision
process we have already developed. The envelope travels in the same direction as the curve itself, as we plot
it, and we need merely be careful what offset is being added. Retrograde motion presents a problem, but we
will see that there is a decent way to handle it.

§470 METAFONT PART 23: POLYGONAL PENS 193

470. We shall represent pens by maintaining eight lists of offsets, one for each octant direction. The offsets
at the boundary points where a curve turns into a new octant will appear in the lists for both octants. This
means that we can restrict consideration to segments of the original polygon whose directions aim in the
first octant, as we have done in the simpler case when envelopes were not required.

An example should help to clarify this situation: Consider the quadrilateral whose vertices are w0 =
(0,−1), w1 = (3,−1), w2 = (6, 1), and w3 = (1, 2). A curve that travels in the first octant will be offset by
w1 or w2, unless its slope drops to zero en route to the eighth octant; in the latter case we should switch to
w0 as we cross the octant boundary. Our list for the first octant will contain the three offsets w0, w1, w2.
By convention we will duplicate a boundary offset if the angle between octants doesn’t explicitly appear; in
this case there is no explicit line of slope 1 at the end of the list, so the full list is

w0 w1 w2 w2 = (0,−1) (3,−1) (6, 1) (6, 1).

With skewed coordinates (u− v, v) instead of (u, v) we obtain the list

w0 w1 w2 w2 7→ (1,−1) (4,−1) (5, 1) (5, 1),

which is what actually appears in the data structure. In the second octant there’s only one offset; we list it
twice (with coordinates interchanged, so as to make the second octant look like the first), and skew those
coordinates, obtaining

w2 w2 7→ (−5, 6) (−5, 6)

as the list of transformed and skewed offsets to use when curves travel in the second octant. Similarly, we
will have

w2 w2 7→ (7,−6) (7,−6) in the third;
w2 w2 w3 w3 7→ (−7, 1) (−7, 1) (−3, 2) (−3, 2) in the fourth;

w3 w3 7→ (1,−2) (1,−2) in the fifth;
w3 w3 w0 w0 7→ (−1, 1) (−1, 1) (1, 0) (1, 0) in the sixth;

w0 w0 7→ (1, 0) (1, 0) in the seventh;
w0 w0 7→ (−1, 1) (−1, 1) in the eighth.

Notice that w1 is considered here to be internal to the first octant; it’s not part of the eighth. We could
equally well have taken w0 out of the first octant list and put it into the eighth; then the first octant list
would have been

w1 w1 w2 w2 7→ (4,−1) (4,−1) (5, 1) (5, 1)

and the eighth octant list would have been

w0 w0 w1 7→ (−1, 1) (−1, 1) (2, 1).

Actually, there’s one more complication: The order of offsets is reversed in even-numbered octants, because
the transformation of coordinates has reversed counterclockwise and clockwise orientations in those octants.
The offsets in the fourth octant, for example, are really w3, w3, w2, w2, not w2, w2, w3, w3.

194 PART 23: POLYGONAL PENS METAFONT §471

471. In general, the list of offsets for an octant will have the form

w0 w1 . . . wn wn+1

(if we renumber the subscripts in each list), where w0 and wn+1 are offsets common to the neighboring
lists. We’ll often have w0 = w1 and/or wn = wn+1, but the other w’s will be distinct. Curves that travel
between slope 0 and direction w2 − w1 will use offset w1; curves that travel between directions wk − wk−1
and wk+1 − wk will use offset wk, for 1 < k < n; curves between direction wn − wn−1 and slope 1 (actually
slope ∞ after skewing) will use offset wn. In even-numbered octants, the directions are actually wk − wk+1

instead of wk+1 − wk, because the offsets have been listed in reverse order.
Each offset wk is represented by skewed coordinates (uk − vk, vk), where (uk, vk) is the representation of

wk after it has been rotated into a first-octant disguise.

472. The top-level data structure of a pen polygon is a 10-word node containing a reference count followed
by pointers to the eight offset lists, followed by an indication of the pen’s range of values.

If p points to such a node, and if the offset list for, say, the fourth octant has entries w0, w1, . . . ,
wn, wn+1, then info(p+ fourth octant) will equal n, and link (p+ fourth octant) will point to the offset node
containing w0. Memory location p+ fourth octant is said to be the header of the pen-offset list for the fourth
octant. Since this is an even-numbered octant, w0 is the offset that goes with the fifth octant, and wn+1

goes with the third.
The elements of the offset list themselves are doubly linked 3-word nodes, containing coordinates in their

x coord and y coord fields. The two link fields are called link and knil ; if w points to the node for wk, then
link (w) and knil (w) point respectively to the nodes for wk+1 and wk−1. If h is the list header, link (h) points
to the node for w0 and knil (link (h)) to the node for wn+1.

The tenth word of a pen header node contains the maximum absolute value of an x or y coordinate among
all of the unskewed pen offsets.

The link field of a pen header node should be null if and only if the pen is a single point.

define pen node size = 10
define coord node size = 3
define max offset (#) ≡ mem [# + 9].sc

§473 METAFONT PART 23: POLYGONAL PENS 195

473. The print pen subroutine illustrates these conventions by reconstructing the vertices of a polygon
from METAFONT’s complicated internal offset representation.

〈Declare subroutines for printing expressions 257 〉 +≡
procedure print pen (p : pointer ; s : str number ; nuline : boolean);

var nothing printed : boolean ; { has there been any action yet? }
k: 1 . . 8; { octant number }
h: pointer ; { offset list head }
m,n: integer ; { offset indices }
w,ww : pointer ; { pointers that traverse the offset list }

begin print diagnostic("Pen polygon", s,nuline); nothing printed ← true ; print ln ;
for k ← 1 to 8 do

begin octant ← octant code [k]; h← p+ octant ; n← info(h); w ← link (h);
if ¬odd (k) then w ← knil (w); { in even octants, start at wn+1 }
for m← 1 to n+ 1 do

begin if odd (k) then ww ← link (w) else ww ← knil (w);
if (x coord (ww) 6= x coord (w)) ∨ (y coord (ww) 6= y coord (w)) then
〈Print the unskewed and unrotated coordinates of node ww 474 〉;

w ← ww ;
end;

end;
if nothing printed then

begin w ← link (p+ first octant); print two(x coord (w) + y coord (w), y coord (w));
end;

print nl (" .. cycle"); end diagnostic(true);
end;

474. 〈Print the unskewed and unrotated coordinates of node ww 474 〉 ≡
begin if nothing printed then nothing printed ← false
else print nl (" .. ");
print two true (x coord (ww), y coord (ww));
end

This code is used in section 473.

475. A null pen polygon, which has just one vertex (0, 0), is predeclared for error recovery. It doesn’t need
a proper reference count, because the toss pen procedure below will never delete it from memory.

〈 Initialize table entries (done by INIMF only) 176 〉 +≡
ref count (null pen)← null ; link (null pen)← null ;
info(null pen + 1)← 1; link (null pen + 1)← null coords ;
for k ← null pen + 2 to null pen + 8 do mem [k]← mem [null pen + 1];
max offset (null pen)← 0;
link (null coords)← null coords ; knil (null coords)← null coords ;
x coord (null coords)← 0; y coord (null coords)← 0;

476. Here’s a trivial subroutine that inserts a copy of an offset on the link side of its clone in the doubly
linked list.

procedure dup offset (w : pointer);
var r: pointer ; { the new node }
begin r ← get node (coord node size); x coord (r)← x coord (w); y coord (r)← y coord (w);
link (r)← link (w); knil (link (w))← r; knil (r)← w; link (w)← r;
end;

196 PART 23: POLYGONAL PENS METAFONT §477

477. The following algorithm is somewhat more interesting: It converts a knot list for a cyclic path into a
pen polygon, ignoring everything but the x coord , y coord , and link fields. If the given path vertices do not
define a convex polygon, an error message is issued and the null pen is returned.

function make pen (h : pointer): pointer ;
label done , done1 ,not found , found ;
var o, oo , k: small number ; { octant numbers—old, new, and current }
p: pointer ; { top-level node for the new pen }
q, r, s, w, hh : pointer ; { for list manipulation }
n: integer ; { offset counter }
dx , dy : scaled ; { polygon direction }
mc : scaled ; { the largest coordinate }

begin 〈Stamp all nodes with an octant code, compute the maximum offset, and set hh to the node that
begins the first octant; goto not found if there’s a problem 479 〉;

if mc ≥ fraction one − half unit then goto not found ;
p← get node (pen node size); q ← hh ; max offset (p)← mc ; ref count (p)← null ;
if link (q) 6= q then link (p)← null + 1;
for k ← 1 to 8 do 〈Construct the offset list for the kth octant 481 〉;
goto found ;

not found : p← null pen ; 〈Complain about a bad pen path 478 〉;
found : if internal [tracing pens] > 0 then print pen (p, " (newly created)", true);

make pen ← p;
end;

478. 〈Complain about a bad pen path 478 〉 ≡
if mc ≥ fraction one − half unit then

begin print err ("Pen too large");
help2 ("The cycle you specified has a coordinate of 4095.5 or more.")
("So I´ve replaced it by the trivial path `(0,0)..cycle´.");
end

else begin print err ("Pen cycle must be convex");
help3 ("The cycle you specified either has consecutive equal points")
("or turns right or turns through more than 360 degrees.")
("So I´ve replaced it by the trivial path `(0,0)..cycle´.");
end;

put get error

This code is used in section 477.

§479 METAFONT PART 23: POLYGONAL PENS 197

479. There should be exactly one node whose octant number is less than its predecessor in the cycle; that
is node hh .

The loop here will terminate in all cases, but the proof is somewhat tricky: If there are at least two distinct
y coordinates in the cycle, we will have o > 4 and o ≤ 4 at different points of the cycle. Otherwise there are
at least two distinct x coordinates, and we will have o > 2 somewhere, o ≤ 2 somewhere.

〈Stamp all nodes with an octant code, compute the maximum offset, and set hh to the node that begins
the first octant; goto not found if there’s a problem 479 〉 ≡

q ← h; r ← link (q); mc ← abs (x coord (h));
if q = r then

begin hh ← h; right type (h)← 0; { this trick is explained below }
if mc < abs (y coord (h)) then mc ← abs (y coord (h));
end

else begin o← 0; hh ← null ;
loop begin s← link (r);

if mc < abs (x coord (r)) then mc ← abs (x coord (r));
if mc < abs (y coord (r)) then mc ← abs (y coord (r));
dx ← x coord (r)− x coord (q); dy ← y coord (r)− y coord (q);
if dx = 0 then

if dy = 0 then goto not found ; { double point }
if ab vs cd (dx , y coord (s)− y coord (r), dy , x coord (s)− x coord (r)) < 0 then goto not found ;

{ right turn }
〈Determine the octant code for direction (dx , dy) 480 〉;
right type (q)← octant ; oo ← octant number [octant];
if o > oo then

begin if hh 6= null then goto not found ; {> 360◦ }
hh ← q;
end;

o← oo ;
if (q = h) ∧ (hh 6= null) then goto done ;
q ← r; r ← s;
end;

done : end

This code is used in section 477.

480. We want the octant for (−dx ,−dy) to be exactly opposite the octant for (dx , dy).

〈Determine the octant code for direction (dx , dy) 480 〉 ≡
if dx > 0 then octant ← first octant
else if dx = 0 then

if dy > 0 then octant ← first octant else octant ← first octant + negate x
else begin negate (dx); octant ← first octant + negate x ;

end;
if dy < 0 then

begin negate (dy); octant ← octant + negate y ;
end

else if dy = 0 then
if octant > first octant then octant ← first octant + negate x + negate y ;

if dx < dy then octant ← octant + switch x and y

This code is used in section 479.

198 PART 23: POLYGONAL PENS METAFONT §481

481. Now q points to the node that the present octant shares with the previous octant, and right type (q)
is the octant code during which q should advance. We have set right type (q) = 0 in the special case that q
should never advance (because the pen is degenerate).

The number of offsets n must be smaller than max quarterword , because the fill envelope routine stores
n+ 1 in the right type field of a knot node.

〈Construct the offset list for the kth octant 481 〉 ≡
begin octant ← octant code [k]; n← 0; h← p+ octant ;
loop begin r ← get node (coord node size); skew (x coord (q), y coord (q), octant); x coord (r)← cur x ;

y coord (r)← cur y ;
if n = 0 then link (h)← r
else 〈Link node r to the previous node 482 〉;
w ← r;
if right type (q) 6= octant then goto done1 ;
q ← link (q); incr (n);
end;

done1 : 〈Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483 〉;
if n ≥ max quarterword then overflow ("pen polygon size",max quarterword);
info(h)← n;
end

This code is used in section 477.

482. Now w points to the node that was inserted most recently, and k is the current octant number.

〈Link node r to the previous node 482 〉 ≡
if odd (k) then

begin link (w)← r; knil (r)← w;
end

else begin knil (w)← r; link (r)← w;
end

This code is used in section 481.

483. We have inserted n+ 1 nodes; it remains to duplicate the nodes at the ends, if slopes 0 and ∞ aren’t
already represented. At the end of this section the total number of offset nodes should be n + 2 (since we
call them w0, w1, . . . , wn+1).

〈Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483 〉 ≡
r ← link (h);
if odd (k) then

begin link (w)← r; knil (r)← w;
end

else begin knil (w)← r; link (r)← w; link (h)← w; r ← w;
end;

if (y coord (r) 6= y coord (link (r))) ∨ (n = 0) then
begin dup offset (r); incr (n);
end;

r ← knil (r);
if x coord (r) 6= x coord (knil (r)) then dup offset (r)
else decr (n)

This code is used in section 481.

§484 METAFONT PART 23: POLYGONAL PENS 199

484. Conversely, make path goes back from a pen to a cyclic path that might have generated it. The
structure of this subroutine is essentially the same as print pen .

〈Declare the function called trivial knot 486 〉
function make path (pen head : pointer): pointer ;

var p: pointer ; { the most recently copied knot }
k: 1 . . 8; { octant number }
h: pointer ; { offset list head }
m,n: integer ; { offset indices }
w,ww : pointer ; { pointers that traverse the offset list }

begin p← temp head ;
for k ← 1 to 8 do

begin octant ← octant code [k]; h← pen head + octant ; n← info(h); w ← link (h);
if ¬odd (k) then w ← knil (w); { in even octants, start at wn+1 }
for m← 1 to n+ 1 do

begin if odd (k) then ww ← link (w) else ww ← knil (w);
if (x coord (ww) 6= x coord (w)) ∨ (y coord (ww) 6= y coord (w)) then
〈Copy the unskewed and unrotated coordinates of node ww 485 〉;

w ← ww ;
end;

end;
if p = temp head then

begin w ← link (pen head + first octant); p← trivial knot (x coord (w) + y coord (w), y coord (w));
link (temp head)← p;
end;

link (p)← link (temp head); make path ← link (temp head);
end;

485. 〈Copy the unskewed and unrotated coordinates of node ww 485 〉 ≡
begin unskew (x coord (ww), y coord (ww), octant); link (p)← trivial knot (cur x , cur y); p← link (p);
end

This code is used in section 484.

486. 〈Declare the function called trivial knot 486 〉 ≡
function trivial knot (x, y : scaled): pointer ;

var p: pointer ; { a new knot for explicit coordinates x and y }
begin p← get node (knot node size); left type (p)← explicit ; right type (p)← explicit ;
x coord (p)← x; left x (p)← x; right x (p)← x;
y coord (p)← y; left y (p)← y; right y (p)← y;
trivial knot ← p;
end;

This code is used in section 484.

200 PART 23: POLYGONAL PENS METAFONT §487

487. That which can be created can be destroyed.

define add pen ref (#) ≡ incr (ref count (#))
define delete pen ref (#) ≡

if ref count (#) = null then toss pen (#)
else decr (ref count (#))

〈Declare the recycling subroutines 268 〉 +≡
procedure toss pen (p : pointer);

var k: 1 . . 8; { relative header locations }
w,ww : pointer ; { pointers to offset nodes }

begin if p 6= null pen then
begin for k ← 1 to 8 do

begin w ← link (p+ k);
repeat ww ← link (w); free node (w, coord node size); w ← ww ;
until w = link (p+ k);
end;

free node (p, pen node size);
end;

end;

488. The find offset procedure sets (cur x , cur y) to the offset associated with a given direction (x, y) and
a given pen p. If x = y = 0, the result is (0, 0). If two different offsets apply, one of them is chosen arbitrarily.

procedure find offset (x, y : scaled ; p : pointer);
label done , exit ;
var octant : first octant . . sixth octant ; { octant code for (x, y) }
s: −1 . . +1; { sign of the octant }
n: integer ; { number of offsets remaining }
h,w,ww : pointer ; { list traversal registers }

begin 〈Compute the octant code; skew and rotate the coordinates (x, y) 489 〉;
if odd (octant number [octant]) then s← −1 else s← +1;
h← p+ octant ; w ← link (link (h)); ww ← link (w); n← info(h);
while n > 1 do

begin if ab vs cd (x, y coord (ww)− y coord (w), y, x coord (ww)− x coord (w)) 6= s then goto done ;
w ← ww ; ww ← link (w); decr (n);
end;

done : unskew (x coord (w), y coord (w), octant);
exit : end;

§489 METAFONT PART 23: POLYGONAL PENS 201

489. 〈Compute the octant code; skew and rotate the coordinates (x, y) 489 〉 ≡
if x > 0 then octant ← first octant
else if x = 0 then

if y ≤ 0 then
if y = 0 then

begin cur x ← 0; cur y ← 0; return;
end

else octant ← first octant + negate x
else octant ← first octant

else begin x← −x;
if y = 0 then octant ← first octant + negate x + negate y
else octant ← first octant + negate x ;
end;

if y < 0 then
begin octant ← octant + negate y ; y ← −y;
end;

if x ≥ y then x← x− y
else begin octant ← octant + switch x and y ; x← y − x; y ← y − x;

end

This code is used in section 488.

202 PART 24: FILLING AN ENVELOPE METAFONT §490

490. Filling an envelope. We are about to reach the culmination of METAFONT’s digital plotting
routines: Almost all of the previous algorithms will be brought to bear on METAFONT’s most difficult task,
which is to fill the envelope of a given cyclic path with respect to a given pen polygon.

But we still must complete some of the preparatory work before taking such a big plunge.

491. Given a pointer c to a nonempty list of cubics, and a pointer h to the header information of a pen
polygon segment, the offset prep routine changes the list into cubics that are associated with particular pen
offsets. Namely, the cubic between p and q should be associated with the kth offset when right type (p) = k.

List c is actually part of a cycle spec, so it terminates at the first node whose right type is endpoint . The
cubics all have monotone-nondecreasing x(t) and y(t).

〈Declare subroutines needed by offset prep 493 〉
procedure offset prep(c, h : pointer);

label done ,not found ;
var n: halfword ; { the number of pen offsets }
p, q, r, lh ,ww : pointer ; { for list manipulation }
k: halfword ; { the current offset index }
w: pointer ; { a pointer to offset wk }
〈Other local variables for offset prep 495 〉

begin p← c; n← info(h); lh ← link (h); {now lh points to w0 }
while right type (p) 6= endpoint do

begin q ← link (p); 〈Split the cubic between p and q, if necessary, into cubics associated with single
offsets, after which q should point to the end of the final such cubic 494 〉;

〈Advance p to node q, removing any “dead” cubics that might have been introduced by the splitting
process 492 〉;

end;
end;

492. 〈Advance p to node q, removing any “dead” cubics that might have been introduced by the splitting
process 492 〉 ≡

repeat r ← link (p);
if x coord (p) = right x (p) then

if y coord (p) = right y (p) then
if x coord (p) = left x (r) then

if y coord (p) = left y (r) then
if x coord (p) = x coord (r) then

if y coord (p) = y coord (r) then
begin remove cubic(p);
if r = q then q ← p;
r ← p;
end;

p← r;
until p = q

This code is used in section 491.

§493 METAFONT PART 24: FILLING AN ENVELOPE 203

493. The splitting process uses a subroutine like split cubic , but (for “bulletproof” operation) we check
to make sure that the resulting (skewed) coordinates satisfy ∆x ≥ 0 and ∆y ≥ 0 after splitting; make spec
has made sure that these relations hold before splitting. (This precaution is surely unnecessary, now that
make spec is so much more careful than it used to be. But who wants to take a chance? Maybe the hardware
will fail or something.)

〈Declare subroutines needed by offset prep 493 〉 ≡
procedure split for offset (p : pointer ; t : fraction);

var q: pointer ; { the successor of p }
r: pointer ; { the new node }

begin q ← link (p); split cubic(p, t, x coord (q), y coord (q)); r ← link (p);
if y coord (r) < y coord (p) then y coord (r)← y coord (p)
else if y coord (r) > y coord (q) then y coord (r)← y coord (q);
if x coord (r) < x coord (p) then x coord (r)← x coord (p)
else if x coord (r) > x coord (q) then x coord (r)← x coord (q);
end;

See also section 497.

This code is used in section 491.

494. If the pen polygon has n offsets, and if wk = (uk, vk) is the kth of these, the kth pen slope is defined
by the formula

sk =
vk+1 − vk
uk+1 − uk

, for 0 < k < n.

In odd-numbered octants, the numerator and denominator of this fraction will be nonnegative; in even-
numbered octants they will both be nonpositive. Furthermore we always have 0 = s0 ≤ s1 ≤ · · · ≤ sn =∞.
The goal of offset prep is to find an offset index k to associate with each cubic, such that the slope s(t) of
the cubic satisfies

sk−1 ≤ s(t) ≤ sk for 0 ≤ t ≤ 1. (∗)

We may have to split a cubic into as many as 2n− 1 pieces before each piece corresponds to a unique offset.

〈Split the cubic between p and q, if necessary, into cubics associated with single offsets, after which q should
point to the end of the final such cubic 494 〉 ≡

if n ≤ 1 then right type (p)← 1 { this case is easy }
else begin 〈Prepare for derivative computations; goto not found if the current cubic is dead 496 〉;
〈Find the initial slope, dy/dx 501 〉;
if dx = 0 then 〈Handle the special case of infinite slope 505 〉
else begin 〈Find the index k such that sk−1 ≤ dy/dx < sk 502 〉;
〈Complete the offset splitting process 503 〉;
end;

not found : end

This code is used in section 491.

204 PART 24: FILLING AN ENVELOPE METAFONT §495

495. The slope of a cubic B(z0, z1, z2, z3; t) =
(
x(t), y(t)

)
can be calculated from the quadratic polynomials

1
3x
′(t) = B(x1−x0, x2−x1, x3−x2; t) and 1

3y
′(t) = B(y1−y0, y2−y1, y3−y2; t). Since we may be calculating

slopes from several cubics split from the current one, it is desirable to do these calculations without losing too
much precision. “Scaled up” values of the derivatives, which will be less tainted by accumulated errors than
derivatives found from the cubics themselves, are maintained in local variables x0 , x1 , and x2 , representing
X0 = 2l(x1−x0), X1 = 2l(x2−x1), and X2 = 2l(x3−x2); similarly y0 , y1 , and y2 represent Y0 = 2l(y1−y0),
Y1 = 2l(y2 − y1), and Y2 = 2l(y3 − y2). To test whether the slope of the cubic is ≥ s or ≤ s, we will test the
sign of the quadratic 1

32l
(
y′(t)− sx′(t)

)
if s ≤ 1, or 1

32l
(
y′(t)/s− x′(t)

)
if s > 1.

〈Other local variables for offset prep 495 〉 ≡
x0 , x1 , x2 , y0 , y1 , y2 : integer ; { representatives of derivatives }
t0 , t1 , t2 : integer ; { coefficients of polynomial for slope testing }
du , dv , dx , dy : integer ; { for slopes of the pen and the curve }
max coef : integer ; { used while scaling }
x0a , x1a , x2a , y0a , y1a , y2a : integer ; { intermediate values }
t: fraction ; {where the derivative passes through zero }
s: fraction ; { slope or reciprocal slope }
This code is used in section 491.

496. 〈Prepare for derivative computations; goto not found if the current cubic is dead 496 〉 ≡
x0 ← right x (p)− x coord (p); { should be ≥ 0 }
x2 ← x coord (q)− left x (q); { likewise }
x1 ← left x (q)− right x (p); { but this might be negative }
y0 ← right y (p)− y coord (p); y2 ← y coord (q)− left y (q); y1 ← left y (q)− right y (p);
max coef ← abs (x0); {we take abs just to make sure }
if abs (x1) > max coef then max coef ← abs (x1);
if abs (x2) > max coef then max coef ← abs (x2);
if abs (y0) > max coef then max coef ← abs (y0);
if abs (y1) > max coef then max coef ← abs (y1);
if abs (y2) > max coef then max coef ← abs (y2);
if max coef = 0 then goto not found ;
while max coef < fraction half do

begin double (max coef); double (x0); double (x1); double (x2); double (y0); double (y1); double (y2);
end

This code is used in section 494.

§497 METAFONT PART 24: FILLING AN ENVELOPE 205

497. Let us first solve a special case of the problem: Suppose we know an index k such that either
(i) s(t) ≥ sk−1 for all t and s(0) < sk, or (ii) s(t) ≤ sk for all t and s(0) > sk−1. Then, in a sense, we’re
halfway done, since one of the two inequalities in (∗) is satisfied, and the other couldn’t be satisfied for any
other value of k.

The fin offset prep subroutine solves the stated subproblem. It has a boolean parameter called rising that
is true in case (i), false in case (ii). When rising = false , parameters x0 through y2 represent the negative
of the derivative of the cubic following p; otherwise they represent the actual derivative. The w parameter
should point to offset wk.

〈Declare subroutines needed by offset prep 493 〉 +≡
procedure fin offset prep(p : pointer ; k : halfword ; w : pointer ; x0 , x1 , x2 , y0 , y1 , y2 : integer ;

rising : boolean ; n : integer);
label exit ;
var ww : pointer ; { for list manipulation }

du , dv : scaled ; { for slope calculation }
t0 , t1 , t2 : integer ; { test coefficients }
t: fraction ; { place where the derivative passes a critical slope }
s: fraction ; { slope or reciprocal slope }
v: integer ; { intermediate value for updating x0 . . y2 }

begin loop
begin right type (p)← k;
if rising then

if k = n then return
else ww ← link (w) { a pointer to wk+1 }

else if k = 1 then return
else ww ← knil (w); { a pointer to wk−1 }

〈Compute test coefficients (t0 , t1 , t2) for s(t) versus sk or sk−1 498 〉;
t← crossing point (t0 , t1 , t2);
if t ≥ fraction one then return;
〈Split the cubic at t, and split off another cubic if the derivative crosses back 499 〉;
if rising then incr (k) else decr (k);
w ← ww ;
end;

exit : end;

498. 〈Compute test coefficients (t0 , t1 , t2) for s(t) versus sk or sk−1 498 〉 ≡
du ← x coord (ww)− x coord (w); dv ← y coord (ww)− y coord (w);
if abs (du) ≥ abs (dv) then { sk−1 ≤ 1 or sk ≤ 1 }

begin s← make fraction (dv , du); t0 ← take fraction (x0 , s)− y0 ; t1 ← take fraction (x1 , s)− y1 ;
t2 ← take fraction (x2 , s)− y2 ;
end

else begin s← make fraction (du , dv); t0 ← x0 − take fraction (y0 , s); t1 ← x1 − take fraction (y1 , s);
t2 ← x2 − take fraction (y2 , s);
end

This code is used in sections 497 and 503.

206 PART 24: FILLING AN ENVELOPE METAFONT §499

499. The curve has crossed sk or sk−1; its initial segment satisfies (∗), and it might cross again and return
towards sk−1 or sk, respectively, yielding another solution of (∗).
〈Split the cubic at t, and split off another cubic if the derivative crosses back 499 〉 ≡

begin split for offset (p, t); right type (p)← k; p← link (p);
v ← t of the way (x0)(x1); x1 ← t of the way (x1)(x2); x0 ← t of the way (v)(x1);
v ← t of the way (y0)(y1); y1 ← t of the way (y1)(y2); y0 ← t of the way (v)(y1);
t1 ← t of the way (t1)(t2);
if t1 > 0 then t1 ← 0; {without rounding error, t1 would be ≤ 0 }
t← crossing point (0,−t1 ,−t2);
if t < fraction one then

begin split for offset (p, t); right type (link (p))← k;
v ← t of the way (x1)(x2); x1 ← t of the way (x0)(x1); x2 ← t of the way (x1)(v);
v ← t of the way (y1)(y2); y1 ← t of the way (y0)(y1); y2 ← t of the way (y1)(v);
end;

end

This code is used in section 497.

500. Now we must consider the general problem of offset prep , when nothing is known about a given cubic.
We start by finding its slope s(0) in the vicinity of t = 0.

If z′(t) = 0, the given cubic is numerically unstable, since the slope direction is probably being influenced
primarily by rounding errors. A user who specifies such cuspy curves should expect to generate rather wild
results. The present code tries its best to believe the existing data, as if no rounding errors were present.

501. 〈Find the initial slope, dy/dx 501 〉 ≡
dx ← x0 ; dy ← y0 ;
if dx = 0 then

if dy = 0 then
begin dx ← x1 ; dy ← y1 ;
if dx = 0 then

if dy = 0 then
begin dx ← x2 ; dy ← y2 ;
end;

end

This code is used in section 494.

502. The next step is to bracket the initial slope between consecutive slopes of the pen polygon. The most
important invariant relation in the following loop is that dy/dx ≥ sk−1.

〈Find the index k such that sk−1 ≤ dy/dx < sk 502 〉 ≡
k ← 1; w ← link (lh);
loop begin if k = n then goto done ;

ww ← link (w);
if ab vs cd (dy , abs (x coord (ww)− x coord (w)), dx , abs (y coord (ww)− y coord (w))) ≥ 0 then

begin incr (k); w ← ww ;
end

else goto done ;
end;

done :

This code is used in section 494.

§503 METAFONT PART 24: FILLING AN ENVELOPE 207

503. Finally we want to reduce the general problem to situations that fin offset prep can handle. If k = 1,
we already are in the desired situation. Otherwise we can split the cubic into at most three parts with
respect to sk−1, and apply fin offset prep to each part.

〈Complete the offset splitting process 503 〉 ≡
if k = 1 then t← fraction one + 1
else begin ww ← knil (w); 〈Compute test coefficients (t0 , t1 , t2) for s(t) versus sk or sk−1 498 〉;
t← crossing point (−t0 ,−t1 ,−t2);
end;

if t ≥ fraction one then fin offset prep(p, k, w, x0 , x1 , x2 , y0 , y1 , y2 , true , n)
else begin split for offset (p, t); r ← link (p);

x1a ← t of the way (x0)(x1); x1 ← t of the way (x1)(x2); x2a ← t of the way (x1a)(x1);
y1a ← t of the way (y0)(y1); y1 ← t of the way (y1)(y2); y2a ← t of the way (y1a)(y1);
fin offset prep(p, k, w, x0 , x1a , x2a , y0 , y1a , y2a , true , n); x0 ← x2a ; y0 ← y2a ;
t1 ← t of the way (t1)(t2);
if t1 < 0 then t1 ← 0;
t← crossing point (0, t1 , t2);
if t < fraction one then 〈Split off another rising cubic for fin offset prep 504 〉;
fin offset prep(r, k − 1,ww ,−x0 ,−x1 ,−x2 ,−y0 ,−y1 ,−y2 , false , n);
end

This code is used in section 494.

504. 〈Split off another rising cubic for fin offset prep 504 〉 ≡
begin split for offset (r, t);
x1a ← t of the way (x1)(x2); x1 ← t of the way (x0)(x1); x0a ← t of the way (x1)(x1a);
y1a ← t of the way (y1)(y2); y1 ← t of the way (y0)(y1); y0a ← t of the way (y1)(y1a);
fin offset prep(link (r), k, w, x0a , x1a , x2 , y0a , y1a , y2 , true , n); x2 ← x0a ; y2 ← y0a ;
end

This code is used in section 503.

505. 〈Handle the special case of infinite slope 505 〉 ≡
fin offset prep(p, n, knil (knil (lh)),−x0 ,−x1 ,−x2 ,−y0 ,−y1 ,−y2 , false , n)

This code is used in section 494.

208 PART 24: FILLING AN ENVELOPE METAFONT §506

506. OK, it’s time now for the biggie. The fill envelope routine generalizes fill spec to polygonal envelopes.
Its outer structure is essentially the same as before, except that octants with no cubics do contribute to the
envelope.

〈Declare the procedure called skew line edges 510 〉
〈Declare the procedure called dual moves 518 〉
procedure fill envelope (spec head : pointer);

label done , done1 ;
var p, q, r, s: pointer ; { for list traversal }
h: pointer ; { head of pen offset list for current octant }
www : pointer ; { a pen offset of temporary interest }
〈Other local variables for fill envelope 511 〉

begin if internal [tracing edges] > 0 then begin edge tracing ;
p← spec head ; {we assume that left type (spec head) = endpoint }
repeat octant ← left octant (p); h← cur pen + octant ;
〈Set variable q to the node at the end of the current octant 466 〉;
〈Determine the envelope’s starting and ending lattice points (m0 ,n0) and (m1 ,n1) 508 〉;
offset prep(p, h); { this may clobber node q, if it becomes “dead” }
〈Set variable q to the node at the end of the current octant 466 〉;
〈Make the envelope moves for the current octant and insert them in the pixel data 512 〉;
p← link (q);

until p = spec head ;
if internal [tracing edges] > 0 then end edge tracing ;
toss knot list (spec head);
end;

507. In even-numbered octants we have reflected the coordinates an odd number of times, hence clockwise
and counterclockwise are reversed; this means that the envelope is being formed in a “dual” manner. For
the time being, let’s concentrate on odd-numbered octants, since they’re easier to understand. After we have
coded the program for odd-numbered octants, the changes needed to dualize it will not be so mysterious.

It is convenient to assume that we enter an odd-numbered octant with an axis transition (where the
skewed slope is zero) and leave at a diagonal one (where the skewed slope is infinite). Then all of the offset
points z(t)+w(t) will lie in a rectangle whose lower left and upper right corners are the initial and final offset
points. If this assumption doesn’t hold we can implicitly change the curve so that it does. For example, if
the entering transition is diagonal, we can draw a straight line from z0 +wn+1 to z0 +w0 and continue as if
the curve were moving rightward. The effect of this on the envelope is simply to “doubly color” the region
enveloped by a section of the pen that goes from w0 to w1 to · · · to wn+1 to w0. The additional straight line
at the beginning (and a similar one at the end, where it may be necessary to go from z1 +wn+1 to z1 +w0)
can be drawn by the line edges routine; we are thereby saved from the embarrassment that these lines travel
backwards from the current octant direction.

Once we have established the assumption that the curve goes from z0 + w0 to z1 + wn+1, any further
retrograde moves that might occur within the octant can be essentially ignored; we merely need to keep
track of the rightmost edge in each row, in order to compute the envelope.

Envelope moves consist of offset cubics intermixed with straight line segments. We record them in a
separate env move array, which is something like move but it keeps track of the rightmost position of the
envelope in each row.

〈Global variables 13 〉 +≡
env move : array [0 . . move size] of integer ;

§508 METAFONT PART 24: FILLING AN ENVELOPE 209

508. 〈Determine the envelope’s starting and ending lattice points (m0 ,n0) and (m1 ,n1) 508 〉 ≡
w ← link (h); if left transition (p) = diagonal then w ← knil (w);
stat if internal [tracing edges] > unity then
〈Print a line of diagnostic info to introduce this octant 509 〉;

tats
ww ← link (h); www ← ww ; { starting and ending offsets }
if odd (octant number [octant]) then www ← knil (www) else ww ← knil (ww);
if w 6= ww then skew line edges (p, w,ww);
end round (x coord (p) + x coord (ww), y coord (p) + y coord (ww)); m0 ← m1 ; n0 ← n1 ; d0 ← d1 ;
end round (x coord (q) + x coord (www), y coord (q) + y coord (www));
if n1 − n0 ≥ move size then overflow ("move table size",move size)

This code is used in section 506.

509. 〈Print a line of diagnostic info to introduce this octant 509 〉 ≡
begin print nl ("@ Octant "); print (octant dir [octant]); print (" ("); print int (info(h));
print (" offset");
if info(h) 6= 1 then print char ("s");
print ("), from "); print two true (x coord (p) + x coord (w), y coord (p) + y coord (w));
ww ← link (h); if right transition (q) = diagonal then ww ← knil (ww);
print (" to "); print two true (x coord (q) + x coord (ww), y coord (q) + y coord (ww));
end

This code is used in section 508.

510. A slight variation of the line edges procedure comes in handy when we must draw the retrograde
lines for nonstandard entry and exit conditions.

〈Declare the procedure called skew line edges 510 〉 ≡
procedure skew line edges (p, w,ww : pointer);

var x0 , y0 , x1 , y1 : scaled ; { from and to }
begin if (x coord (w) 6= x coord (ww)) ∨ (y coord (w) 6= y coord (ww)) then

begin x0 ← x coord (p) + x coord (w); y0 ← y coord (p) + y coord (w);
x1 ← x coord (p) + x coord (ww); y1 ← y coord (p) + y coord (ww);
unskew (x0 , y0 , octant); {unskew and unrotate the coordinates }
x0 ← cur x ; y0 ← cur y ;
unskew (x1 , y1 , octant);
stat if internal [tracing edges] > unity then

begin print nl ("@ retrograde line from "); print two(x0 , y0); print (" to ");
print two(cur x , cur y); print nl ("");
end;

tats
line edges (x0 , y0 , cur x , cur y); { then draw a straight line }
end;

end;

This code is used in section 506.

210 PART 24: FILLING AN ENVELOPE METAFONT §511

511. The envelope calculations require more local variables than we needed in the simpler case of fill spec .
At critical points in the computation, w will point to offset wk; m and n will record the current lattice
positions. The values of move ptr after the initial and before the final offset adjustments are stored in
smooth bot and smooth top , respectively.

〈Other local variables for fill envelope 511 〉 ≡
m,n: integer ; { current lattice position }
mm0 ,mm1 : integer ; { skewed equivalents of m0 and m1 }
k: integer ; { current offset number }
w,ww : pointer ; { pointers to the current offset and its neighbor }
smooth bot , smooth top : 0 . . move size ; { boundaries of smoothing }
xx , yy , xp , yp , delx , dely , tx , ty : scaled ; { registers for coordinate calculations }
This code is used in sections 506 and 518.

512. 〈Make the envelope moves for the current octant and insert them in the pixel data 512 〉 ≡
if odd (octant number [octant]) then

begin 〈 Initialize for ordinary envelope moves 513 〉;
r ← p; right type (q)← info(h) + 1;
loop begin if r = q then smooth top ← move ptr ;

while right type (r) 6= k do 〈 Insert a line segment to approach the correct offset 515 〉;
if r = p then smooth bot ← move ptr ;
if r = q then goto done ;
move [move ptr]← 1; n← move ptr ; s← link (r);
make moves (x coord (r) + x coord (w), right x (r) + x coord (w), left x (s) + x coord (w),

x coord (s) + x coord (w), y coord (r) + y coord (w) + half unit , right y (r) + y coord (w) + half unit ,
left y (s) + y coord (w) + half unit , y coord (s) + y coord (w) + half unit ,
xy corr [octant], y corr [octant]);

〈Transfer moves from the move array to env move 514 〉;
r ← s;
end;

done : 〈 Insert the new envelope moves in the pixel data 517 〉;
end

else dual moves (h, p, q);
right type (q)← endpoint

This code is used in section 506.

513. 〈 Initialize for ordinary envelope moves 513 〉 ≡
k ← 0; w ← link (h); ww ← knil (w); mm0 ← floor unscaled (x coord (p) + x coord (w)− xy corr [octant]);
mm1 ← floor unscaled (x coord (q) + x coord (ww)− xy corr [octant]);
for n← 0 to n1 − n0 − 1 do env move [n]← mm0 ;
env move [n1 − n0]← mm1 ; move ptr ← 0; m← mm0

This code is used in section 512.

514. At this point n holds the value of move ptr that was current when make moves began to record its
moves.

〈Transfer moves from the move array to env move 514 〉 ≡
repeat m← m+ move [n]− 1;

if m > env move [n] then env move [n]← m;
incr (n);

until n > move ptr

This code is used in section 512.

§515 METAFONT PART 24: FILLING AN ENVELOPE 211

515. Retrograde lines (when k decreases) do not need to be recorded in env move because their edges are
not the furthest right in any row.

〈 Insert a line segment to approach the correct offset 515 〉 ≡
begin xx ← x coord (r) + x coord (w); yy ← y coord (r) + y coord (w) + half unit ;
stat if internal [tracing edges] > unity then

begin print nl ("@ transition line "); print int (k); print (", from ");
print two true (xx , yy − half unit);
end;

tats
if right type (r) > k then

begin incr (k); w ← link (w); xp ← x coord (r) + x coord (w);
yp ← y coord (r) + y coord (w) + half unit ;
if yp 6= yy then 〈Record a line segment from (xx , yy) to (xp , yp) in env move 516 〉;
end

else begin decr (k); w ← knil (w); xp ← x coord (r) + x coord (w);
yp ← y coord (r) + y coord (w) + half unit ;
end;

stat if internal [tracing edges] > unity then
begin print (" to "); print two true (xp , yp − half unit); print nl ("");
end;

tats
m← floor unscaled (xp − xy corr [octant]); move ptr ← floor unscaled (yp − y corr [octant])− n0 ;
if m > env move [move ptr] then env move [move ptr]← m;
end

This code is used in section 512.

516. In this step we have xp ≥ xx and yp ≥ yy .

〈Record a line segment from (xx , yy) to (xp , yp) in env move 516 〉 ≡
begin ty ← floor scaled (yy − y corr [octant]); dely ← yp − yy ; yy ← yy − ty ;
ty ← yp − y corr [octant]− ty ;
if ty ≥ unity then

begin delx ← xp − xx ; yy ← unity − yy ;
loop begin tx ← take fraction (delx ,make fraction (yy , dely));

if ab vs cd (tx , dely , delx , yy) + xy corr [octant] > 0 then decr (tx);
m← floor unscaled (xx + tx);
if m > env move [move ptr] then env move [move ptr]← m;
ty ← ty − unity ;
if ty < unity then goto done1 ;
yy ← yy + unity ; incr (move ptr);
end;

done1 : end;
end

This code is used in section 515.

212 PART 24: FILLING AN ENVELOPE METAFONT §517

517. 〈 Insert the new envelope moves in the pixel data 517 〉 ≡
debug if (m 6= mm1) ∨ (move ptr 6= n1 − n0) then confusion ("1");
gubed
move [0]← d0 + env move [0]−mm0 ;
for n← 1 to move ptr do move [n]← env move [n]− env move [n− 1] + 1;
move [move ptr]← move [move ptr]− d1 ;
if internal [smoothing] > 0 then smooth moves (smooth bot , smooth top);
move to edges (m0 ,n0 ,m1 ,n1);
if right transition (q) = axis then

begin w ← link (h); skew line edges (q, knil (w), w);
end

This code is used in section 512.

518. We’ve done it all in the odd-octant case; the only thing remaining is to repeat the same ideas, upside
down and/or backwards.

The following code has been split off as a subprocedure of fill envelope , because some Pascal compilers
cannot handle procedures as large as fill envelope would otherwise be.

〈Declare the procedure called dual moves 518 〉 ≡
procedure dual moves (h, p, q : pointer);

label done , done1 ;
var r, s: pointer ; { for list traversal }
〈Other local variables for fill envelope 511 〉

begin 〈 Initialize for dual envelope moves 519 〉;
r ← p; { recall that right type (q) = endpoint = 0 now }
loop begin if r = q then smooth top ← move ptr ;

while right type (r) 6= k do 〈 Insert a line segment dually to approach the correct offset 521 〉;
if r = p then smooth bot ← move ptr ;
if r = q then goto done ;
move [move ptr]← 1; n← move ptr ; s← link (r);
make moves (x coord (r) + x coord (w), right x (r) + x coord (w), left x (s) + x coord (w),

x coord (s) + x coord (w), y coord (r) + y coord (w) + half unit , right y (r) + y coord (w) + half unit ,
left y (s) + y coord (w) + half unit , y coord (s) + y coord (w) + half unit ,
xy corr [octant], y corr [octant]); 〈Transfer moves dually from the move array to env move 520 〉;

r ← s;
end;

done : 〈 Insert the new envelope moves dually in the pixel data 523 〉;
end;

This code is used in section 506.

519. In the dual case the normal situation is to arrive with a diagonal transition and to leave at the axis .
The leftmost edge in each row is relevant instead of the rightmost one.

〈 Initialize for dual envelope moves 519 〉 ≡
k ← info(h) + 1; ww ← link (h); w ← knil (ww);
mm0 ← floor unscaled (x coord (p) + x coord (w)− xy corr [octant]);
mm1 ← floor unscaled (x coord (q) + x coord (ww)− xy corr [octant]);
for n← 1 to n1 − n0 + 1 do env move [n]← mm1 ;
env move [0]← mm0 ; move ptr ← 0; m← mm0

This code is used in section 518.

§520 METAFONT PART 24: FILLING AN ENVELOPE 213

520. 〈Transfer moves dually from the move array to env move 520 〉 ≡
repeat if m < env move [n] then env move [n]← m;
m← m+ move [n]− 1; incr (n);

until n > move ptr

This code is used in section 518.

521. Dual retrograde lines occur when k increases; the edges of such lines are not the furthest left in any
row.

〈 Insert a line segment dually to approach the correct offset 521 〉 ≡
begin xx ← x coord (r) + x coord (w); yy ← y coord (r) + y coord (w) + half unit ;
stat if internal [tracing edges] > unity then

begin print nl ("@ transition line "); print int (k); print (", from ");
print two true (xx , yy − half unit);
end;

tats
if right type (r) < k then

begin decr (k); w ← knil (w); xp ← x coord (r) + x coord (w);
yp ← y coord (r) + y coord (w) + half unit ;
if yp 6= yy then 〈Record a line segment from (xx , yy) to (xp , yp) dually in env move 522 〉;
end

else begin incr (k); w ← link (w); xp ← x coord (r) + x coord (w);
yp ← y coord (r) + y coord (w) + half unit ;
end;

stat if internal [tracing edges] > unity then
begin print (" to "); print two true (xp , yp − half unit); print nl ("");
end;

tats
m← floor unscaled (xp − xy corr [octant]); move ptr ← floor unscaled (yp − y corr [octant])− n0 ;
if m < env move [move ptr] then env move [move ptr]← m;
end

This code is used in section 518.

522. Again, xp ≥ xx and yp ≥ yy ; but this time we are interested in the smallest m that belongs to a
given move ptr position, instead of the largest m.

〈Record a line segment from (xx , yy) to (xp , yp) dually in env move 522 〉 ≡
begin ty ← floor scaled (yy − y corr [octant]); dely ← yp − yy ; yy ← yy − ty ;
ty ← yp − y corr [octant]− ty ;
if ty ≥ unity then

begin delx ← xp − xx ; yy ← unity − yy ;
loop begin if m < env move [move ptr] then env move [move ptr]← m;

tx ← take fraction (delx ,make fraction (yy , dely));
if ab vs cd (tx , dely , delx , yy) + xy corr [octant] > 0 then decr (tx);
m← floor unscaled (xx + tx); ty ← ty − unity ; incr (move ptr);
if ty < unity then goto done1 ;
yy ← yy + unity ;
end;

done1 : if m < env move [move ptr] then env move [move ptr]← m;
end;

end

This code is used in section 521.

214 PART 24: FILLING AN ENVELOPE METAFONT §523

523. Since env move contains minimum values instead of maximum values, the finishing-up process is
slightly different in the dual case.

〈 Insert the new envelope moves dually in the pixel data 523 〉 ≡
debug if (m 6= mm1) ∨ (move ptr 6= n1 − n0) then confusion ("2");
gubed
move [0]← d0 + env move [1]−mm0 ;
for n← 1 to move ptr do move [n]← env move [n+ 1]− env move [n] + 1;
move [move ptr]← move [move ptr]− d1 ;
if internal [smoothing] > 0 then smooth moves (smooth bot , smooth top);
move to edges (m0 ,n0 ,m1 ,n1);
if right transition (q) = diagonal then

begin w ← link (h); skew line edges (q, w, knil (w));
end

This code is used in section 518.

§524 METAFONT PART 25: ELLIPTICAL PENS 215

524. Elliptical pens. To get the envelope of a cyclic path with respect to an ellipse, METAFONT

calculates the envelope with respect to a polygonal approximation to the ellipse, using an approach due
to John Hobby (Ph.D. thesis, Stanford University, 1985). This has two important advantages over trying to
obtain the “exact” envelope:

1) It gives better results, because the polygon has been designed to counteract problems that arise
from digitization; the polygon includes sub-pixel corrections to an exact ellipse that make the results
essentially independent of where the path falls on the raster. For example, the exact envelope with
respect to a pen of diameter 1 blackens a pixel if and only if the path intersects a circle of diameter 1
inscribed in that pixel; the resulting pattern has “blots” when the path is traveling diagonally in
unfortunate raster positions. A much better result is obtained when pixels are blackened only when
the path intersects an inscribed diamond of diameter 1. Such a diamond is precisely the polygon that
METAFONT uses in the special case of a circle whose diameter is 1.

2) Polygonal envelopes of cubic splines are cubic splines, hence it isn’t necessary to introduce completely
different routines. By contrast, exact envelopes of cubic splines with respect to circles are complicated
curves, more difficult to plot than cubics.

525. Hobby’s construction involves some interesting number theory. If u and v are relatively prime integers,
we divide the set of integer points (m,n) into equivalence classes by saying that (m,n) belongs to class
um+vn. Then any two integer points that lie on a line of slope −u/v belong to the same class, because such
points have the form (m + tv, n − tu). Neighboring lines of slope −u/v that go through integer points are
separated by distance 1/

√
u2 + v2 from each other, and these lines are perpendicular to lines of slope v/u.

If we start at the origin and travel a distance k/
√
u2 + v2 in direction (u, v), we reach the line of slope −u/v

whose points belong to class k.
For example, let u = 2 and v = 3. Then the points (0, 0), (3,−2), . . . belong to class 0; the points (−1, 1),

(2,−1), . . . belong to class 1; and the distance between these two lines is 1/
√

13. The point (2, 3) itself
belongs to class 13, hence its distance from the origin is 13/

√
13 =

√
13 (which we already knew).

Suppose we wish to plot envelopes with respect to polygons with integer vertices. Then the best polygon
for curves that travel in direction (v,−u) will contain the points of class k such that k/

√
u2 + v2 is as close

as possible to d, where d is the maximum distance of the given ellipse from the line ux+ vy = 0.
The fillin correction assumes that a diagonal line has an apparent thickness

2f ·min(|u|, |v|)/
√
u2 + v2

greater than would be obtained with truly square pixels. (If a white pixel at an exterior corner is assumed
to have apparent darkness f1 and a black pixel at an interior corner is assumed to have apparent darkness
1 − f2, then f = f1 − f2 is the fillin parameter.) Under this assumption we want to choose k so that(
k + 2f ·min(|u|, |v|)

)/√
u2 + v2 is as close as possible to d.

Integer coordinates for the vertices work nicely because the thickness of the envelope at any given slope
is independent of the position of the path with respect to the raster. It turns out, in fact, that the same
property holds for polygons whose vertices have coordinates that are integer multiples of 1

2 , because ellipses
are symmetric about the origin. It’s convenient to double all dimensions and require the resulting polygon to
have vertices with integer coordinates. For example, to get a circle of diameter r, we shall compute integer
coordinates for a circle of radius r. The circle of radius r will want to be represented by a polygon that
contains the boundary points (0,±r) and (±r, 0); later we will divide everything by 2 and get a polygon
with (0,± 1

2r) and (± 1
2r, 0) on its boundary.

216 PART 25: ELLIPTICAL PENS METAFONT §526

526. In practice the important slopes are those having small values of u and v; these make regular patterns
in which our eyes quickly spot irregularities. For example, horizontal and vertical lines (when u = 0 and
|v| = 1, or |u| = 1 and v = 0) are the most important; diagonal lines (when |u| = |v| = 1) are next; and then
come lines with slope ±2 or ±1/2.

The nicest way to generate all rational directions having small numerators and denominators is to generalize
the Stern–Brocot tree [cf. Concrete Mathematics, section 4.5] to a “Stern–Brocot wreath” as follows: Begin
with four nodes arranged in a circle, containing the respective directions (u, v) = (1, 0), (0, 1), (−1, 0),
and (0,−1). Then between pairs of consecutive terms (u, v) and (u′, v′) of the wreath, insert the direction
(u+ u′, v + v′); continue doing this until some stopping criterion is fulfilled.

It is not difficult to verify that, regardless of the stopping criterion, consecutive directions (u, v) and
(u′, v′) of this wreath will always satisfy the relation uv′ − u′v = 1. Such pairs of directions have a nice
property with respect to the equivalence classes described above. Let l be a line of equivalent integer points
(m + tv, n − tu) with respect to (u, v), and let l′ be a line of equivalent integer points (m′ + tv′, n′ − tu′)
with respect to (u′, v′). Then l and l′ intersect in an integer point (m′′, n′′), because the determinant of the
linear equations for intersection is uv′ − u′v = 1. Notice that the class number of (m′′, n′′) with respect to
(u+u′, v+v′) is the sum of its class numbers with respect to (u, v) and (u′, v′). Moreover, consecutive points
on l and l′ belong to classes that differ by exactly 1 with respect to (u+ u′, v + v′).

This leads to a nice algorithm in which we construct a polygon having “correct” class numbers for as
many small-integer directions (u, v) as possible: Assuming that lines l and l′ contain points of the correct
class for (u, v) and (u′, v′), respectively, we determine the intersection (m′′, n′′) and compute its class with
respect to (u + u′, v + v′). If the class is too large to be the best approximation, we move back the proper
number of steps from (m′′, n′′) toward smaller class numbers on both l and l′, unless this requires moving to
points that are no longer in the polygon; in this way we arrive at two points that determine a line l′′ having
the appropriate class. The process continues recursively, until it cannot proceed without removing the last
remaining point from the class for (u, v) or the class for (u′, v′).

§527 METAFONT PART 25: ELLIPTICAL PENS 217

527. The make ellipse subroutine produces a pointer to a cyclic path whose vertices define a polygon
suitable for envelopes. The control points on this path will be ignored; in fact, the fields in knot nodes
that are usually reserved for control points are occupied by other data that helps make ellipse compute the
desired polygon.

Parameters major axis and minor axis define the axes of the ellipse; and parameter theta is an angle by
which the ellipse is rotated counterclockwise. If theta = 0, the ellipse has the equation (x/a)2 + (y/b)2 = 1,
where a = major axis/2 and b = minor axis/2. In general, the points of the ellipse are generated in the
complex plane by the formula eiθ(a cos t + ib sin t), as t ranges over all angles. Notice that if major axis =
minor axis = d, we obtain a circle of diameter d, regardless of the value of theta .

The method sketched above is used to produce the elliptical polygon, except that the main work is done
only in the halfplane obtained from the three starting directions (0,−1), (1, 0), (0, 1). Since the ellipse has
circular symmetry, we use the fact that the last half of the polygon is simply the negative of the first half.
Furthermore, we need to compute only one quarter of the polygon if the ellipse has axis symmetry.

function make ellipse (major axis ,minor axis : scaled ; theta : angle): pointer ;
label done , done1 , found ;
var p, q, r, s: pointer ; { for list manipulation }
h: pointer ; { head of the constructed knot list }
alpha , beta , gamma , delta : integer ; { special points }
c, d: integer ; { class numbers }
u, v: integer ; { directions }
symmetric : boolean ; { should the result be symmetric about the axes? }

begin 〈 Initialize the ellipse data structure by beginning with directions (0,−1), (1, 0), (0, 1) 528 〉;
〈 Interpolate new vertices in the ellipse data structure until improvement is impossible 531 〉;
if symmetric then 〈Complete the half ellipse by reflecting the quarter already computed 536 〉;
〈Complete the ellipse by copying the negative of the half already computed 537 〉;
make ellipse ← h;
end;

218 PART 25: ELLIPTICAL PENS METAFONT §528

528. A special data structure is used only with make ellipse : The right x , left x , right y , and left y fields
of knot nodes are renamed right u , left v , right class , and left length , in order to store information that
simplifies the necessary computations.

If p and q are consecutive knots in this data structure, the x coord and y coord fields of p and q contain
current vertices of the polygon; their values are integer multiples of half unit . Both of these vertices belong
to equivalence class right class (p) with respect to the direction

(
right u (p), left v (q)

)
. The number of points

of this class on the line from vertex p to vertex q is 1 + left length (q). In particular, left length (q) = 0 means
that x coord (p) = x coord (q) and y coord (p) = y coord (q); such duplicate vertices will be discarded during
the course of the algorithm.

The contents of right u (p) and left v (q) are integer multiples of half unit , just like the coordinate fields.
Hence, for example, the point

(
x coord (p)− left v (q), y coord (p) + right u (p)

)
also belongs to class number

right class (p). This point is one step closer to the vertex in node q; it equals that vertex if and only if
left length (q) = 1.

The left type and right type fields are not used, but link has its normal meaning.
To start the process, we create four nodes for the three directions (0,−1), (1, 0), and (0, 1). The

corresponding vertices are (−α,−β), (γ,−β), (γ, β), and (α, β), where (α, β) is a half-integer approximation
to where the ellipse rises highest above the x-axis, and where γ is a half-integer approximation to the
maximum x coordinate of the ellipse. The fourth of these nodes is not actually calculated if the ellipse has
axis symmetry.

define right u ≡ right x {u value for a pen edge }
define left v ≡ left x { v value for a pen edge }
define right class ≡ right y { equivalence class number of a pen edge }
define left length ≡ left y { length of a pen edge }

〈 Initialize the ellipse data structure by beginning with directions (0,−1), (1, 0), (0, 1) 528 〉 ≡
〈Calculate integers α, β, γ for the vertex coordinates 530 〉;
p← get node (knot node size); q ← get node (knot node size); r ← get node (knot node size);
if symmetric then s← null else s← get node (knot node size);
h← p; link (p)← q; link (q)← r; link (r)← s; { s = null or link (s) = null }
〈Revise the values of α, β, γ, if necessary, so that degenerate lines of length zero will not be obtained 529 〉;
x coord (p)← −alpha ∗ half unit ; y coord (p)← −beta ∗ half unit ; x coord (q)← gamma ∗ half unit ;
y coord (q)← y coord (p); x coord (r)← x coord (q);
right u (p)← 0; left v (q)← −half unit ;
right u (q)← half unit ; left v (r)← 0;
right u (r)← 0; right class (p)← beta ; right class (q)← gamma ; right class (r)← beta ;
left length (q)← gamma + alpha ;
if symmetric then

begin y coord (r)← 0; left length (r)← beta ;
end

else begin y coord (r)← −y coord (p); left length (r)← beta + beta ;
x coord (s)← −x coord (p); y coord (s)← y coord (r);
left v (s)← half unit ; left length (s)← gamma − alpha ;
end

This code is used in section 527.

§529 METAFONT PART 25: ELLIPTICAL PENS 219

529. One of the important invariants of the pen data structure is that the points are distinct. We may
need to correct the pen specification in order to avoid this. (The result of pencircle will always be at least
one pixel wide and one pixel tall, although makepen is capable of producing smaller pens.)

〈Revise the values of α, β, γ, if necessary, so that degenerate lines of length zero will not be obtained 529 〉 ≡
if beta = 0 then beta ← 1;
if gamma = 0 then gamma ← 1;
if gamma ≤ abs (alpha) then

if alpha > 0 then alpha ← gamma − 1
else alpha ← 1− gamma

This code is used in section 528.

530. If a and b are the semi-major and semi-minor axes, the given ellipse rises highest above the x-axis
at the point

(
(a2 − b2) sin θ cos θ/ρ

)
+ iρ, where ρ =

√
(a sin θ)2 + (b cos θ)2. It reaches furthest to the right

of the y-axis at the point σ + i(a2 − b2) sin θ cos θ/σ, where σ =
√

(a cos θ)2 + (b sin θ)2.

〈Calculate integers α, β, γ for the vertex coordinates 530 〉 ≡
if (major axis = minor axis) ∨ (theta mod ninety deg = 0) then

begin symmetric ← true ; alpha ← 0;
if odd (theta div ninety deg) then

begin beta ← major axis ; gamma ← minor axis ; n sin ← fraction one ; n cos ← 0;
{n sin and n cos are used later }

end
else begin beta ← minor axis ; gamma ← major axis ; theta ← 0;

end; {n sin and n cos aren’t needed in this case }
end

else begin symmetric ← false ; n sin cos (theta); { set up n sin = sin θ and n cos = cos θ }
gamma ← take fraction (major axis ,n sin); delta ← take fraction (minor axis ,n cos);
beta ← pyth add (gamma , delta);
alpha ← take fraction (take fraction (major axis ,make fraction (gamma , beta)),n cos)

− take fraction (take fraction (minor axis ,make fraction (delta , beta)),n sin);
alpha ← (alpha + half unit) div unity ;
gamma ← pyth add (take fraction (major axis ,n cos), take fraction (minor axis ,n sin));
end;

beta ← (beta + half unit) div unity ; gamma ← (gamma + half unit) div unity

This code is used in section 528.

220 PART 25: ELLIPTICAL PENS METAFONT §531

531. Now p, q, and r march through the list, always representing three consecutive vertices and two
consecutive slope directions. When a new slope is interpolated, we back up slightly, until further refinement
is impossible; then we march forward again. The somewhat magical operations performed in this part of
the algorithm are justified by the theory sketched earlier. Complications arise only from the need to keep
zero-length lines out of the final data structure.

〈 Interpolate new vertices in the ellipse data structure until improvement is impossible 531 〉 ≡
loop begin u← right u (p) + right u (q); v ← left v (q) + left v (r); c← right class (p) + right class (q);
〈Compute the distance d from class 0 to the edge of the ellipse in direction (u, v), times

√
u2 + v2,

rounded to the nearest integer 533 〉;
delta ← c− d; {we want to move delta steps back from the intersection vertex q }
if delta > 0 then

begin if delta > left length (r) then delta ← left length (r);
if delta ≥ left length (q) then
〈Remove the line from p to q, and adjust vertex q to introduce a new line 534 〉

else 〈 Insert a new line for direction (u, v) between p and q 535 〉;
end

else p← q;
〈Move to the next remaining triple (p, q, r), removing and skipping past zero-length lines that might

be present; goto done if all triples have been processed 532 〉;
end;

done :

This code is used in section 527.

532. The appearance of a zero-length line means that we should advance p past it. We must not try to
straddle a missing direction, because the algorithm works only on consecutive pairs of directions.

〈Move to the next remaining triple (p, q, r), removing and skipping past zero-length lines that might be
present; goto done if all triples have been processed 532 〉 ≡

loop begin q ← link (p);
if q = null then goto done ;
if left length (q) = 0 then

begin link (p)← link (q); right class (p)← right class (q); right u (p)← right u (q);
free node (q, knot node size);
end

else begin r ← link (q);
if r = null then goto done ;
if left length (r) = 0 then

begin link (p)← r; free node (q, knot node size); p← r;
end

else goto found ;
end;

end;
found :

This code is used in section 531.

§533 METAFONT PART 25: ELLIPTICAL PENS 221

533. The ‘div 8’ near the end of this step comes from the fact that delta is scaled by 215 and d by 216,
while take fraction removes a scale factor of 228. We also make sure that d ≥ max(|u|, |v|), so that the pen
will always include a circular pen of diameter 1 as a subset; then it won’t be possible to get disconnected
path envelopes.

〈Compute the distance d from class 0 to the edge of the ellipse in direction (u, v), times
√
u2 + v2, rounded

to the nearest integer 533 〉 ≡
delta ← pyth add (u, v);
if major axis = minor axis then d← major axis { circles are easy }
else begin if theta = 0 then

begin alpha ← u; beta ← v;
end

else begin alpha ← take fraction (u,n cos) + take fraction (v,n sin);
beta ← take fraction (v,n cos)− take fraction (u,n sin);
end;

alpha ← make fraction (alpha , delta); beta ← make fraction (beta , delta);
d← pyth add (take fraction (major axis , alpha), take fraction (minor axis , beta));
end;

alpha ← abs (u); beta ← abs (v);
if alpha < beta then

begin alpha ← abs (v); beta ← abs (u);
end; { now α = max(|u|, |v|), β = min(|u|, |v|) }

if internal [fillin] 6= 0 then d← d− take fraction (internal [fillin],make fraction (beta + beta , delta));
d← take fraction ((d+ 4) div 8, delta); alpha ← alpha div half unit ;
if d < alpha then d← alpha

This code is used in section 531.

534. At this point there’s a line of length ≤ delta from vertex p to vertex q, orthogonal to direction(
right u (p), left v (q)

)
; and there’s a line of length ≥ delta from vertex q to vertex r, orthogonal to direction(

right u (q), left v (r)
)
. The best line to direction (u, v) should replace the line from p to q; this new line will

have the same length as the old.

〈Remove the line from p to q, and adjust vertex q to introduce a new line 534 〉 ≡
begin delta ← left length (q);
right class (p)← c− delta ; right u (p)← u; left v (q)← v;
x coord (q)← x coord (q)− delta ∗ left v (r); y coord (q)← y coord (q) + delta ∗ right u (q);
left length (r)← left length (r)− delta ;
end

This code is used in section 531.

535. Here is the main case, now that we have dealt with the exception: We insert a new line of length
delta for direction (u, v), decreasing each of the adjacent lines by delta steps.

〈 Insert a new line for direction (u, v) between p and q 535 〉 ≡
begin s← get node (knot node size); link (p)← s; link (s)← q;
x coord (s)← x coord (q) + delta ∗ left v (q); y coord (s)← y coord (q)− delta ∗ right u (p);
x coord (q)← x coord (q)− delta ∗ left v (r); y coord (q)← y coord (q) + delta ∗ right u (q);
left v (s)← left v (q); right u (s)← u; left v (q)← v;
right class (s)← c− delta ;
left length (s)← left length (q)− delta ; left length (q)← delta ; left length (r)← left length (r)− delta ;
end

This code is used in section 531.

222 PART 25: ELLIPTICAL PENS METAFONT §536

536. Only the coordinates need to be copied, not the class numbers and other stuff. At this point either
link (p) or link (link (p)) is null .

〈Complete the half ellipse by reflecting the quarter already computed 536 〉 ≡
begin s← null ; q ← h;
loop begin r ← get node (knot node size); link (r)← s; s← r;

x coord (s)← x coord (q); y coord (s)← −y coord (q);
if q = p then goto done1 ;
q ← link (q);
if y coord (q) = 0 then goto done1 ;
end;

done1 : if (link (p) 6= null) then free node (link (p), knot node size);
link (p)← s; beta ← −y coord (h);
while y coord (p) 6= beta do p← link (p);
q ← link (p);
end

This code is used in section 527.

537. Now we use a somewhat tricky fact: The pointer q will be null if and only if the line for the final
direction (0, 1) has been removed. If that line still survives, it should be combined with a possibly surviving
line in the initial direction (0,−1).

〈Complete the ellipse by copying the negative of the half already computed 537 〉 ≡
if q 6= null then

begin if right u (h) = 0 then
begin p← h; h← link (h); free node (p, knot node size);
x coord (q)← −x coord (h);
end;

p← q;
end

else q ← p;
r ← link (h); { now p = q, x coord (p) = −x coord (h), y coord (p) = −y coord (h) }
repeat s← get node (knot node size); link (p)← s; p← s;

x coord (p)← −x coord (r); y coord (p)← −y coord (r); r ← link (r);
until r = q;
link (p)← h

This code is used in section 527.

§538 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 223

538. Direction and intersection times. A path of length n is defined parametrically by functions x(t)
and y(t), for 0 ≤ t ≤ n; we can regard t as the “time” at which the path reaches the point

(
x(t), y(t)

)
. In

this section of the program we shall consider operations that determine special times associated with given
paths: the first time that a path travels in a given direction, and a pair of times at which two paths cross
each other.

539. Let’s start with the easier task. The function find direction time is given a direction (x, y) and a
path starting at h. If the path never travels in direction (x, y), the direction time will be −1; otherwise it
will be nonnegative.

Certain anomalous cases can arise: If (x, y) = (0, 0), so that the given direction is undefined, the direction
time will be 0. If

(
x′(t), y′(t)

)
= (0, 0), so that the path direction is undefined, it will be assumed to match

any given direction at time t.
The routine solves this problem in nondegenerate cases by rotating the path and the given direction so

that (x, y) = (1, 0); i.e., the main task will be to find when a given path first travels “due east.”

function find direction time (x, y : scaled ; h : pointer): scaled ;
label exit , found ,not found , done ;
var max : scaled ; {max

(
|x|, |y|

)
}

p, q: pointer ; { for list traversal }
n: scaled ; { the direction time at knot p }
tt : scaled ; { the direction time within a cubic }
〈Other local variables for find direction time 542 〉

begin 〈Normalize the given direction for better accuracy; but return with zero result if it’s zero 540 〉;
n← 0; p← h;
loop begin if right type (p) = endpoint then goto not found ;
q ← link (p); 〈Rotate the cubic between p and q; then goto found if the rotated cubic travels due east

at some time tt ; but goto not found if an entire cyclic path has been traversed 541 〉;
p← q; n← n+ unity ;
end;

not found : find direction time ← −unity ; return;
found : find direction time ← n+ tt ;
exit : end;

540. 〈Normalize the given direction for better accuracy; but return with zero result if it’s zero 540 〉 ≡
if abs (x) < abs (y) then

begin x← make fraction (x, abs (y));
if y > 0 then y ← fraction one else y ← −fraction one ;
end

else if x = 0 then
begin find direction time ← 0; return;
end

else begin y ← make fraction (y, abs (x));
if x > 0 then x← fraction one else x← −fraction one ;
end

This code is used in section 539.

224 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT §541

541. Since we’re interested in the tangent directions, we work with the derivative

1

3
B′(x0, x1, x2, x3; t) = B(x1 − x0, x2 − x1, x3 − x2; t)

instead of B(x0, x1, x2, x3; t) itself. The derived coefficients are also scaled up in order to achieve better
accuracy.

The given path may turn abruptly at a knot, and it might pass the critical tangent direction at such a
time. Therefore we remember the direction phi in which the previous rotated cubic was traveling. (The
value of phi will be undefined on the first cubic, i.e., when n = 0.)

〈Rotate the cubic between p and q; then goto found if the rotated cubic travels due east at some time tt ;
but goto not found if an entire cyclic path has been traversed 541 〉 ≡

tt ← 0; 〈Set local variables x1 , x2 , x3 and y1 , y2 , y3 to multiples of the control points of the rotated
derivatives 543 〉;

if y1 = 0 then
if x1 ≥ 0 then goto found ;

if n > 0 then
begin 〈Exit to found if an eastward direction occurs at knot p 544 〉;
if p = h then goto not found ;
end;

if (x3 6= 0) ∨ (y3 6= 0) then phi ← n arg (x3 , y3);
〈Exit to found if the curve whose derivatives are specified by x1 , x2 , x3 , y1 , y2 , y3 travels eastward at

some time tt 546 〉
This code is used in section 539.

542. 〈Other local variables for find direction time 542 〉 ≡
x1 , x2 , x3 , y1 , y2 , y3 : scaled ; {multiples of rotated derivatives }
theta , phi : angle ; { angles of exit and entry at a knot }
t: fraction ; { temp storage }
This code is used in section 539.

543. 〈Set local variables x1 , x2 , x3 and y1 , y2 , y3 to multiples of the control points of the rotated
derivatives 543 〉 ≡

x1 ← right x (p)− x coord (p); x2 ← left x (q)− right x (p); x3 ← x coord (q)− left x (q);
y1 ← right y (p)− y coord (p); y2 ← left y (q)− right y (p); y3 ← y coord (q)− left y (q);
max ← abs (x1);
if abs (x2) > max then max ← abs (x2);
if abs (x3) > max then max ← abs (x3);
if abs (y1) > max then max ← abs (y1);
if abs (y2) > max then max ← abs (y2);
if abs (y3) > max then max ← abs (y3);
if max = 0 then goto found ;
while max < fraction half do

begin double (max); double (x1); double (x2); double (x3); double (y1); double (y2); double (y3);
end;

t← x1 ; x1 ← take fraction (x1 , x) + take fraction (y1 , y); y1 ← take fraction (y1 , x)− take fraction (t, y);
t← x2 ; x2 ← take fraction (x2 , x) + take fraction (y2 , y); y2 ← take fraction (y2 , x)− take fraction (t, y);
t← x3 ; x3 ← take fraction (x3 , x) + take fraction (y3 , y); y3 ← take fraction (y3 , x)− take fraction (t, y)

This code is used in section 541.

§544 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 225

544. 〈Exit to found if an eastward direction occurs at knot p 544 〉 ≡
theta ← n arg (x1 , y1);
if theta ≥ 0 then

if phi ≤ 0 then
if phi ≥ theta − one eighty deg then goto found ;

if theta ≤ 0 then
if phi ≥ 0 then

if phi ≤ theta + one eighty deg then goto found

This code is used in section 541.

545. In this step we want to use the crossing point routine to find the roots of the quadratic equation
B(y1, y2, y3; t) = 0. Several complications arise: If the quadratic equation has a double root, the curve never
crosses zero, and crossing point will find nothing; this case occurs iff y1y3 = y22 and y1y2 < 0. If the quadratic
equation has simple roots, or only one root, we may have to negate it so that B(y1, y2, y3; t) crosses from
positive to negative at its first root. And finally, we need to do special things if B(y1, y2, y3; t) is identically
zero.

546. 〈Exit to found if the curve whose derivatives are specified by x1 , x2 , x3 , y1 , y2 , y3 travels eastward
at some time tt 546 〉 ≡

if x1 < 0 then
if x2 < 0 then

if x3 < 0 then goto done ;
if ab vs cd (y1 , y3 , y2 , y2) = 0 then
〈Handle the test for eastward directions when y1y3 = y22 ; either goto found or goto done 548 〉;

if y1 ≤ 0 then
if y1 < 0 then

begin y1 ← −y1 ; y2 ← −y2 ; y3 ← −y3 ;
end

else if y2 > 0 then
begin y2 ← −y2 ; y3 ← −y3 ;
end;

〈Check the places where B(y1, y2, y3; t) = 0 to see if B(x1, x2, x3; t) ≥ 0 547 〉;
done :

This code is used in section 541.

226 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT §547

547. The quadratic polynomial B(y1, y2, y3; t) begins ≥ 0 and has at most two roots, because we know
that it isn’t identically zero.

It must be admitted that the crossing point routine is not perfectly accurate; rounding errors might cause
it to find a root when y1y3 > y22 , or to miss the roots when y1y3 < y22 . The rotation process is itself subject
to rounding errors. Yet this code optimistically tries to do the right thing.

define we found it ≡
begin tt ← (t+ 4́000) div 1́0000 ; goto found ;
end

〈Check the places where B(y1, y2, y3; t) = 0 to see if B(x1, x2, x3; t) ≥ 0 547 〉 ≡
t← crossing point (y1 , y2 , y3);
if t > fraction one then goto done ;
y2 ← t of the way (y2)(y3); x1 ← t of the way (x1)(x2); x2 ← t of the way (x2)(x3);
x1 ← t of the way (x1)(x2);
if x1 ≥ 0 then we found it ;
if y2 > 0 then y2 ← 0;
tt ← t; t← crossing point (0,−y2 ,−y3);
if t > fraction one then goto done ;
x1 ← t of the way (x1)(x2); x2 ← t of the way (x2)(x3);
if t of the way (x1)(x2) ≥ 0 then

begin t← t of the way (tt)(fraction one); we found it ;
end

This code is used in section 546.

548. 〈Handle the test for eastward directions when y1y3 = y22 ; either goto found or goto done 548 〉 ≡
begin if ab vs cd (y1 , y2 , 0, 0) < 0 then

begin t← make fraction (y1 , y1 − y2); x1 ← t of the way (x1)(x2); x2 ← t of the way (x2)(x3);
if t of the way (x1)(x2) ≥ 0 then we found it ;
end

else if y3 = 0 then
if y1 = 0 then 〈Exit to found if the derivative B(x1, x2, x3; t) becomes ≥ 0 549 〉
else if x3 ≥ 0 then

begin tt ← unity ; goto found ;
end;

goto done ;
end

This code is used in section 546.

549. At this point we know that the derivative of y(t) is identically zero, and that x1 < 0; but either
x2 ≥ 0 or x3 ≥ 0, so there’s some hope of traveling east.

〈Exit to found if the derivative B(x1, x2, x3; t) becomes ≥ 0 549 〉 ≡
begin t← crossing point (−x1 ,−x2 ,−x3);
if t ≤ fraction one then we found it ;
if ab vs cd (x1 , x3 , x2 , x2) ≤ 0 then

begin t← make fraction (x1 , x1 − x2); we found it ;
end;

end

This code is used in section 548.

§550 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 227

550. The intersection of two cubics can be found by an interesting variant of the general bisection scheme
described in the introduction to make moves . Given w(t) = B(w0, w1, w2, w3; t) and z(t) = B(z0, z1, z2, z3; t),
we wish to find a pair of times (t1, t2) such that w(t1) = z(t2), if an intersection exists. First we find the
smallest rectangle that encloses the points {w0, w1, w2, w3} and check that it overlaps the smallest rectangle
that encloses {z0, z1, z2, z3}; if not, the cubics certainly don’t intersect. But if the rectangles do overlap,
we bisect the intervals, getting new cubics w′ and w′′, z′ and z′′; the intersection routine first tries for an
intersection between w′ and z′, then (if unsuccessful) between w′ and z′′, then (if still unsuccessful) between
w′′ and z′, finally (if thrice unsuccessful) between w′′ and z′′. After l successful levels of bisection we will
have determined the intersection times t1 and t2 to l bits of accuracy.

As before, it is better to work with the numbers Wk = 2l(wk − wk−1) and Zk = 2l(zk − zk−1) rather
than the coefficients wk and zk themselves. We also need one other quantity, ∆ = 2l(w0 − z0), to determine
when the enclosing rectangles overlap. Here’s why: The x coordinates of w(t) are between umin and umax,
and the x coordinates of z(t) are between xmin and xmax, if we write wk = (uk, vk) and zk = (xk, yk) and
umin = min(u0, u1, u2, u3), etc. These intervals of x coordinates overlap if and only if umin ≤ xmax and
xmin ≤ umax. Letting

Umin = min(0, U1, U1 + U2, U1 + U2 + U3), Umax = max(0, U1, U1 + U2, U1 + U2 + U3),

we have 2lumin = 2lu0 + Umin, etc.; the condition for overlap reduces to

Xmin − Umax ≤ 2l(u0 − x0) ≤ Xmax − Umin.

Thus we want to maintain the quantity 2l(u0 − x0); similarly, the quantity 2l(v0 − y0) accounts for the
y coordinates. The coordinates of ∆ = 2l(w0 − z0) must stay bounded as l increases, because of the overlap
condition; i.e., we know thatXmin, Xmax, and their relatives are bounded, henceXmax−Umin andXmin−Umax

are bounded.

551. Incidentally, if the given cubics intersect more than once, the process just sketched will not necessarily
find the lexicographically smallest pair (t1, t2). The solution actually obtained will be smallest in “shuffled
order”; i.e., if t1 = (.a1a2 . . . a16)2 and t2 = (.b1b2 . . . b16)2, then we will minimize a1b1a2b2 . . . a16b16, not
a1a2 . . . a16b1b2 . . . b16. Shuffled order agrees with lexicographic order if all pairs of solutions (t1, t2) and
(t′1, t

′
2) have the property that t1 < t′1 iff t2 < t′2; but in general, lexicographic order can be quite different,

and the bisection algorithm would be substantially less efficient if it were constrained by lexicographic order.
For example, suppose that an overlap has been found for l = 3 and (t1, t2) = (.101, .011) in binary, but

that no overlap is produced by either of the alternatives (.1010, .0110), (.1010, .0111) at level 4. Then there
is probably an intersection in one of the subintervals (.1011, .011x); but lexicographic order would require
us to explore (.1010, .1xxx) and (.1011, .00xx) and (.1011, .010x) first. We wouldn’t want to store all of the
subdivision data for the second path, so the subdivisions would have to be regenerated many times. Such
inefficiencies would be associated with every ‘1’ in the binary representation of t1.

552. The subdivision process introduces rounding errors, hence we need to make a more liberal test for
overlap. It is not hard to show that the computed values of Ui differ from the truth by at most l, on level l,
hence Umin and Umax will be at most 3l in error. If β is an upper bound on the absolute error in the computed
components of ∆ = (delx , dely) on level l, we will replace the test ‘Xmin −Umax ≤ delx ’ by the more liberal
test ‘Xmin − Umax ≤ delx + tol ’, where tol = 6l + β.

More accuracy is obtained if we try the algorithm first with tol = 0; the more liberal tolerance is used only
if an exact approach fails. It is convenient to do this double-take by letting ‘3’ in the preceding paragraph
be a parameter, which is first 0, then 3.

〈Global variables 13 〉 +≡
tol step : 0 . . 6; { either 0 or 3, usually }

228 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT §553

553. We shall use an explicit stack to implement the recursive bisection method described above. In
fact, the bisect stack array is available for this purpose. It will contain numerous 5-word packets like
(U1, U2, U3, Umin, Umax), as well as 20-word packets comprising the 5-word packets for U , V , X, and Y .

The following macros define the allocation of stack positions to the quantities needed for bisection-
intersection.

define stack 1 (#) ≡ bisect stack [#] {U1, V1, X1, or Y1 }
define stack 2 (#) ≡ bisect stack [# + 1] {U2, V2, X2, or Y2 }
define stack 3 (#) ≡ bisect stack [# + 2] {U3, V3, X3, or Y3 }
define stack min (#) ≡ bisect stack [# + 3] {Umin, Vmin, Xmin, or Ymin }
define stack max (#) ≡ bisect stack [# + 4] {Umax, Vmax, Xmax, or Ymax }
define int packets = 20 { number of words to represent Uk, Vk, Xk, and Yk }
define u packet (#) ≡ #− 5
define v packet (#) ≡ #− 10
define x packet (#) ≡ #− 15
define y packet (#) ≡ #− 20
define l packets ≡ bisect ptr − int packets
define r packets ≡ bisect ptr
define ul packet ≡ u packet (l packets) { base of U ′k variables }
define vl packet ≡ v packet (l packets) { base of V ′k variables }
define xl packet ≡ x packet (l packets) { base of X ′k variables }
define yl packet ≡ y packet (l packets) {base of Y ′k variables }
define ur packet ≡ u packet (r packets) { base of U ′′k variables }
define vr packet ≡ v packet (r packets) { base of V ′′k variables }
define xr packet ≡ x packet (r packets) { base of X ′′k variables }
define yr packet ≡ y packet (r packets) { base of Y ′′k variables }
define u1l ≡ stack 1 (ul packet) {U ′1 }
define u2l ≡ stack 2 (ul packet) {U ′2 }
define u3l ≡ stack 3 (ul packet) {U ′3 }
define v1l ≡ stack 1 (vl packet) {V ′1 }
define v2l ≡ stack 2 (vl packet) {V ′2 }
define v3l ≡ stack 3 (vl packet) {V ′3 }
define x1l ≡ stack 1 (xl packet) {X ′1 }
define x2l ≡ stack 2 (xl packet) {X ′2 }
define x3l ≡ stack 3 (xl packet) {X ′3 }
define y1l ≡ stack 1 (yl packet) {Y ′1 }
define y2l ≡ stack 2 (yl packet) {Y ′2 }
define y3l ≡ stack 3 (yl packet) {Y ′3 }
define u1r ≡ stack 1 (ur packet) {U ′′1 }
define u2r ≡ stack 2 (ur packet) {U ′′2 }
define u3r ≡ stack 3 (ur packet) {U ′′3 }
define v1r ≡ stack 1 (vr packet) {V ′′1 }
define v2r ≡ stack 2 (vr packet) {V ′′2 }
define v3r ≡ stack 3 (vr packet) {V ′′3 }
define x1r ≡ stack 1 (xr packet) {X ′′1 }
define x2r ≡ stack 2 (xr packet) {X ′′2 }
define x3r ≡ stack 3 (xr packet) {X ′′3 }
define y1r ≡ stack 1 (yr packet) {Y ′′1 }
define y2r ≡ stack 2 (yr packet) {Y ′′2 }
define y3r ≡ stack 3 (yr packet) {Y ′′3 }
define stack dx ≡ bisect stack [bisect ptr] { stacked value of delx }
define stack dy ≡ bisect stack [bisect ptr + 1] { stacked value of dely }

§553 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 229

define stack tol ≡ bisect stack [bisect ptr + 2] { stacked value of tol }
define stack uv ≡ bisect stack [bisect ptr + 3] { stacked value of uv }
define stack xy ≡ bisect stack [bisect ptr + 4] { stacked value of xy }
define int increment = int packets + int packets + 5 { number of stack words per level }

〈Check the “constant” values for consistency 14 〉 +≡
if int packets + 17 ∗ int increment > bistack size then bad ← 32;

554. Computation of the min and max is a tedious but fairly fast sequence of instructions; exactly four
comparisons are made in each branch.

define set min max (#) ≡
if stack 1 (#) < 0 then

if stack 3 (#) ≥ 0 then
begin if stack 2 (#) < 0 then stack min (#)← stack 1 (#) + stack 2 (#)
else stack min (#)← stack 1 (#);
stack max (#)← stack 1 (#) + stack 2 (#) + stack 3 (#);
if stack max (#) < 0 then stack max (#)← 0;
end

else begin stack min (#)← stack 1 (#) + stack 2 (#) + stack 3 (#);
if stack min (#) > stack 1 (#) then stack min (#)← stack 1 (#);
stack max (#)← stack 1 (#) + stack 2 (#);
if stack max (#) < 0 then stack max (#)← 0;
end

else if stack 3 (#) ≤ 0 then
begin if stack 2 (#) > 0 then stack max (#)← stack 1 (#) + stack 2 (#)
else stack max (#)← stack 1 (#);
stack min (#)← stack 1 (#) + stack 2 (#) + stack 3 (#);
if stack min (#) > 0 then stack min (#)← 0;
end

else begin stack max (#)← stack 1 (#) + stack 2 (#) + stack 3 (#);
if stack max (#) < stack 1 (#) then stack max (#)← stack 1 (#);
stack min (#)← stack 1 (#) + stack 2 (#);
if stack min (#) > 0 then stack min (#)← 0;
end

555. It’s convenient to keep the current values of l, t1, and t2 in the integer form 2l+2lt1 and 2l+2lt2. The
cubic intersection routine uses global variables cur t and cur tt for this purpose; after successful completion,
cur t and cur tt will contain unity plus the scaled values of t1 and t2.

The values of cur t and cur tt will be set to zero if cubic intersection finds no intersection. The routine
gives up and gives an approximate answer if it has backtracked more than 5000 times (otherwise there are
cases where several minutes of fruitless computation would be possible).

define max patience = 5000

〈Global variables 13 〉 +≡
cur t , cur tt : integer ; { controls and results of cubic intersection }
time to go : integer ; { this many backtracks before giving up }
max t : integer ; {maximum of 2l+1 so far achieved }

230 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT §556

556. The given cubics B(w0, w1, w2, w3; t) and B(z0, z1, z2, z3; t) are specified in adjacent knot nodes
(p, link (p)) and (pp , link (pp)), respectively.

procedure cubic intersection (p, pp : pointer);
label continue ,not found , exit ;
var q, qq : pointer ; { link (p), link (pp) }
begin time to go ← max patience ; max t ← 2; 〈 Initialize for intersections at level zero 558 〉;
loop begin continue : if delx − tol ≤ stack max (x packet (xy))− stack min (u packet (uv)) then

if delx + tol ≥ stack min (x packet (xy))− stack max (u packet (uv)) then
if dely − tol ≤ stack max (y packet (xy))− stack min (v packet (uv)) then

if dely + tol ≥ stack min (y packet (xy))− stack max (v packet (uv)) then
begin if cur t ≥ max t then

begin if max t = two then {we’ve done 17 bisections }
begin cur t ← half (cur t + 1); cur tt ← half (cur tt + 1); return;
end;

double (max t); appr t ← cur t ; appr tt ← cur tt ;
end;

〈Subdivide for a new level of intersection 559 〉;
goto continue ;
end;

if time to go > 0 then decr (time to go)
else begin while appr t < unity do

begin double (appr t); double (appr tt);
end;

cur t ← appr t ; cur tt ← appr tt ; return;
end;

〈Advance to the next pair (cur t , cur tt) 560 〉;
end;

exit : end;

557. The following variables are global, although they are used only by cubic intersection , because it is
necessary on some machines to split cubic intersection up into two procedures.

〈Global variables 13 〉 +≡
delx , dely : integer ; { the components of ∆ = 2l(w0 − z0) }
tol : integer ; {bound on the uncertainty in the overlap test }
uv , xy : 0 . . bistack size ; { pointers to the current packets of interest }
three l : integer ; { tol step times the bisection level }
appr t , appr tt : integer ; { best approximations known to the answers }

§558 METAFONT PART 26: DIRECTION AND INTERSECTION TIMES 231

558. We shall assume that the coordinates are sufficiently non-extreme that integer overflow will not occur.

〈 Initialize for intersections at level zero 558 〉 ≡
q ← link (p); qq ← link (pp); bisect ptr ← int packets ;
u1r ← right x (p)− x coord (p); u2r ← left x (q)− right x (p); u3r ← x coord (q)− left x (q);
set min max (ur packet);
v1r ← right y (p)− y coord (p); v2r ← left y (q)− right y (p); v3r ← y coord (q)− left y (q);
set min max (vr packet);
x1r ← right x (pp)− x coord (pp); x2r ← left x (qq)− right x (pp); x3r ← x coord (qq)− left x (qq);
set min max (xr packet);
y1r ← right y (pp)− y coord (pp); y2r ← left y (qq)− right y (pp); y3r ← y coord (qq)− left y (qq);
set min max (yr packet);
delx ← x coord (p)− x coord (pp); dely ← y coord (p)− y coord (pp);
tol ← 0; uv ← r packets ; xy ← r packets ; three l ← 0; cur t ← 1; cur tt ← 1

This code is used in section 556.

559. 〈Subdivide for a new level of intersection 559 〉 ≡
stack dx ← delx ; stack dy ← dely ; stack tol ← tol ; stack uv ← uv ; stack xy ← xy ;
bisect ptr ← bisect ptr + int increment ;
double (cur t); double (cur tt);
u1l ← stack 1 (u packet (uv)); u3r ← stack 3 (u packet (uv)); u2l ← half (u1l + stack 2 (u packet (uv)));
u2r ← half (u3r + stack 2 (u packet (uv))); u3l ← half (u2l + u2r); u1r ← u3l ; set min max (ul packet);
set min max (ur packet);
v1l ← stack 1 (v packet (uv)); v3r ← stack 3 (v packet (uv)); v2l ← half (v1l + stack 2 (v packet (uv)));
v2r ← half (v3r + stack 2 (v packet (uv))); v3l ← half (v2l + v2r); v1r ← v3l ; set min max (vl packet);
set min max (vr packet);
x1l ← stack 1 (x packet (xy)); x3r ← stack 3 (x packet (xy)); x2l ← half (x1l + stack 2 (x packet (xy)));
x2r ← half (x3r + stack 2 (x packet (xy))); x3l ← half (x2l + x2r); x1r ← x3l ; set min max (xl packet);
set min max (xr packet);
y1l ← stack 1 (y packet (xy)); y3r ← stack 3 (y packet (xy)); y2l ← half (y1l + stack 2 (y packet (xy)));
y2r ← half (y3r + stack 2 (y packet (xy))); y3l ← half (y2l + y2r); y1r ← y3l ; set min max (yl packet);
set min max (yr packet);
uv ← l packets ; xy ← l packets ; double (delx); double (dely);
tol ← tol − three l + tol step ; double (tol); three l ← three l + tol step

This code is used in section 556.

560. 〈Advance to the next pair (cur t , cur tt) 560 〉 ≡
not found : if odd (cur tt) then

if odd (cur t) then 〈Descend to the previous level and goto not found 561 〉
else begin incr (cur t);

delx ← delx + stack 1 (u packet (uv)) + stack 2 (u packet (uv)) + stack 3 (u packet (uv));
dely ← dely + stack 1 (v packet (uv)) + stack 2 (v packet (uv)) + stack 3 (v packet (uv));
uv ← uv + int packets ; { switch from l packets to r packets }
decr (cur tt); xy ← xy − int packets ; { switch from r packets to l packets }
delx ← delx + stack 1 (x packet (xy)) + stack 2 (x packet (xy)) + stack 3 (x packet (xy));
dely ← dely + stack 1 (y packet (xy)) + stack 2 (y packet (xy)) + stack 3 (y packet (xy));
end

else begin incr (cur tt); tol ← tol + three l ;
delx ← delx − stack 1 (x packet (xy))− stack 2 (x packet (xy))− stack 3 (x packet (xy));
dely ← dely − stack 1 (y packet (xy))− stack 2 (y packet (xy))− stack 3 (y packet (xy));
xy ← xy + int packets ; { switch from l packets to r packets }
end

This code is used in section 556.

232 PART 26: DIRECTION AND INTERSECTION TIMES METAFONT §561

561. 〈Descend to the previous level and goto not found 561 〉 ≡
begin cur t ← half (cur t); cur tt ← half (cur tt);
if cur t = 0 then return;
bisect ptr ← bisect ptr − int increment ; three l ← three l − tol step ; delx ← stack dx ; dely ← stack dy ;
tol ← stack tol ; uv ← stack uv ; xy ← stack xy ;
goto not found ;
end

This code is used in section 560.

562. The path intersection procedure is much simpler. It invokes cubic intersection in lexicographic order
until finding a pair of cubics that intersect. The final intersection times are placed in cur t and cur tt .

procedure path intersection (h, hh : pointer);
label exit ;
var p, pp : pointer ; { link registers that traverse the given paths }
n,nn : integer ; { integer parts of intersection times, minus unity }

begin 〈Change one-point paths into dead cycles 563 〉;
tol step ← 0;
repeat n← −unity ; p← h;

repeat if right type (p) 6= endpoint then
begin nn ← −unity ; pp ← hh ;
repeat if right type (pp) 6= endpoint then

begin cubic intersection (p, pp);
if cur t > 0 then

begin cur t ← cur t + n; cur tt ← cur tt + nn ; return;
end;

end;
nn ← nn + unity ; pp ← link (pp);

until pp = hh ;
end;

n← n+ unity ; p← link (p);
until p = h;
tol step ← tol step + 3;

until tol step > 3;
cur t ← −unity ; cur tt ← −unity ;

exit : end;

563. 〈Change one-point paths into dead cycles 563 〉 ≡
if right type (h) = endpoint then

begin right x (h)← x coord (h); left x (h)← x coord (h); right y (h)← y coord (h);
left y (h)← y coord (h); right type (h)← explicit ;
end;

if right type (hh) = endpoint then
begin right x (hh)← x coord (hh); left x (hh)← x coord (hh); right y (hh)← y coord (hh);
left y (hh)← y coord (hh); right type (hh)← explicit ;
end;

This code is used in section 562.

§564 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 233

564. Online graphic output. METAFONT displays images on the user’s screen by means of a few
primitive operations that are defined below. These operations have deliberately been kept simple so that they
can be implemented without great difficulty on a wide variety of machines. Since Pascal has no traditional
standards for graphic output, some system-dependent code needs to be written in order to support this
aspect of METAFONT; but the necessary routines are usually quite easy to write.

In fact, there are exactly four such routines:

init screen does whatever initialization is necessary to support the other operations; it is a boolean function
that returns false if graphic output cannot be supported (e.g., if the other three routines have not
been written, or if the user doesn’t have the right kind of terminal).

blank rectangle updates a buffer area in memory so that all pixels in a specified rectangle will be set to the
background color.

paint row assigns values to specified pixels in a row of the buffer just mentioned, based on “transition”
indices explained below.

update screen displays the current screen buffer; the effects of blank rectangle and paint row commands may
or may not become visible until the next update screen operation is performed. (Thus, update screen
is analogous to update terminal .)

The Pascal code here is a minimum version of init screen and update screen , usable on METAFONT instal-
lations that don’t support screen output. If init screen is changed to return true instead of false , the other
routines will simply log the fact that they have been called; they won’t really display anything. The standard
test routines for METAFONT use this log information to check that METAFONT is working properly, but the
wlog instructions should be removed from production versions of METAFONT.

function init screen : boolean ;
begin init screen ← false ;
end;

procedure update screen ; {will be called only if init screen returns true }
begin init wlog ln (´Calling UPDATESCREEN´); tini { for testing only }
end;

565. The user’s screen is assumed to be a rectangular area, screen width pixels wide and screen depth
pixels deep. The pixel in the upper left corner is said to be in column 0 of row 0; the pixel in the lower right
corner is said to be in column screen width − 1 of row screen depth − 1. Notice that row numbers increase
from top to bottom, contrary to METAFONT’s other coordinates.

Each pixel is assumed to have two states, referred to in this documentation as black and white . The
background color is called white and the other color is called black ; but any two distinct pixel values can
actually be used. For example, the author developed METAFONT on a system for which white was black and
black was bright green.

define white = 0 { background pixels }
define black = 1 { visible pixels }

〈Types in the outer block 18 〉 +≡
screen row = 0 . . screen depth ; { a row number on the screen }
screen col = 0 . . screen width ; { a column number on the screen }
trans spec = array [screen col] of screen col ; { a transition spec, see below }
pixel color = white . . black ; { specifies one of the two pixel values }

566. We’ll illustrate the blank rectangle and paint row operations by pretending to declare a screen buffer
called screen pixel . This code is actually commented out, but it does specify the intended effects.

〈Global variables 13 〉 +≡
@{ screen pixel : array [screen row , screen col] of pixel color ; @}

234 PART 27: ONLINE GRAPHIC OUTPUT METAFONT §567

567. The blank rectangle routine simply whitens all pixels that lie in columns left col through right col −1,
inclusive, of rows top row through bot row − 1, inclusive, given four parameters that satisfy the relations

0 ≤ left col ≤ right col ≤ screen width , 0 ≤ top row ≤ bot row ≤ screen depth .

If left col = right col or top row = bot row , nothing happens.
The commented-out code in the following procedure is for illustrative purposes only.

procedure blank rectangle (left col , right col : screen col ; top row , bot row : screen row);
var r: screen row ; c: screen col ;
begin @{ for r ← top row to bot row − 1 do

for c← left col to right col − 1 do screen pixel [r, c]← white ;
@}

init wlog cr ; { this will be done only after init screen = true }
wlog ln (´Calling BLANKRECTANGLE(´, left col : 1, ´,´, right col : 1, ´,´, top row : 1, ´,´, bot row : 1, ´)´);

tini
end;

568. The real work of screen display is done by paint row . But it’s not hard work, because the operation
affects only one of the screen rows, and it affects only a contiguous set of columns in that row. There are four
parameters: r (the row), b (the initial color), a (the array of transition specifications), and n (the number of
transitions). The elements of a will satisfy

0 ≤ a[0] < a[1] < · · · < a[n] ≤ screen width ;

the value of r will satisfy 0 ≤ r < screen depth ; and n will be positive.
The general idea is to paint blocks of pixels in alternate colors; the precise details are best conveyed by

means of a Pascal program (see the commented-out code below).

procedure paint row (r : screen row ; b : pixel color ; var a : trans spec ; n : screen col);
var k: screen col ; { an index into a }
c: screen col ; { an index into screen pixel }

begin @{ k ← 0; c← a[0];
repeat incr (k);

repeat screen pixel [r, c]← b; incr (c);
until c = a[k];
b← black − b; { black ↔ white }

until k = n;
@}

init wlog (´Calling PAINTROW(´, r : 1, ´,´, b : 1, ´;´); { this is done only after init screen = true }
for k ← 0 to n do

begin wlog (a[k] : 1);
if k 6= n then wlog (´,´);
end;

wlog ln (´)´); tini
end;

569. The remainder of METAFONT’s screen routines are system-independent calls on the four primitives
just defined.

First we have a global boolean variable that tells if init screen has been called, and another one that tells
if init screen has given a true response.

〈Global variables 13 〉 +≡
screen started : boolean ; { have the screen primitives been initialized? }
screen OK : boolean ; { is it legitimate to call blank rectangle , paint row , and update screen? }

§570 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 235

570. define start screen ≡
begin if ¬screen started then

begin screen OK ← init screen ; screen started ← true ;
end;

end

〈Set initial values of key variables 21 〉 +≡
screen started ← false ; screen OK ← false ;

571. METAFONT provides the user with 16 “window” areas on the screen, in each of which it is possible
to produce independent displays.

It should be noted that METAFONT’s windows aren’t really independent “clickable” entities in the sense of
multi-window graphic workstations; METAFONT simply maps them into subsets of a single screen image that
is controlled by init screen , blank rectangle , paint row , and update screen as described above. Implementa-
tions of METAFONT on a multi-window workstation probably therefore make use of only two windows in the
other sense: one for the terminal output and another for the screen with METAFONT’s 16 areas. Henceforth
we shall use the term window only in METAFONT’s sense.

〈Types in the outer block 18 〉 +≡
window number = 0 . . 15;

572. A user doesn’t have to use any of the 16 windows. But when a window is “opened,” it is allocated to a
specific rectangular portion of the screen and to a specific rectangle with respect to METAFONT’s coordinates.
The relevant data is stored in global arrays window open , left col , right col , top row , bot row , m window ,
and n window .

The window open array is boolean, and its significance is obvious. The left col , . . . , bot row arrays
contain screen coordinates that can be used to blank the entire window with blank rectangle . And the
other two arrays just mentioned handle the conversion between actual coordinates and screen coordinates:
METAFONT’s pixel in column m of row n will appear in screen column m window + m and in screen row
n window − n, provided that these lie inside the boundaries of the window.

Another array window time holds the number of times this window has been updated.

〈Global variables 13 〉 +≡
window open : array [window number] of boolean ; {has this window been opened? }
left col : array [window number] of screen col ; { leftmost column position on screen }
right col : array [window number] of screen col ; { rightmost column position, plus 1 }
top row : array [window number] of screen row ; { topmost row position on screen }
bot row : array [window number] of screen row ; { bottommost row position, plus 1 }
m window : array [window number] of integer ; { offset between user and screen columns }
n window : array [window number] of integer ; { offset between user and screen rows }
window time : array [window number] of integer ; { it has been updated this often }

573. 〈Set initial values of key variables 21 〉 +≡
for k ← 0 to 15 do

begin window open [k]← false ; window time [k]← 0;
end;

236 PART 27: ONLINE GRAPHIC OUTPUT METAFONT §574

574. Opening a window isn’t like opening a file, because you can open it as often as you like, and you
never have to close it again. The idea is simply to define special points on the current screen display.

Overlapping window specifications may cause complex effects that can be understood only by scrutinizing
METAFONT’s display algorithms; thus it has been left undefined in the METAFONT user manual, although
the behavior is in fact predictable.

Here is a subroutine that implements the command ‘openwindow k from (r0 , c0) to (r1 , c1) at (x, y)’.

procedure open a window (k : window number ; r0 , c0 , r1 , c1 : scaled ; x, y : scaled);
var m,n: integer ; { pixel coordinates }
begin 〈Adjust the coordinates (r0 , c0) and (r1 , c1) so that they lie in the proper range 575 〉;
window open [k]← true ; incr (window time [k]);
left col [k]← c0 ; right col [k]← c1 ; top row [k]← r0 ; bot row [k]← r1 ;
〈Compute the offsets between screen coordinates and actual coordinates 576 〉;
start screen ;
if screen OK then

begin blank rectangle (c0 , c1 , r0 , r1); update screen ;
end;

end;

575. A window whose coordinates don’t fit the existing screen size will be truncated until they do.

〈Adjust the coordinates (r0 , c0) and (r1 , c1) so that they lie in the proper range 575 〉 ≡
if r0 < 0 then r0 ← 0 else r0 ← round unscaled (r0);
r1 ← round unscaled (r1);
if r1 > screen depth then r1 ← screen depth ;
if r1 < r0 then

if r0 > screen depth then r0 ← r1 else r1 ← r0 ;
if c0 < 0 then c0 ← 0 else c0 ← round unscaled (c0);
c1 ← round unscaled (c1);
if c1 > screen width then c1 ← screen width ;
if c1 < c0 then

if c0 > screen width then c0 ← c1 else c1 ← c0

This code is used in section 574.

576. Three sets of coordinates are rampant, and they must be kept straight! (i) METAFONT’s main
coordinates refer to the edges between pixels. (ii) METAFONT’s pixel coordinates (within edge structures)
say that the pixel bounded by (m,n), (m,n + 1), (m + 1, n), and (m + 1, n + 1) is in pixel row number n
and pixel column number m. (iii) Screen coordinates, on the other hand, have rows numbered in increasing
order from top to bottom, as mentioned above.

The program here first computes integers m and n such that pixel column m of pixel row n will be at the
upper left corner of the window. Hence pixel column m − c0 of pixel row n + r0 will be at the upper left
corner of the screen.

〈Compute the offsets between screen coordinates and actual coordinates 576 〉 ≡
m← round unscaled (x); n← round unscaled (y)− 1;
m window [k]← c0 −m; n window [k]← r0 + n

This code is used in section 574.

§577 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 237

577. Now here comes METAFONT’s most complicated operation related to window display: Given the
number k of an open window, the pixels of positive weight in cur edges will be shown as black in the
window; all other pixels will be shown as white .

procedure disp edges (k : window number);
label done , found ;
var p, q: pointer ; { for list manipulation }

already there : boolean ; { is a previous incarnation in the window? }
r: integer ; { row number }
〈Other local variables for disp edges 580 〉

begin if screen OK then
if left col [k] < right col [k] then

if top row [k] < bot row [k] then
begin already there ← false ;
if last window (cur edges) = k then

if last window time (cur edges) = window time [k] then already there ← true ;
if ¬already there then blank rectangle (left col [k], right col [k], top row [k], bot row [k]);
〈 Initialize for the display computations 581 〉;
p← link (cur edges); r ← n window [k]− (n min (cur edges)− zero field);
while (p 6= cur edges) ∧ (r ≥ top row [k]) do

begin if r < bot row [k] then 〈Display the pixels of edge row p in screen row r 578 〉;
p← link (p); decr (r);
end;

update screen ; incr (window time [k]); last window (cur edges)← k;
last window time (cur edges)← window time [k];
end;

end;

578. Since it takes some work to display a row, we try to avoid recomputation whenever we can.

〈Display the pixels of edge row p in screen row r 578 〉 ≡
begin if unsorted (p) > void then sort edges (p)
else if unsorted (p) = void then

if already there then goto done ;
unsorted (p)← void ; { this time we’ll paint, but maybe not next time }
〈Set up the parameters needed for paint row ; but goto done if no painting is needed after all 582 〉;
paint row (r, b, row transition , n);

done : end

This code is used in section 577.

579. The transition-specification parameter to paint row is always the same array.

〈Global variables 13 〉 +≡
row transition : trans spec ; { an array of black /white transitions }

238 PART 27: ONLINE GRAPHIC OUTPUT METAFONT §580

580. The job remaining is to go through the list sorted (p), unpacking the info fields into m and weight,
then making black the pixels whose accumulated weight w is positive.

〈Other local variables for disp edges 580 〉 ≡
n: screen col ; { the highest active index in row transition }
w,ww : integer ; { old and new accumulated weights }
b: pixel color ; { status of first pixel in the row transitions }
m,mm : integer ; { old and new screen column positions }
d: integer ; { edge-and-weight without min halfword compensation }
m adjustment : integer ; { conversion between edge and screen coordinates }
right edge : integer ; { largest edge-and-weight that could affect the window }
min col : screen col ; { the smallest screen column number in the window }
This code is used in section 577.

581. Some precomputed constants make the display calculations faster.

〈 Initialize for the display computations 581 〉 ≡
m adjustment ← m window [k]−m offset (cur edges);
right edge ← 8 ∗ (right col [k]−m adjustment);
min col ← left col [k]

This code is used in section 577.

582. 〈Set up the parameters needed for paint row ; but goto done if no painting is needed after all 582 〉 ≡
n← 0; ww ← 0; m← −1; w ← 0; q ← sorted (p); row transition [0]← min col ;
loop begin if q = sentinel then d← right edge

else d← ho(info(q));
mm ← (d div 8) + m adjustment ;
if mm 6= m then

begin 〈Record a possible transition in column m 583 〉;
m← mm ; w ← ww ;
end;

if d ≥ right edge then goto found ;
ww ← ww + (dmod 8)− zero w ; q ← link (q);
end;

found : 〈Wind up the paint row parameter calculation by inserting the final transition; goto done if no
painting is needed 584 〉;

This code is used in section 578.

§583 METAFONT PART 27: ONLINE GRAPHIC OUTPUT 239

583. Now m is a screen column < right col [k].

〈Record a possible transition in column m 583 〉 ≡
if w ≤ 0 then

begin if ww > 0 then
if m > min col then

begin if n = 0 then
if already there then

begin b← white ; incr (n);
end

else b← black
else incr (n);
row transition [n]← m;
end;

end
else if ww ≤ 0 then

if m > min col then
begin if n = 0 then b← black ;
incr (n); row transition [n]← m;
end

This code is used in section 582.

584. If the entire row is white in the window area, we can omit painting it when already there is false,
since it has already been blanked out in that case.

When the following code is invoked, row transition [n] will be strictly less than right col [k].

〈Wind up the paint row parameter calculation by inserting the final transition; goto done if no painting is
needed 584 〉 ≡

if already there ∨ (ww > 0) then
begin if n = 0 then

if ww > 0 then b← black
else b← white ;

incr (n); row transition [n]← right col [k];
end

else if n = 0 then goto done

This code is used in section 582.

240 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §585

585. Dynamic linear equations. METAFONT users define variables implicitly by stating equations
that should be satisfied; the computer is supposed to be smart enough to solve those equations. And indeed,
the computer tries valiantly to do so, by distinguishing five different types of numeric values:

type (p) = known is the nice case, when value (p) is the scaled value of the variable whose address is p.

type (p) = dependent means that value (p) is not present, but dep list (p) points to a dependency list that
expresses the value of variable p as a scaled number plus a sum of independent variables with fraction
coefficients.

type (p) = independent means that value (p) = 64s + m, where s > 0 is a “serial number” reflecting the
time this variable was first used in an equation; also 0 ≤ m < 64, and each dependent variable that
refers to this one is actually referring to the future value of this variable times 2m. (Usually m = 0,
but higher degrees of scaling are sometimes needed to keep the coefficients in dependency lists from
getting too large. The value of m will always be even.)

type (p) = numeric type means that variable p hasn’t appeared in an equation before, but it has been
explicitly declared to be numeric.

type (p) = undefined means that variable p hasn’t appeared before.

We have actually discussed these five types in the reverse order of their history during a computation:
Once known , a variable never again becomes dependent ; once dependent , it almost never again becomes
independent ; once independent , it never again becomes numeric type ; and once numeric type , it never again
becomes undefined (except of course when the user specifically decides to scrap the old value and start
again). A backward step may, however, take place: Sometimes a dependent variable becomes independent
again, when one of the independent variables it depends on is reverting to undefined .

define s scale = 64 { the serial numbers are multiplied by this factor }
define new indep(#) ≡ { create a new independent variable }

begin if serial no > el gordo − s scale then
overflow ("independent variables", serial no div s scale);

type (#)← independent ; serial no ← serial no + s scale ; value (#)← serial no ;
end

〈Global variables 13 〉 +≡
serial no : integer ; { the most recent serial number, times s scale }

586. 〈Make variable q + s newly independent 586 〉 ≡
new indep(q + s)

This code is used in section 232.

§587 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 241

587. But how are dependency lists represented? It’s simple: The linear combination α1v1 + · · ·+αkvk +β
appears in k+1 value nodes. If q = dep list (p) points to this list, and if k > 0, then value (q) = α1 (which is a
fraction); info(q) points to the location of v1; and link (p) points to the dependency list α2v2+ · · ·+αkvk+β.
On the other hand if k = 0, then value (q) = β (which is scaled) and info(q) = null . The independent
variables v1, . . . , vk have been sorted so that they appear in decreasing order of their value fields (i.e., of
their serial numbers). (It is convenient to use decreasing order, since value (null) = 0. If the independent
variables were not sorted by serial number but by some other criterion, such as their location in mem , the
equation-solving mechanism would be too system-dependent, because the ordering can affect the computed
results.)

The link field in the node that contains the constant term β is called the final link of the dependency
list. METAFONT maintains a doubly-linked master list of all dependency lists, in terms of a permanently
allocated node in mem called dep head . If there are no dependencies, we have link (dep head) = dep head
and prev dep(dep head) = dep head ; otherwise link (dep head) points to the first dependent variable, say p,
and prev dep(p) = dep head . We have type (p) = dependent , and dep list (p) points to its dependency list. If
the final link of that dependency list occurs in location q, then link (q) points to the next dependent variable
(say r); and we have prev dep(r) = q, etc.

define dep list (#) ≡ link (value loc(#)) {half of the value field in a dependent variable }
define prev dep(#) ≡ info(value loc(#)) { the other half; makes a doubly linked list }
define dep node size = 2 { the number of words per dependency node }

〈 Initialize table entries (done by INIMF only) 176 〉 +≡
serial no ← 0; link (dep head)← dep head ; prev dep(dep head)← dep head ; info(dep head)← null ;
dep list (dep head)← null ;

588. Actually the description above contains a little white lie. There’s another kind of variable called
proto dependent , which is just like a dependent one except that the α coefficients in its dependency list
are scaled instead of being fractions. Proto-dependency lists are mixed with dependency lists in the nodes
reachable from dep head .

242 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §589

589. Here is a procedure that prints a dependency list in symbolic form. The second parameter should be
either dependent or proto dependent , to indicate the scaling of the coefficients.

〈Declare subroutines for printing expressions 257 〉 +≡
procedure print dependency (p : pointer ; t : small number);

label exit ;
var v: integer ; { a coefficient }

pp , q: pointer ; { for list manipulation }
begin pp ← p;
loop begin v ← abs (value (p)); q ← info(p);

if q = null then { the constant term }
begin if (v 6= 0) ∨ (p = pp) then

begin if value (p) > 0 then
if p 6= pp then print char ("+");

print scaled (value (p));
end;

return;
end;

〈Print the coefficient, unless it’s ±1.0 590 〉;
if type (q) 6= independent then confusion ("dep");
print variable name (q); v ← value (q) mod s scale ;
while v > 0 do

begin print ("*4"); v ← v − 2;
end;

p← link (p);
end;

exit : end;

590. 〈Print the coefficient, unless it’s ±1.0 590 〉 ≡
if value (p) < 0 then print char ("−")
else if p 6= pp then print char ("+");
if t = dependent then v ← round fraction (v);
if v 6= unity then print scaled (v)

This code is used in section 589.

591. The maximum absolute value of a coefficient in a given dependency list is returned by the following
simple function.

function max coef (p : pointer): fraction ;
var x: fraction ; { the maximum so far }
begin x← 0;
while info(p) 6= null do

begin if abs (value (p)) > x then x← abs (value (p));
p← link (p);
end;

max coef ← x;
end;

§592 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 243

592. One of the main operations needed on dependency lists is to add a multiple of one list to the other;
we call this p plus fq , where p and q point to dependency lists and f is a fraction.

If the coefficient of any independent variable becomes coef bound or more, in absolute value, this procedure
changes the type of that variable to ‘independent needing fix ’, and sets the global variable fix needed to true .
The value of coef bound = µ is chosen so that µ2 + µ < 8; this means that the numbers we deal with won’t
get too large. (Instead of the “optimum” µ = (

√
33 − 1)/2 ≈ 2.3723, the safer value 7/3 is taken as the

threshold.)
The changes mentioned in the preceding paragraph are actually done only if the global variable watch coefs

is true . But it usually is; in fact, it is false only when METAFONT is making a dependency list that will
soon be equated to zero.

Several procedures that act on dependency lists, including p plus fq , set the global variable dep final to
the final (constant term) node of the dependency list that they produce.

define coef bound ≡ 4́525252525 { fraction approximation to 7/3 }
define independent needing fix = 0

〈Global variables 13 〉 +≡
fix needed : boolean ; { does at least one independent variable need scaling? }
watch coefs : boolean ; { should we scale coefficients that exceed coef bound ? }
dep final : pointer ; { location of the constant term and final link }

593. 〈Set initial values of key variables 21 〉 +≡
fix needed ← false ; watch coefs ← true ;

244 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §594

594. The p plus fq procedure has a fourth parameter, t, that should be set to proto dependent if p is a
proto-dependency list. In this case f will be scaled , not a fraction . Similarly, the fifth parameter tt should
be proto dependent if q is a proto-dependency list.

List q is unchanged by the operation; but list p is totally destroyed.
The final link of the dependency list or proto-dependency list returned by p plus fq is the same as the

original final link of p. Indeed, the constant term of the result will be located in the same mem location as
the original constant term of p.

Coefficients of the result are assumed to be zero if they are less than a certain threshold. This compensates
for inevitable rounding errors, and tends to make more variables ‘known ’. The threshold is approximately
10−5 in the case of normal dependency lists, 10−4 for proto-dependencies.

define fraction threshold = 2685 { a fraction coefficient less than this is zeroed }
define half fraction threshold = 1342 { half of fraction threshold }
define scaled threshold = 8 { a scaled coefficient less than this is zeroed }
define half scaled threshold = 4 { half of scaled threshold }

〈Declare basic dependency-list subroutines 594 〉 ≡
function p plus fq (p : pointer ; f : integer ; q : pointer ; t, tt : small number): pointer ;

label done ;
var pp , qq : pointer ; { info(p) and info(q), respectively }
r, s: pointer ; { for list manipulation }
threshold : integer ; { defines a neighborhood of zero }
v: integer ; { temporary register }

begin if t = dependent then threshold ← fraction threshold
else threshold ← scaled threshold ;
r ← temp head ; pp ← info(p); qq ← info(q);
loop if pp = qq then

if pp = null then goto done
else 〈Contribute a term from p, plus f times the corresponding term from q 595 〉

else if value (pp) < value (qq) then 〈Contribute a term from q, multiplied by f 596 〉
else begin link (r)← p; r ← p; p← link (p); pp ← info(p);

end;
done : if t = dependent then value (p)← slow add (value (p), take fraction (value (q), f))

else value (p)← slow add (value (p), take scaled (value (q), f));
link (r)← p; dep final ← p; p plus fq ← link (temp head);
end;

See also sections 600, 602, 603, and 604.

This code is used in section 246.

595. 〈Contribute a term from p, plus f times the corresponding term from q 595 〉 ≡
begin if tt = dependent then v ← value (p) + take fraction (f, value (q))
else v ← value (p) + take scaled (f, value (q));
value (p)← v; s← p; p← link (p);
if abs (v) < threshold then free node (s, dep node size)
else begin if abs (v) ≥ coef bound then

if watch coefs then
begin type (qq)← independent needing fix ; fix needed ← true ;
end;

link (r)← s; r ← s;
end;

pp ← info(p); q ← link (q); qq ← info(q);
end

This code is used in section 594.

§596 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 245

596. 〈Contribute a term from q, multiplied by f 596 〉 ≡
begin if tt = dependent then v ← take fraction (f, value (q))
else v ← take scaled (f, value (q));
if abs (v) > half (threshold) then

begin s← get node (dep node size); info(s)← qq ; value (s)← v;
if abs (v) ≥ coef bound then

if watch coefs then
begin type (qq)← independent needing fix ; fix needed ← true ;
end;

link (r)← s; r ← s;
end;

q ← link (q); qq ← info(q);
end

This code is used in section 594.

597. It is convenient to have another subroutine for the special case of p plus fq when f = 1.0. In this
routine lists p and q are both of the same type t (either dependent or proto dependent).

function p plus q (p : pointer ; q : pointer ; t : small number): pointer ;
label done ;
var pp , qq : pointer ; { info(p) and info(q), respectively }
r, s: pointer ; { for list manipulation }
threshold : integer ; {defines a neighborhood of zero }
v: integer ; { temporary register }

begin if t = dependent then threshold ← fraction threshold
else threshold ← scaled threshold ;
r ← temp head ; pp ← info(p); qq ← info(q);
loop if pp = qq then

if pp = null then goto done
else 〈Contribute a term from p, plus the corresponding term from q 598 〉

else if value (pp) < value (qq) then
begin s← get node (dep node size); info(s)← qq ; value (s)← value (q); q ← link (q);
qq ← info(q); link (r)← s; r ← s;
end

else begin link (r)← p; r ← p; p← link (p); pp ← info(p);
end;

done : value (p)← slow add (value (p), value (q)); link (r)← p; dep final ← p; p plus q ← link (temp head);
end;

598. 〈Contribute a term from p, plus the corresponding term from q 598 〉 ≡
begin v ← value (p) + value (q); value (p)← v; s← p; p← link (p); pp ← info(p);
if abs (v) < threshold then free node (s, dep node size)
else begin if abs (v) ≥ coef bound then

if watch coefs then
begin type (qq)← independent needing fix ; fix needed ← true ;
end;

link (r)← s; r ← s;
end;

q ← link (q); qq ← info(q);
end

This code is used in section 597.

246 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §599

599. A somewhat simpler routine will multiply a dependency list by a given constant v. The constant is
either a fraction less than fraction one , or it is scaled . In the latter case we might be forced to convert a
dependency list to a proto-dependency list. Parameters t0 and t1 are the list types before and after; they
should agree unless t0 = dependent and t1 = proto dependent and v is scaled = true .

function p times v (p : pointer ; v : integer ; t0 , t1 : small number ; v is scaled : boolean): pointer ;
var r, s: pointer ; { for list manipulation }
w: integer ; { tentative coefficient }
threshold : integer ; scaling down : boolean ;

begin if t0 6= t1 then scaling down ← true else scaling down ← ¬v is scaled ;
if t1 = dependent then threshold ← half fraction threshold
else threshold ← half scaled threshold ;
r ← temp head ;
while info(p) 6= null do

begin if scaling down then w ← take fraction (v, value (p))
else w ← take scaled (v, value (p));
if abs (w) ≤ threshold then

begin s← link (p); free node (p, dep node size); p← s;
end

else begin if abs (w) ≥ coef bound then
begin fix needed ← true ; type (info(p))← independent needing fix ;
end;

link (r)← p; r ← p; value (p)← w; p← link (p);
end;

end;
link (r)← p;
if v is scaled then value (p)← take scaled (value (p), v)
else value (p)← take fraction (value (p), v);
p times v ← link (temp head);
end;

§600 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 247

600. Similarly, we sometimes need to divide a dependency list by a given scaled constant.

〈Declare basic dependency-list subroutines 594 〉 +≡
function p over v (p : pointer ; v : scaled ; t0 , t1 : small number): pointer ;

var r, s: pointer ; { for list manipulation }
w: integer ; { tentative coefficient }
threshold : integer ; scaling down : boolean ;

begin if t0 6= t1 then scaling down ← true else scaling down ← false ;
if t1 = dependent then threshold ← half fraction threshold
else threshold ← half scaled threshold ;
r ← temp head ;
while info(p) 6= null do

begin if scaling down then
if abs (v) < 2́000000 then w ← make scaled (value (p), v ∗ 1́0000)
else w ← make scaled (round fraction (value (p)), v)

else w ← make scaled (value (p), v);
if abs (w) ≤ threshold then

begin s← link (p); free node (p, dep node size); p← s;
end

else begin if abs (w) ≥ coef bound then
begin fix needed ← true ; type (info(p))← independent needing fix ;
end;

link (r)← p; r ← p; value (p)← w; p← link (p);
end;

end;
link (r)← p; value (p)← make scaled (value (p), v); p over v ← link (temp head);
end;

601. Here’s another utility routine for dependency lists. When an independent variable becomes depen-
dent, we want to remove it from all existing dependencies. The p with x becoming q function computes the
dependency list of p after variable x has been replaced by q.

This procedure has basically the same calling conventions as p plus fq : List q is unchanged; list p is
destroyed; the constant node and the final link are inherited from p; and the fourth parameter tells whether
or not p is proto dependent . However, the global variable dep final is not altered if x does not occur in list p.

function p with x becoming q (p, x, q : pointer ; t : small number): pointer ;
var r, s: pointer ; { for list manipulation }
v: integer ; { coefficient of x }
sx : integer ; { serial number of x }

begin s← p; r ← temp head ; sx ← value (x);
while value (info(s)) > sx do

begin r ← s; s← link (s);
end;

if info(s) 6= x then p with x becoming q ← p
else begin link (temp head)← p; link (r)← link (s); v ← value (s); free node (s, dep node size);

p with x becoming q ← p plus fq (link (temp head), v, q, t, dependent);
end;

end;

248 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §602

602. Here’s a simple procedure that reports an error when a variable has just received a known value that’s
out of the required range.

〈Declare basic dependency-list subroutines 594 〉 +≡
procedure val too big (x : scaled);

begin if internal [warning check] > 0 then
begin print err ("Value is too large ("); print scaled (x); print char (")");
help4 ("The equation I just processed has given some variable")
("a value of 4096 or more. Continue and I´ll try to cope")
("with that big value; but it might be dangerous.")
("(Set warningcheck:=0 to suppress this message.)"); error ;
end;

end;

603. When a dependent variable becomes known, the following routine removes its dependency list. Here
p points to the variable, and q points to the dependency list (which is one node long).

〈Declare basic dependency-list subroutines 594 〉 +≡
procedure make known (p, q : pointer);

var t: dependent . . proto dependent ; { the previous type }
begin prev dep(link (q))← prev dep(p); link (prev dep(p))← link (q); t← type (p); type (p)← known ;
value (p)← value (q); free node (q, dep node size);
if abs (value (p)) ≥ fraction one then val too big (value (p));
if internal [tracing equations] > 0 then

if interesting (p) then
begin begin diagnostic ; print nl ("#### "); print variable name (p); print char ("=");
print scaled (value (p)); end diagnostic(false);
end;

if cur exp = p then
if cur type = t then

begin cur type ← known ; cur exp ← value (p); free node (p, value node size);
end;

end;

§604 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 249

604. The fix dependencies routine is called into action when fix needed has been triggered. The program
keeps a list s of independent variables whose coefficients must be divided by 4.

In unusual cases, this fixup process might reduce one or more coefficients to zero, so that a variable will
become known more or less by default.

〈Declare basic dependency-list subroutines 594 〉 +≡
procedure fix dependencies ;

label done ;
var p, q, r, s, t: pointer ; { list manipulation registers }
x: pointer ; { an independent variable }

begin r ← link (dep head); s← null ;
while r 6= dep head do

begin t← r;
〈Run through the dependency list for variable t, fixing all nodes, and ending with final link q 605 〉;
r ← link (q);
if q = dep list (t) then make known (t, q);
end;

while s 6= null do
begin p← link (s); x← info(s); free avail (s); s← p; type (x)← independent ;
value (x)← value (x) + 2;
end;

fix needed ← false ;
end;

605. define independent being fixed = 1 { this variable already appears in s }
〈Run through the dependency list for variable t, fixing all nodes, and ending with final link q 605 〉 ≡
r ← value loc(t); { link (r) = dep list (t) }
loop begin q ← link (r); x← info(q);

if x = null then goto done ;
if type (x) ≤ independent being fixed then

begin if type (x) < independent being fixed then
begin p← get avail ; link (p)← s; s← p; info(s)← x; type (x)← independent being fixed ;
end;

value (q)← value (q) div 4;
if value (q) = 0 then

begin link (r)← link (q); free node (q, dep node size); q ← r;
end;

end;
r ← q;
end;

done :

This code is used in section 604.

606. The new dep routine installs a dependency list p into the value node q, linking it into the list of all
known dependencies. We assume that dep final points to the final node of list p.

procedure new dep(q, p : pointer);
var r: pointer ; {what used to be the first dependency }
begin dep list (q)← p; prev dep(q)← dep head ; r ← link (dep head); link (dep final)← r;
prev dep(r)← dep final ; link (dep head)← q;
end;

250 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §607

607. Here is one of the ways a dependency list gets started. The const dependency routine produces a list
that has nothing but a constant term.

function const dependency (v : scaled): pointer ;
begin dep final ← get node (dep node size); value (dep final)← v; info(dep final)← null ;
const dependency ← dep final ;
end;

608. And here’s a more interesting way to start a dependency list from scratch: The parameter to
single dependency is the location of an independent variable x, and the result is the simple dependency
list ‘x+ 0’.

In the unlikely event that the given independent variable has been doubled so often that we can’t refer to
it with a nonzero coefficient, single dependency returns the simple list ‘0’. This case can be recognized by
testing that the returned list pointer is equal to dep final .

function single dependency (p : pointer): pointer ;
var q: pointer ; { the new dependency list }
m: integer ; { the number of doublings }

begin m← value (p) mod s scale ;
if m > 28 then single dependency ← const dependency (0)
else begin q ← get node (dep node size); value (q)← two to the [28−m]; info(q)← p;

link (q)← const dependency (0); single dependency ← q;
end;

end;

609. We sometimes need to make an exact copy of a dependency list.

function copy dep list (p : pointer): pointer ;
label done ;
var q: pointer ; { the new dependency list }
begin q ← get node (dep node size); dep final ← q;
loop begin info(dep final)← info(p); value (dep final)← value (p);

if info(dep final) = null then goto done ;
link (dep final)← get node (dep node size); dep final ← link (dep final); p← link (p);
end;

done : copy dep list ← q;
end;

§610 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 251

610. But how do variables normally become known? Ah, now we get to the heart of the equation-solving
mechanism. The linear eq procedure is given a dependent or proto dependent list, p, in which at least one
independent variable appears. It equates this list to zero, by choosing an independent variable with the
largest coefficient and making it dependent on the others. The newly dependent variable is eliminated from
all current dependencies, thereby possibly making other dependent variables known.

The given list p is, of course, totally destroyed by all this processing.

procedure linear eq (p : pointer ; t : small number);
var q, r, s: pointer ; { for link manipulation }
x: pointer ; { the variable that loses its independence }
n: integer ; { the number of times x had been halved }
v: integer ; { the coefficient of x in list p }
prev r : pointer ; { lags one step behind r }
final node : pointer ; { the constant term of the new dependency list }
w: integer ; { a tentative coefficient }

begin 〈Find a node q in list p whose coefficient v is largest 611 〉;
x← info(q); n← value (x) mod s scale ;
〈Divide list p by −v, removing node q 612 〉;
if internal [tracing equations] > 0 then 〈Display the new dependency 613 〉;
〈Simplify all existing dependencies by substituting for x 614 〉;
〈Change variable x from independent to dependent or known 615 〉;
if fix needed then fix dependencies ;
end;

611. 〈Find a node q in list p whose coefficient v is largest 611 〉 ≡
q ← p; r ← link (p); v ← value (q);
while info(r) 6= null do

begin if abs (value (r)) > abs (v) then
begin q ← r; v ← value (r);
end;

r ← link (r);
end

This code is used in section 610.

252 PART 28: DYNAMIC LINEAR EQUATIONS METAFONT §612

612. Here we want to change the coefficients from scaled to fraction , except in the constant term. In the
common case of a trivial equation like ‘x=3.14’, we will have v = −fraction one , q = p, and t = dependent .

〈Divide list p by −v, removing node q 612 〉 ≡
s← temp head ; link (s)← p; r ← p;
repeat if r = q then

begin link (s)← link (r); free node (r, dep node size);
end

else begin w ← make fraction (value (r), v);
if abs (w) ≤ half fraction threshold then

begin link (s)← link (r); free node (r, dep node size);
end

else begin value (r)← −w; s← r;
end;

end;
r ← link (s);

until info(r) = null ;
if t = proto dependent then value (r)← −make scaled (value (r), v)
else if v 6= −fraction one then value (r)← −make fraction (value (r), v);
final node ← r; p← link (temp head)

This code is used in section 610.

613. 〈Display the new dependency 613 〉 ≡
if interesting (x) then

begin begin diagnostic ; print nl ("## "); print variable name (x); w ← n;
while w > 0 do

begin print ("*4"); w ← w − 2;
end;

print char ("="); print dependency (p, dependent); end diagnostic(false);
end

This code is used in section 610.

614. 〈Simplify all existing dependencies by substituting for x 614 〉 ≡
prev r ← dep head ; r ← link (dep head);
while r 6= dep head do

begin s← dep list (r); q ← p with x becoming q (s, x, p, type (r));
if info(q) = null then make known (r, q)
else begin dep list (r)← q;

repeat q ← link (q);
until info(q) = null ;
prev r ← q;
end;

r ← link (prev r);
end

This code is used in section 610.

§615 METAFONT PART 28: DYNAMIC LINEAR EQUATIONS 253

615. 〈Change variable x from independent to dependent or known 615 〉 ≡
if n > 0 then 〈Divide list p by 2n 616 〉;
if info(p) = null then

begin type (x)← known ; value (x)← value (p);
if abs (value (x)) ≥ fraction one then val too big (value (x));
free node (p, dep node size);
if cur exp = x then

if cur type = independent then
begin cur exp ← value (x); cur type ← known ; free node (x, value node size);
end;

end
else begin type (x)← dependent ; dep final ← final node ; new dep(x, p);

if cur exp = x then
if cur type = independent then cur type ← dependent ;

end

This code is used in section 610.

616. 〈Divide list p by 2n 616 〉 ≡
begin s← temp head ; link (temp head)← p; r ← p;
repeat if n > 30 then w ← 0

else w ← value (r) div two to the [n];
if (abs (w) ≤ half fraction threshold) ∧ (info(r) 6= null) then

begin link (s)← link (r); free node (r, dep node size);
end

else begin value (r)← w; s← r;
end;

r ← link (s);
until info(s) = null ;
p← link (temp head);
end

This code is used in section 615.

617. The check mem procedure, which is used only when METAFONT is being debugged, makes sure that
the current dependency lists are well formed.

〈Check the list of linear dependencies 617 〉 ≡
q ← dep head ; p← link (q);
while p 6= dep head do

begin if prev dep(p) 6= q then
begin print nl ("Bad PREVDEP at "); print int (p);
end;

p← dep list (p); r ← inf val ;
repeat if value (info(p)) ≥ value (r) then

begin print nl ("Out of order at "); print int (p);
end;

r ← info(p); q ← p; p← link (q);
until r = null ;
end

This code is used in section 180.

254 PART 29: DYNAMIC NONLINEAR EQUATIONS METAFONT §618

618. Dynamic nonlinear equations. Variables of numeric type are maintained by the general scheme
of independent, dependent, and known values that we have just studied; and the components of pair and
transform variables are handled in the same way. But METAFONT also has five other types of values:
boolean, string, pen, path, and picture; what about them?

Equations are allowed between nonlinear quantities, but only in a simple form. Two variables that haven’t
yet been assigned values are either equal to each other, or they’re not.

Before a boolean variable has received a value, its type is unknown boolean ; similarly, there are variables
whose type is unknown string , unknown pen , unknown path , and unknown picture . In such cases the value
is either null (which means that no other variables are equivalent to this one), or it points to another variable
of the same undefined type. The pointers in the latter case form a cycle of nodes, which we shall call a “ring.”
Rings of undefined variables may include capsules, which arise as intermediate results within expressions or
as expr parameters to macros.

When one member of a ring receives a value, the same value is given to all the other members. In the case
of paths and pictures, this implies making separate copies of a potentially large data structure; users should
restrain their enthusiasm for such generality, unless they have lots and lots of memory space.

619. The following procedure is called when a capsule node is being added to a ring (e.g., when an unknown
variable is mentioned in an expression).

function new ring entry (p : pointer): pointer ;
var q: pointer ; { the new capsule node }
begin q ← get node (value node size); name type (q)← capsule ; type (q)← type (p);
if value (p) = null then value (q)← p else value (q)← value (p);
value (p)← q; new ring entry ← q;
end;

620. Conversely, we might delete a capsule or a variable before it becomes known. The following procedure
simply detaches a quantity from its ring, without recycling the storage.

〈Declare the recycling subroutines 268 〉 +≡
procedure ring delete (p : pointer);

var q: pointer ;
begin q ← value (p);
if q 6= null then

if q 6= p then
begin while value (q) 6= p do q ← value (q);
value (q)← value (p);
end;

end;

§621 METAFONT PART 29: DYNAMIC NONLINEAR EQUATIONS 255

621. Eventually there might be an equation that assigns values to all of the variables in a ring. The
nonlinear eq subroutine does the necessary propagation of values.

If the parameter flush p is true , node p itself needn’t receive a value; it will soon be recycled.

procedure nonlinear eq (v : integer ; p : pointer ; flush p : boolean);
var t: small number ; { the type of ring p }
q, r: pointer ; { link manipulation registers }

begin t← type (p)− unknown tag ; q ← value (p);
if flush p then type (p)← vacuous else p← q;
repeat r ← value (q); type (q)← t;

case t of
boolean type : value (q)← v;
string type : begin value (q)← v; add str ref (v);

end;
pen type : begin value (q)← v; add pen ref (v);

end;
path type : value (q)← copy path (v);
picture type : value (q)← copy edges (v);
end; { there ain’t no more cases }
q ← r;

until q = p;
end;

622. If two members of rings are equated, and if they have the same type, the ring merge procedure is
called on to make them equivalent.

procedure ring merge (p, q : pointer);
label exit ;
var r: pointer ; { traverses one list }
begin r ← value (p);
while r 6= p do

begin if r = q then
begin 〈Exclaim about a redundant equation 623 〉;
return;
end;

r ← value (r);
end;

r ← value (p); value (p)← value (q); value (q)← r;
exit : end;

623. 〈Exclaim about a redundant equation 623 〉 ≡
begin print err ("Redundant equation");
help2 ("I already knew that this equation was true.")
("But perhaps no harm has been done; let´s continue.");
put get error ;
end

This code is used in sections 622, 1004, and 1008.

256 PART 30: INTRODUCTION TO THE SYNTACTIC ROUTINES METAFONT §624

624. Introduction to the syntactic routines. Let’s pause a moment now and try to look at the Big
Picture. The METAFONT program consists of three main parts: syntactic routines, semantic routines, and
output routines. The chief purpose of the syntactic routines is to deliver the user’s input to the semantic
routines, while parsing expressions and locating operators and operands. The semantic routines act as an
interpreter responding to these operators, which may be regarded as commands. And the output routines are
periodically called on to produce compact font descriptions that can be used for typesetting or for making
interim proof drawings. We have discussed the basic data structures and many of the details of semantic
operations, so we are good and ready to plunge into the part of METAFONT that actually controls the
activities.

Our current goal is to come to grips with the get next procedure, which is the keystone of METAFONT’s
input mechanism. Each call of get next sets the value of three variables cur cmd , cur mod , and cur sym ,
representing the next input token.

cur cmd denotes a command code from the long list of codes given earlier;
cur mod denotes a modifier of the command code;
cur sym is the hash address of the symbolic token that was just scanned,

or zero in the case of a numeric or string or capsule token.

Underlying this external behavior of get next is all the machinery necessary to convert from character files to
tokens. At a given time we may be only partially finished with the reading of several files (for which input
was specified), and partially finished with the expansion of some user-defined macros and/or some macro
parameters, and partially finished reading some text that the user has inserted online, and so on. When
reading a character file, the characters must be converted to tokens; comments and blank spaces must be
removed, numeric and string tokens must be evaluated.

To handle these situations, which might all be present simultaneously, METAFONT uses various stacks
that hold information about the incomplete activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly recursive process, but the get next
procedure is not recursive.

〈Global variables 13 〉 +≡
cur cmd : eight bits ; { current command set by get next }
cur mod : integer ; { operand of current command }
cur sym : halfword ; { hash address of current symbol }

625. The print cmd mod routine prints a symbolic interpretation of a command code and its modifier.
It consists of a rather tedious sequence of print commands, and most of it is essentially an inverse to
the primitive routine that enters a METAFONT primitive into hash and eqtb . Therefore almost all of this
procedure appears elsewhere in the program, together with the corresponding primitive calls.

〈Declare the procedure called print cmd mod 625 〉 ≡
procedure print cmd mod (c,m : integer);

begin case c of
〈Cases of print cmd mod for symbolic printing of primitives 212 〉
othercases print ("[unknown command code!]")
endcases;
end;

This code is used in section 227.

626. Here is a procedure that displays a given command in braces, in the user’s transcript file.

define show cur cmd mod ≡ show cmd mod (cur cmd , cur mod)

procedure show cmd mod (c,m : integer);
begin begin diagnostic ; print nl ("{"); print cmd mod (c,m); print char ("}"); end diagnostic(false);
end;

§627 METAFONT PART 31: INPUT STACKS AND STATES 257

627. Input stacks and states. The state of METAFONT’s input mechanism appears in the input stack,
whose entries are records with five fields, called index , start , loc , limit , and name . The top element of this
stack is maintained in a global variable for which no subscripting needs to be done; the other elements of
the stack appear in an array. Hence the stack is declared thus:

〈Types in the outer block 18 〉 +≡
in state record = record index field : quarterword ;

start field , loc field , limit field ,name field : halfword ;
end;

628. 〈Global variables 13 〉 +≡
input stack : array [0 . . stack size] of in state record ;
input ptr : 0 . . stack size ; { first unused location of input stack }
max in stack : 0 . . stack size ; { largest value of input ptr when pushing }
cur input : in state record ; { the “top” input state }

629. We’ve already defined the special variable loc ≡ cur input .loc field in our discussion of basic input-
output routines. The other components of cur input are defined in the same way:

define index ≡ cur input .index field { reference for buffer information }
define start ≡ cur input .start field { starting position in buffer }
define limit ≡ cur input .limit field { end of current line in buffer }
define name ≡ cur input .name field {name of the current file }

630. Let’s look more closely now at the five control variables (index , start , loc , limit , name), assuming
that METAFONT is reading a line of characters that have been input from some file or from the user’s
terminal. There is an array called buffer that acts as a stack of all lines of characters that are currently
being read from files, including all lines on subsidiary levels of the input stack that are not yet completed.
METAFONT will return to the other lines when it is finished with the present input file.

(Incidentally, on a machine with byte-oriented addressing, it would be appropriate to combine buffer with
the str pool array, letting the buffer entries grow downward from the top of the string pool and checking
that these two tables don’t bump into each other.)

The line we are currently working on begins in position start of the buffer; the next character we are about
to read is buffer [loc]; and limit is the location of the last character present. We always have loc ≤ limit .
For convenience, buffer [limit] has been set to "%", so that the end of a line is easily sensed.

The name variable is a string number that designates the name of the current file, if we are reading a
text file. It is 0 if we are reading from the terminal for normal input, or 1 if we are executing a readstring
command, or 2 if we are reading a string that was moved into the buffer by scantokens.

258 PART 31: INPUT STACKS AND STATES METAFONT §631

631. Additional information about the current line is available via the index variable, which counts how
many lines of characters are present in the buffer below the current level. We have index = 0 when reading
from the terminal and prompting the user for each line; then if the user types, e.g., ‘input font’, we will
have index = 1 while reading the file font.mf. However, it does not follow that index is the same as the
input stack pointer, since many of the levels on the input stack may come from token lists.

The global variable in open is equal to the index value of the highest non-token-list level. Thus, the
number of partially read lines in the buffer is in open + 1, and we have in open = index when we are not
reading a token list.

If we are not currently reading from the terminal, we are reading from the file variable input file [index]. We
use the notation terminal input as a convenient abbreviation for name = 0, and cur file as an abbreviation
for input file [index].

The global variable line contains the line number in the topmost open file, for use in error messages. If
we are not reading from the terminal, line stack [index] holds the line number for the enclosing level, so that
line can be restored when the current file has been read.

If more information about the input state is needed, it can be included in small arrays like those shown
here. For example, the current page or segment number in the input file might be put into a variable
page , maintained for enclosing levels in ‘page stack : array [1 . . max in open] of integer ’ by analogy with
line stack .

define terminal input ≡ (name = 0) { are we reading from the terminal? }
define cur file ≡ input file [index] { the current alpha file variable }

〈Global variables 13 〉 +≡
in open : 0 . . max in open ; { the number of lines in the buffer, less one }
open parens : 0 . . max in open ; { the number of open text files }
input file : array [1 . . max in open] of alpha file ;
line : integer ; { current line number in the current source file }
line stack : array [1 . . max in open] of integer ;

§632 METAFONT PART 31: INPUT STACKS AND STATES 259

632. However, all this discussion about input state really applies only to the case that we are inputting
from a file. There is another important case, namely when we are currently getting input from a token list.
In this case index > max in open , and the conventions about the other state variables are different:

loc is a pointer to the current node in the token list, i.e., the node that will be read next. If loc = null , the
token list has been fully read.

start points to the first node of the token list; this node may or may not contain a reference count, depending
on the type of token list involved.

token type , which takes the place of index in the discussion above, is a code number that explains what kind
of token list is being scanned.

name points to the eqtb address of the macro being expanded, if the current token list is a macro not defined
by vardef . Macros defined by vardef have name = null ; their name can be deduced by looking at
their first two parameters.

param start , which takes the place of limit , tells where the parameters of the current macro or loop text
begin in the param stack .

The token type can take several values, depending on where the current token list came from:

forever text , if the token list being scanned is the body of a forever loop;
loop text , if the token list being scanned is the body of a for or forsuffixes loop;
parameter , if a text or suffix parameter is being scanned;
backed up , if the token list being scanned has been inserted as ‘to be read again’;
inserted , if the token list being scanned has been inserted as part of error recovery;
macro , if the expansion of a user-defined symbolic token is being scanned.

The token list begins with a reference count if and only if token type = macro .

define token type ≡ index { type of current token list }
define token state ≡ (index > max in open) { are we scanning a token list? }
define file state ≡ (index ≤ max in open) { are we scanning a file line? }
define param start ≡ limit {base of macro parameters in param stack }
define forever text = max in open + 1 { token type code for loop texts }
define loop text = max in open + 2 { token type code for loop texts }
define parameter = max in open + 3 { token type code for parameter texts }
define backed up = max in open + 4 { token type code for texts to be reread }
define inserted = max in open + 5 { token type code for inserted texts }
define macro = max in open + 6 { token type code for macro replacement texts }

633. The param stack is an auxiliary array used to hold pointers to the token lists for parameters at the
current level and subsidiary levels of input. This stack grows at a different rate from the others.

〈Global variables 13 〉 +≡
param stack : array [0 . . param size] of pointer ; { token list pointers for parameters }
param ptr : 0 . . param size ; { first unused entry in param stack }
max param stack : integer ; { largest value of param ptr }

634. Thus, the “current input state” can be very complicated indeed; there can be many levels and each
level can arise in a variety of ways. The show context procedure, which is used by METAFONT’s error-
reporting routine to print out the current input state on all levels down to the most recent line of characters
from an input file, illustrates most of these conventions. The global variable file ptr contains the lowest level
that was displayed by this procedure.

〈Global variables 13 〉 +≡
file ptr : 0 . . stack size ; { shallowest level shown by show context }

260 PART 31: INPUT STACKS AND STATES METAFONT §635

635. The status at each level is indicated by printing two lines, where the first line indicates what was
read so far and the second line shows what remains to be read. The context is cropped, if necessary, so
that the first line contains at most half error line characters, and the second contains at most error line .
Non-current input levels whose token type is ‘backed up ’ are shown only if they have not been fully read.

procedure show context ; { prints where the scanner is }
label done ;
var old setting : 0 . . max selector ; { saved selector setting }
〈Local variables for formatting calculations 641 〉

begin file ptr ← input ptr ; input stack [file ptr]← cur input ; { store current state }
loop begin cur input ← input stack [file ptr]; { enter into the context }
〈Display the current context 636 〉;
if file state then

if (name > 2) ∨ (file ptr = 0) then goto done ;
decr (file ptr);
end;

done : cur input ← input stack [input ptr]; { restore original state }
end;

636. 〈Display the current context 636 〉 ≡
if (file ptr = input ptr) ∨ file state ∨ (token type 6= backed up) ∨ (loc 6= null) then

{we omit backed-up token lists that have already been read }
begin tally ← 0; { get ready to count characters }
old setting ← selector ;
if file state then

begin 〈Print location of current line 637 〉;
〈Pseudoprint the line 644 〉;
end

else begin 〈Print type of token list 638 〉;
〈Pseudoprint the token list 645 〉;
end;

selector ← old setting ; { stop pseudoprinting }
〈Print two lines using the tricky pseudoprinted information 643 〉;
end

This code is used in section 635.

637. This routine should be changed, if necessary, to give the best possible indication of where the current
line resides in the input file. For example, on some systems it is best to print both a page and line number.

〈Print location of current line 637 〉 ≡
if name ≤ 1 then

if terminal input ∧ (file ptr = 0) then print nl ("<*>")
else print nl ("<insert>")

else if name = 2 then print nl ("<scantokens>")
else begin print nl ("l."); print int (line);

end;
print char (" ")

This code is used in section 636.

§638 METAFONT PART 31: INPUT STACKS AND STATES 261

638. 〈Print type of token list 638 〉 ≡
case token type of
forever text : print nl ("<forever> ");
loop text : 〈Print the current loop value 639 〉;
parameter : print nl ("<argument> ");
backed up : if loc = null then print nl ("<recently read> ")

else print nl ("<to be read again> ");
inserted : print nl ("<inserted text> ");
macro : begin print ln ;

if name 6= null then slow print (text (name))
else 〈Print the name of a vardef ’d macro 640 〉;
print ("−>");
end;

othercases print nl ("?") { this should never happen }
endcases

This code is used in section 636.

639. The parameter that corresponds to a loop text is either a token list (in the case of forsuffixes) or a
“capsule” (in the case of for). We’ll discuss capsules later; for now, all we need to know is that the link field
in a capsule parameter is void and that print exp(p, 0) displays the value of capsule p in abbreviated form.

〈Print the current loop value 639 〉 ≡
begin print nl ("<for("); p← param stack [param start];
if p 6= null then

if link (p) = void then print exp(p, 0) {we’re in a for loop }
else show token list (p,null , 20, tally);

print (")> ");
end

This code is used in section 638.

640. The first two parameters of a macro defined by vardef will be token lists representing the macro’s
prefix and “at point.” By putting these together, we get the macro’s full name.

〈Print the name of a vardef ’d macro 640 〉 ≡
begin p← param stack [param start];
if p = null then show token list (param stack [param start + 1],null , 20, tally)
else begin q ← p;

while link (q) 6= null do q ← link (q);
link (q)← param stack [param start + 1]; show token list (p,null , 20, tally); link (q)← null ;
end;

end

This code is used in section 638.

262 PART 31: INPUT STACKS AND STATES METAFONT §641

641. Now it is necessary to explain a little trick. We don’t want to store a long string that corresponds
to a token list, because that string might take up lots of memory; and we are printing during a time
when an error message is being given, so we dare not do anything that might overflow one of METAFONT’s
tables. So ‘pseudoprinting’ is the answer: We enter a mode of printing that stores characters into a buffer
of length error line , where character k + 1 is placed into trick buf [k mod error line] if k < trick count ,
otherwise character k is dropped. Initially we set tally ← 0 and trick count ← 1000000; then when
we reach the point where transition from line 1 to line 2 should occur, we set first count ← tally and
trick count ← max(error line , tally + 1 + error line − half error line). At the end of the pseudoprinting, the
values of first count , tally , and trick count give us all the information we need to print the two lines, and
all of the necessary text is in trick buf .

Namely, let l be the length of the descriptive information that appears on the first line. The length of
the context information gathered for that line is k = first count , and the length of the context information
gathered for line 2 is m = min(tally , trick count) − k. If l + k ≤ h, where h = half error line , we print
trick buf [0 . . k − 1] after the descriptive information on line 1, and set n ← l + k; here n is the length of
line 1. If l + k > h, some cropping is necessary, so we set n← h and print ‘...’ followed by

trick buf [(l + k − h+ 3) . . k − 1],

where subscripts of trick buf are circular modulo error line . The second line consists of n spaces followed
by trick buf [k . . (k + m − 1)], unless n + m > error line ; in the latter case, further cropping is done. This
is easier to program than to explain.

〈Local variables for formatting calculations 641 〉 ≡
i: 0 . . buf size ; { index into buffer }
l: integer ; { length of descriptive information on line 1 }
m: integer ; { context information gathered for line 2 }
n: 0 . . error line ; { length of line 1 }
p: integer ; { starting or ending place in trick buf }
q: integer ; { temporary index }
This code is used in section 635.

642. The following code tells the print routines to gather the desired information.

define begin pseudoprint ≡
begin l← tally ; tally ← 0; selector ← pseudo ; trick count ← 1000000;
end

define set trick count ≡
begin first count ← tally ; trick count ← tally + 1 + error line − half error line ;
if trick count < error line then trick count ← error line ;
end

§643 METAFONT PART 31: INPUT STACKS AND STATES 263

643. And the following code uses the information after it has been gathered.

〈Print two lines using the tricky pseudoprinted information 643 〉 ≡
if trick count = 1000000 then set trick count ; { set trick count must be performed }
if tally < trick count then m← tally − first count
else m← trick count − first count ; { context on line 2 }
if l + first count ≤ half error line then

begin p← 0; n← l + first count ;
end

else begin print ("..."); p← l + first count − half error line + 3; n← half error line ;
end;

for q ← p to first count − 1 do print char (trick buf [q mod error line]);
print ln ;
for q ← 1 to n do print char (" "); { print n spaces to begin line 2 }
if m+ n ≤ error line then p← first count +m
else p← first count + (error line − n− 3);
for q ← first count to p− 1 do print char (trick buf [q mod error line]);
if m+ n > error line then print ("...")

This code is used in section 636.

644. But the trick is distracting us from our current goal, which is to understand the input state. So let’s
concentrate on the data structures that are being pseudoprinted as we finish up the show context procedure.

〈Pseudoprint the line 644 〉 ≡
begin pseudoprint ;
if limit > 0 then

for i← start to limit − 1 do
begin if i = loc then set trick count ;
print (buffer [i]);
end

This code is used in section 636.

645. 〈Pseudoprint the token list 645 〉 ≡
begin pseudoprint ;
if token type 6= macro then show token list (start , loc , 100000, 0)
else show macro(start , loc , 100000)

This code is used in section 636.

646. Here is the missing piece of show token list that is activated when the token beginning line 2 is about
to be shown:

〈Do magic computation 646 〉 ≡
set trick count

This code is used in section 217.

264 PART 32: MAINTAINING THE INPUT STACKS METAFONT §647

647. Maintaining the input stacks. The following subroutines change the input status in commonly
needed ways.

First comes push input , which stores the current state and creates a new level (having, initially, the same
properties as the old).

define push input ≡ { enter a new input level, save the old }
begin if input ptr > max in stack then

begin max in stack ← input ptr ;
if input ptr = stack size then overflow ("input stack size", stack size);
end;

input stack [input ptr]← cur input ; { stack the record }
incr (input ptr);
end

648. And of course what goes up must come down.

define pop input ≡ { leave an input level, re-enter the old }
begin decr (input ptr); cur input ← input stack [input ptr];
end

649. Here is a procedure that starts a new level of token-list input, given a token list p and its type t. If
t = macro , the calling routine should set name , reset loc , and increase the macro’s reference count.

define back list (#) ≡ begin token list (#, backed up) {backs up a simple token list }
procedure begin token list (p : pointer ; t : quarterword);

begin push input ; start ← p; token type ← t; param start ← param ptr ; loc ← p;
end;

650. When a token list has been fully scanned, the following computations should be done as we leave
that level of input.

procedure end token list ; { leave a token-list input level }
label done ;
var p: pointer ; { temporary register }
begin if token type ≥ backed up then { token list to be deleted }

if token type ≤ inserted then
begin flush token list (start); goto done ;
end

else delete mac ref (start); { update reference count }
while param ptr > param start do { parameters must be flushed }

begin decr (param ptr); p← param stack [param ptr];
if p 6= null then

if link (p) = void then { it’s an expr parameter }
begin recycle value (p); free node (p, value node size);
end

else flush token list (p); { it’s a suffix or text parameter }
end;

done : pop input ; check interrupt ;
end;

§651 METAFONT PART 32: MAINTAINING THE INPUT STACKS 265

651. The contents of cur cmd , cur mod , cur sym are placed into an equivalent token by the cur tok routine.

〈Declare the procedure called make exp copy 855 〉
function cur tok : pointer ;

var p: pointer ; { a new token node }
save type : small number ; { cur type to be restored }
save exp : integer ; { cur exp to be restored }

begin if cur sym = 0 then
if cur cmd = capsule token then

begin save type ← cur type ; save exp ← cur exp ; make exp copy (cur mod); p← stash cur exp ;
link (p)← null ; cur type ← save type ; cur exp ← save exp ;
end

else begin p← get node (token node size); value (p)← cur mod ; name type (p)← token ;
if cur cmd = numeric token then type (p)← known
else type (p)← string type ;
end

else begin fast get avail (p); info(p)← cur sym ;
end;

cur tok ← p;
end;

652. Sometimes METAFONT has read too far and wants to “unscan” what it has seen. The back input
procedure takes care of this by putting the token just scanned back into the input stream, ready to be read
again. If cur sym 6= 0, the values of cur cmd and cur mod are irrelevant.

procedure back input ; { undoes one token of input }
var p: pointer ; { a token list of length one }
begin p← cur tok ;
while token state ∧ (loc = null) do end token list ; { conserve stack space }
back list (p);
end;

653. The back error routine is used when we want to restore or replace an offending token just before
issuing an error message. We disable interrupts during the call of back input so that the help message won’t
be lost.

procedure back error ; {back up one token and call error }
begin OK to interrupt ← false ; back input ; OK to interrupt ← true ; error ;
end;

procedure ins error ; {back up one inserted token and call error }
begin OK to interrupt ← false ; back input ; token type ← inserted ; OK to interrupt ← true ; error ;
end;

654. The begin file reading procedure starts a new level of input for lines of characters to be read from a
file, or as an insertion from the terminal. It does not take care of opening the file, nor does it set loc or limit
or line .

procedure begin file reading ;
begin if in open = max in open then overflow ("text input levels",max in open);
if first = buf size then overflow ("buffer size", buf size);
incr (in open); push input ; index ← in open ; line stack [index]← line ; start ← first ; name ← 0;
{ terminal input is now true }

end;

266 PART 32: MAINTAINING THE INPUT STACKS METAFONT §655

655. Conversely, the variables must be downdated when such a level of input is finished:

procedure end file reading ;
begin first ← start ; line ← line stack [index];
if index 6= in open then confusion ("endinput");
if name > 2 then a close (cur file); { forget it }
pop input ; decr (in open);
end;

656. In order to keep the stack from overflowing during a long sequence of inserted ‘show’ commands, the
following routine removes completed error-inserted lines from memory.

procedure clear for error prompt ;
begin while file state ∧ terminal input ∧ (input ptr > 0) ∧ (loc = limit) do end file reading ;
print ln ; clear terminal ;
end;

657. To get METAFONT’s whole input mechanism going, we perform the following actions.

〈 Initialize the input routines 657 〉 ≡
begin input ptr ← 0; max in stack ← 0; in open ← 0; open parens ← 0; max buf stack ← 0;
param ptr ← 0; max param stack ← 0; first ← 1; start ← 1; index ← 0; line ← 0; name ← 0;
force eof ← false ;
if ¬init terminal then goto final end ;
limit ← last ; first ← last + 1; { init terminal has set loc and last }
end;

See also section 660.

This code is used in section 1211.

§658 METAFONT PART 33: GETTING THE NEXT TOKEN 267

658. Getting the next token. The heart of METAFONT’s input mechanism is the get next procedure,
which we shall develop in the next few sections of the program. Perhaps we shouldn’t actually call it the
“heart,” however; it really acts as METAFONT’s eyes and mouth, reading the source files and gobbling them
up. And it also helps METAFONT to regurgitate stored token lists that are to be processed again.

The main duty of get next is to input one token and to set cur cmd and cur mod to that token’s command
code and modifier. Furthermore, if the input token is a symbolic token, that token’s hash address is stored
in cur sym ; otherwise cur sym is set to zero.

Underlying this simple description is a certain amount of complexity because of all the cases that need to
be handled. However, the inner loop of get next is reasonably short and fast.

659. Before getting into get next , we need to consider a mechanism by which METAFONT helps keep errors
from propagating too far. Whenever the program goes into a mode where it keeps calling get next repeatedly
until a certain condition is met, it sets scanner status to some value other than normal . Then if an input
file ends, or if an ‘outer’ symbol appears, an appropriate error recovery will be possible.

The global variable warning info helps in this error recovery by providing additional information. For
example, warning info might indicate the name of a macro whose replacement text is being scanned.

define normal = 0 { scanner status at “quiet times” }
define skipping = 1 { scanner status when false conditional text is being skipped }
define flushing = 2 { scanner status when junk after a statement is being ignored }
define absorbing = 3 { scanner status when a text parameter is being scanned }
define var defining = 4 { scanner status when a vardef is being scanned }
define op defining = 5 { scanner status when a macro def is being scanned }
define loop defining = 6 { scanner status when a for loop is being scanned }

〈Global variables 13 〉 +≡
scanner status : normal . . loop defining ; { are we scanning at high speed? }
warning info : integer ; { if so, what else do we need to know, in case an error occurs? }

660. 〈 Initialize the input routines 657 〉 +≡
scanner status ← normal ;

661. The following subroutine is called when an ‘outer’ symbolic token has been scanned or when the end
of a file has been reached. These two cases are distinguished by cur sym , which is zero at the end of a file.

function check outer validity : boolean ;
var p: pointer ; { points to inserted token list }
begin if scanner status = normal then check outer validity ← true
else begin deletions allowed ← false ; 〈Back up an outer symbolic token so that it can be reread 662 〉;

if scanner status > skipping then 〈Tell the user what has run away and try to recover 663 〉
else begin print err ("Incomplete if; all text was ignored after line ");

print int (warning info);
help3 ("A forbidden `outer´ token occurred in skipped text.")
("This kind of error happens when you say `if...´ and forget")
("the matching `fi´. I´ve inserted a `fi´; this might work.");
if cur sym = 0 then

help line [2]← "The file ended while I was skipping conditional text.";
cur sym ← frozen fi ; ins error ;
end;

deletions allowed ← true ; check outer validity ← false ;
end;

end;

268 PART 33: GETTING THE NEXT TOKEN METAFONT §662

662. 〈Back up an outer symbolic token so that it can be reread 662 〉 ≡
if cur sym 6= 0 then

begin p← get avail ; info(p)← cur sym ; back list (p); {prepare to read the symbolic token again }
end

This code is used in section 661.

663. 〈Tell the user what has run away and try to recover 663 〉 ≡
begin runaway ; { print the definition-so-far }
if cur sym = 0 then print err ("File ended")
else begin print err ("Forbidden token found");

end;
print (" while scanning "); help4 ("I suspect you have forgotten an `enddef´,")
("causing me to read past where you wanted me to stop.")
("I´ll try to recover; but if the error is serious,")
("you´d better type `E´ or `X´ now and fix your file.");
case scanner status of
〈Complete the error message, and set cur sym to a token that might help recover from the error 664 〉
end; { there are no other cases }
ins error ;
end

This code is used in section 661.

664. As we consider various kinds of errors, it is also appropriate to change the first line of the help message
just given; help line [3] points to the string that might be changed.

〈Complete the error message, and set cur sym to a token that might help recover from the error 664 〉 ≡
flushing : begin print ("to the end of the statement");

help line [3]← "A previous error seems to have propagated,"; cur sym ← frozen semicolon ;
end;

absorbing : begin print ("a text argument");
help line [3]← "It seems that a right delimiter was left out,";
if warning info = 0 then cur sym ← frozen end group
else begin cur sym ← frozen right delimiter ; equiv (frozen right delimiter)← warning info ;

end;
end;

var defining , op defining : begin print ("the definition of ");
if scanner status = op defining then slow print (text (warning info))
else print variable name (warning info);
cur sym ← frozen end def ;
end;

loop defining : begin print ("the text of a "); slow print (text (warning info)); print (" loop");
help line [3]← "I suspect you have forgotten an `endfor´,"; cur sym ← frozen end for ;
end;

This code is used in section 663.

§665 METAFONT PART 33: GETTING THE NEXT TOKEN 269

665. The runaway procedure displays the first part of the text that occurred when METAFONT began its
special scanner status , if that text has been saved.

〈Declare the procedure called runaway 665 〉 ≡
procedure runaway ;

begin if scanner status > flushing then
begin print nl ("Runaway ");
case scanner status of
absorbing : print ("text?");
var defining , op defining : print ("definition?");
loop defining : print ("loop?");
end; { there are no other cases }
print ln ; show token list (link (hold head),null , error line − 10, 0);
end;

end;

This code is used in section 162.

666. We need to mention a procedure that may be called by get next .

procedure firm up the line ; forward ;

667. And now we’re ready to take the plunge into get next itself.

define switch = 25 { a label in get next }
define start numeric token = 85 { another }
define start decimal token = 86 { and another }
define fin numeric token = 87 { and still another, although goto is considered harmful }

procedure get next ; { sets cur cmd , cur mod , cur sym to next token }
label restart , { go here to get the next input token }

exit , { go here when the next input token has been got }
found , { go here when the end of a symbolic token has been found }
switch , { go here to branch on the class of an input character }
start numeric token , start decimal token ,fin numeric token , done ;

{ go here at crucial stages when scanning a number }
var k: 0 . . buf size ; { an index into buffer }
c: ASCII code ; { the current character in the buffer }
class : ASCII code ; { its class number }
n, f : integer ; { registers for decimal-to-binary conversion }

begin restart : cur sym ← 0;
if file state then 〈 Input from external file; goto restart if no input found, or return if a non-symbolic

token is found 669 〉
else 〈 Input from token list; goto restart if end of list or if a parameter needs to be expanded, or return

if a non-symbolic token is found 676 〉;
〈Finish getting the symbolic token in cur sym ; goto restart if it is illegal 668 〉;

exit : end;

668. When a symbolic token is declared to be ‘outer’, its command code is increased by outer tag .

〈Finish getting the symbolic token in cur sym ; goto restart if it is illegal 668 〉 ≡
cur cmd ← eq type (cur sym); cur mod ← equiv (cur sym);
if cur cmd ≥ outer tag then

if check outer validity then cur cmd ← cur cmd − outer tag
else goto restart

This code is used in section 667.

270 PART 33: GETTING THE NEXT TOKEN METAFONT §669

669. A percent sign appears in buffer [limit]; this makes it unnecessary to have a special test for end-of-line.

〈 Input from external file; goto restart if no input found, or return if a non-symbolic token is found 669 〉 ≡
begin switch : c← buffer [loc]; incr (loc); class ← char class [c];
case class of
digit class : goto start numeric token ;
period class : begin class ← char class [buffer [loc]];

if class > period class then goto switch
else if class < period class then { class = digit class }

begin n← 0; goto start decimal token ;
end;

end;
space class : goto switch ;
percent class : begin 〈Move to next line of file, or goto restart if there is no next line 679 〉;

check interrupt ; goto switch ;
end;

string class : 〈Get a string token and return 671 〉;
isolated classes : begin k ← loc − 1; goto found ;

end;
invalid class : 〈Decry the invalid character and goto restart 670 〉;
othercases do nothing { letters, etc. }
endcases;
k ← loc − 1;
while char class [buffer [loc]] = class do incr (loc);
goto found ;

start numeric token : 〈Get the integer part n of a numeric token; set f ← 0 and goto fin numeric token if
there is no decimal point 673 〉;

start decimal token : 〈Get the fraction part f of a numeric token 674 〉;
fin numeric token : 〈Pack the numeric and fraction parts of a numeric token and return 675 〉;
found : cur sym ← id lookup(k, loc − k);

end

This code is used in section 667.

670. We go to restart instead of to switch , because we might enter token state after the error has been
dealt with (cf. clear for error prompt).

〈Decry the invalid character and goto restart 670 〉 ≡
begin print err ("Text line contains an invalid character");
help2 ("A funny symbol that I can´t read has just been input.")
("Continue, and I´ll forget that it ever happened.");
deletions allowed ← false ; error ; deletions allowed ← true ; goto restart ;
end

This code is used in section 669.

§671 METAFONT PART 33: GETTING THE NEXT TOKEN 271

671. 〈Get a string token and return 671 〉 ≡
begin if buffer [loc] = """" then cur mod ← ""

else begin k ← loc ; buffer [limit + 1]← """";
repeat incr (loc);
until buffer [loc] = """";
if loc > limit then 〈Decry the missing string delimiter and goto restart 672 〉;
if (loc = k + 1) ∧ (length (buffer [k]) = 1) then cur mod ← buffer [k]
else begin str room (loc − k);

repeat append char (buffer [k]); incr (k);
until k = loc ;
cur mod ← make string ;
end;

end;
incr (loc); cur cmd ← string token ; return;
end

This code is used in section 669.

672. We go to restart after this error message, not to switch , because the clear for error prompt routine
might have reinstated token state after error has finished.

〈Decry the missing string delimiter and goto restart 672 〉 ≡
begin loc ← limit ; { the next character to be read on this line will be "%" }
print err ("Incomplete string token has been flushed");
help3 ("Strings should finish on the same line as they began.")
("I´ve deleted the partial string; you might want to")
("insert another by typing, e.g., `I""new string""´.");
deletions allowed ← false ; error ; deletions allowed ← true ; goto restart ;
end

This code is used in section 671.

673. 〈Get the integer part n of a numeric token; set f ← 0 and goto fin numeric token if there is no
decimal point 673 〉 ≡

n← c− "0";
while char class [buffer [loc]] = digit class do

begin if n < 4096 then n← 10 ∗ n+ buffer [loc]− "0";
incr (loc);
end;

if buffer [loc] = "." then
if char class [buffer [loc + 1]] = digit class then goto done ;

f ← 0; goto fin numeric token ;
done : incr (loc)

This code is used in section 669.

272 PART 33: GETTING THE NEXT TOKEN METAFONT §674

674. 〈Get the fraction part f of a numeric token 674 〉 ≡
k ← 0;
repeat if k < 17 then {digits for k ≥ 17 cannot affect the result }

begin dig [k]← buffer [loc]− "0"; incr (k);
end;

incr (loc);
until char class [buffer [loc]] 6= digit class ;
f ← round decimals (k);
if f = unity then

begin incr (n); f ← 0;
end

This code is used in section 669.

675. 〈Pack the numeric and fraction parts of a numeric token and return 675 〉 ≡
if n < 4096 then cur mod ← n ∗ unity + f
else begin print err ("Enormous number has been reduced");

help2 ("I can´t handle numbers bigger than about 4095.99998;")
("so I´ve changed your constant to that maximum amount.");
deletions allowed ← false ; error ; deletions allowed ← true ; cur mod ← 1́777777777 ;
end;

cur cmd ← numeric token ; return

This code is used in section 669.

676. Let’s consider now what happens when get next is looking at a token list.

〈 Input from token list; goto restart if end of list or if a parameter needs to be expanded, or return if a
non-symbolic token is found 676 〉 ≡

if loc ≥ hi mem min then { one-word token }
begin cur sym ← info(loc); loc ← link (loc); {move to next }
if cur sym ≥ expr base then

if cur sym ≥ suffix base then 〈 Insert a suffix or text parameter and goto restart 677 〉
else begin cur cmd ← capsule token ;

cur mod ← param stack [param start + cur sym − (expr base)]; cur sym ← 0; return;
end;

end
else if loc > null then 〈Get a stored numeric or string or capsule token and return 678 〉

else begin {we are done with this token list }
end token list ; goto restart ; { resume previous level }
end

This code is used in section 667.

677. 〈 Insert a suffix or text parameter and goto restart 677 〉 ≡
begin if cur sym ≥ text base then cur sym ← cur sym − param size ;

{ param size = text base − suffix base }
begin token list (param stack [param start + cur sym − (suffix base)], parameter); goto restart ;
end

This code is used in section 676.

§678 METAFONT PART 33: GETTING THE NEXT TOKEN 273

678. 〈Get a stored numeric or string or capsule token and return 678 〉 ≡
begin if name type (loc) = token then

begin cur mod ← value (loc);
if type (loc) = known then cur cmd ← numeric token
else begin cur cmd ← string token ; add str ref (cur mod);

end;
end

else begin cur mod ← loc ; cur cmd ← capsule token ;
end;

loc ← link (loc); return;
end

This code is used in section 676.

679. All of the easy branches of get next have now been taken care of. There is one more branch.

〈Move to next line of file, or goto restart if there is no next line 679 〉 ≡
if name > 2 then 〈Read next line of file into buffer , or goto restart if the file has ended 681 〉
else begin if input ptr > 0 then { text was inserted during error recovery or by scantokens }

begin end file reading ; goto restart ; { resume previous level }
end;

if selector < log only then open log file ;
if interaction > nonstop mode then

begin if limit = start then {previous line was empty }
print nl ("(Please type a command or say `end´)");

print ln ; first ← start ; prompt input ("*"); { input on-line into buffer }
limit ← last ; buffer [limit]← "%"; first ← limit + 1; loc ← start ;
end

else fatal error ("*** (job aborted, no legal end found)");
{ nonstop mode, which is intended for overnight batch processing, never waits for on-line input }

end

This code is used in section 669.

680. The global variable force eof is normally false ; it is set true by an endinput command.

〈Global variables 13 〉 +≡
force eof : boolean ; { should the next input be aborted early? }

681. 〈Read next line of file into buffer , or goto restart if the file has ended 681 〉 ≡
begin incr (line); first ← start ;
if ¬force eof then

begin if input ln (cur file , true) then { not end of file }
firm up the line { this sets limit }

else force eof ← true ;
end;

if force eof then
begin print char (")"); decr (open parens); update terminal ; { show user that file has been read }
force eof ← false ; end file reading ; { resume previous level }
if check outer validity then goto restart else goto restart ;
end;

buffer [limit]← "%"; first ← limit + 1; loc ← start ; { ready to read }
end

This code is used in section 679.

274 PART 33: GETTING THE NEXT TOKEN METAFONT §682

682. If the user has set the pausing parameter to some positive value, and if nonstop mode has not been
selected, each line of input is displayed on the terminal and the transcript file, followed by ‘=>’. METAFONT

waits for a response. If the response is null (i.e., if nothing is typed except perhaps a few blank spaces), the
original line is accepted as it stands; otherwise the line typed is used instead of the line in the file.

procedure firm up the line ;
var k: 0 . . buf size ; { an index into buffer }
begin limit ← last ;
if internal [pausing] > 0 then

if interaction > nonstop mode then
begin wake up terminal ; print ln ;
if start < limit then

for k ← start to limit − 1 do print (buffer [k]);
first ← limit ; prompt input ("=>"); {wait for user response }
if last > first then

begin for k ← first to last − 1 do {move line down in buffer }
buffer [k + start − first]← buffer [k];

limit ← start + last − first ;
end;

end;
end;

§683 METAFONT PART 34: SCANNING MACRO DEFINITIONS 275

683. Scanning macro definitions. METAFONT has a variety of ways to tuck tokens away into token
lists for later use: Macros can be defined with def , vardef , primarydef , etc.; repeatable code can be
defined with for, forever, forsuffixes. All such operations are handled by the routines in this part of the
program.

The modifier part of each command code is zero for the “ending delimiters” like enddef and endfor.

define start def = 1 { command modifier for def }
define var def = 2 { command modifier for vardef }
define end def = 0 { command modifier for enddef }
define start forever = 1 { command modifier for forever }
define end for = 0 { command modifier for endfor }

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("def",macro def , start def);
primitive ("vardef",macro def , var def);
primitive ("primarydef",macro def , secondary primary macro);
primitive ("secondarydef",macro def , tertiary secondary macro);
primitive ("tertiarydef",macro def , expression tertiary macro);
primitive ("enddef",macro def , end def); eqtb [frozen end def]← eqtb [cur sym];

primitive ("for", iteration , expr base);
primitive ("forsuffixes", iteration , suffix base);
primitive ("forever", iteration , start forever);
primitive ("endfor", iteration , end for); eqtb [frozen end for]← eqtb [cur sym];

684. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
macro def : if m ≤ var def then

if m = start def then print ("def")
else if m < start def then print ("enddef")

else print ("vardef")
else if m = secondary primary macro then print ("primarydef")

else if m = tertiary secondary macro then print ("secondarydef")
else print ("tertiarydef");

iteration : if m ≤ start forever then
if m = start forever then print ("forever") else print ("endfor")

else if m = expr base then print ("for") else print ("forsuffixes");

276 PART 34: SCANNING MACRO DEFINITIONS METAFONT §685

685. Different macro-absorbing operations have different syntaxes, but they also have a lot in common.
There is a list of special symbols that are to be replaced by parameter tokens; there is a special command
code that ends the definition; the quotation conventions are identical. Therefore it makes sense to have most
of the work done by a single subroutine. That subroutine is called scan toks .

The first parameter to scan toks is the command code that will terminate scanning (either macro def or
iteration).

The second parameter, subst list , points to a (possibly empty) list of two-word nodes whose info and
value fields specify symbol tokens before and after replacement. The list will be returned to free storage by
scan toks .

The third parameter is simply appended to the token list that is built. And the final parameter tells how
many of the special operations #@, @, and @# are to be replaced by suffix parameters. When such parameters
are present, they are called (SUFFIX0), (SUFFIX1), and (SUFFIX2).

function scan toks (terminator : command code ; subst list , tail end : pointer ; suffix count : small number):
pointer ;

label done , found ;
var p: pointer ; { tail of the token list being built }
q: pointer ; { temporary for link management }
balance : integer ; { left delimiters minus right delimiters }

begin p← hold head ; balance ← 1; link (hold head)← null ;
loop begin get next ;

if cur sym > 0 then
begin 〈Substitute for cur sym , if it’s on the subst list 686 〉;
if cur cmd = terminator then 〈Adjust the balance; goto done if it’s zero 687 〉
else if cur cmd = macro special then 〈Handle quoted symbols, #@, @, or @# 690 〉;
end;

link (p)← cur tok ; p← link (p);
end;

done : link (p)← tail end ; flush node list (subst list); scan toks ← link (hold head);
end;

686. 〈Substitute for cur sym , if it’s on the subst list 686 〉 ≡
begin q ← subst list ;
while q 6= null do

begin if info(q) = cur sym then
begin cur sym ← value (q); cur cmd ← relax ; goto found ;
end;

q ← link (q);
end;

found : end

This code is used in section 685.

687. 〈Adjust the balance; goto done if it’s zero 687 〉 ≡
if cur mod > 0 then incr (balance)
else begin decr (balance);

if balance = 0 then goto done ;
end

This code is used in section 685.

§688 METAFONT PART 34: SCANNING MACRO DEFINITIONS 277

688. Four commands are intended to be used only within macro texts: quote, #@, @, and @#. They are
variants of a single command code called macro special .

define quote = 0 {macro special modifier for quote }
define macro prefix = 1 {macro special modifier for #@ }
define macro at = 2 {macro special modifier for @ }
define macro suffix = 3 {macro special modifier for @# }

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("quote",macro special , quote);
primitive ("#@",macro special ,macro prefix);
primitive ("@",macro special ,macro at);
primitive ("@#",macro special ,macro suffix);

689. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
macro special : case m of

macro prefix : print ("#@");
macro at : print char ("@");
macro suffix : print ("@#");
othercases print ("quote")
endcases;

690. 〈Handle quoted symbols, #@, @, or @# 690 〉 ≡
begin if cur mod = quote then get next
else if cur mod ≤ suffix count then cur sym ← suffix base − 1 + cur mod ;
end

This code is used in section 685.

691. Here is a routine that’s used whenever a token will be redefined. If the user’s token is unredefinable,
the ‘frozen inaccessible ’ token is substituted; the latter is redefinable but essentially impossible to use, hence
METAFONT’s tables won’t get fouled up.

procedure get symbol ; { sets cur sym to a safe symbol }
label restart ;
begin restart : get next ;
if (cur sym = 0) ∨ (cur sym > frozen inaccessible) then

begin print err ("Missing symbolic token inserted");
help3 ("Sorry: You can´t redefine a number, string, or expr.")
("I´ve inserted an inaccessible symbol so that your")
("definition will be completed without mixing me up too badly.");
if cur sym > 0 then help line [2]← "Sorry: You can´t redefine my error−recovery tokens."

else if cur cmd = string token then delete str ref (cur mod);
cur sym ← frozen inaccessible ; ins error ; goto restart ;
end;

end;

692. Before we actually redefine a symbolic token, we need to clear away its former value, if it was a
variable. The following stronger version of get symbol does that.

procedure get clear symbol ;
begin get symbol ; clear symbol (cur sym , false);
end;

278 PART 34: SCANNING MACRO DEFINITIONS METAFONT §693

693. Here’s another little subroutine; it checks that an equals sign or assignment sign comes along at the
proper place in a macro definition.

procedure check equals ;
begin if cur cmd 6= equals then

if cur cmd 6= assignment then
begin missing err ("=");
help5 ("The next thing in this `def´ should have been `=´,")
("because I´ve already looked at the definition heading.")
("But don´t worry; I´ll pretend that an equals sign")
("was present. Everything from here to `enddef´")
("will be the replacement text of this macro."); back error ;
end;

end;

694. A primarydef , secondarydef , or tertiarydef is rather easily handled now that we have scan toks .
In this case there are two parameters, which will be EXPR0 and EXPR1 (i.e., expr base and expr base + 1).

procedure make op def ;
var m: command code ; { the type of definition }
p, q, r: pointer ; { for list manipulation }

begin m← cur mod ;
get symbol ; q ← get node (token node size); info(q)← cur sym ; value (q)← expr base ;
get clear symbol ; warning info ← cur sym ;
get symbol ; p← get node (token node size); info(p)← cur sym ; value (p)← expr base + 1; link (p)← q;
get next ; check equals ;
scanner status ← op defining ; q ← get avail ; ref count (q)← null ; r ← get avail ; link (q)← r;
info(r)← general macro ; link (r)← scan toks (macro def , p,null , 0); scanner status ← normal ;
eq type (warning info)← m; equiv (warning info)← q; get x next ;
end;

695. Parameters to macros are introduced by the keywords expr, suffix, text, primary, secondary,
and tertiary.

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("expr", param type , expr base);
primitive ("suffix", param type , suffix base);
primitive ("text", param type , text base);
primitive ("primary", param type , primary macro);
primitive ("secondary", param type , secondary macro);
primitive ("tertiary", param type , tertiary macro);

696. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
param type : if m ≥ expr base then

if m = expr base then print ("expr")
else if m = suffix base then print ("suffix")

else print ("text")
else if m < secondary macro then print ("primary")

else if m = secondary macro then print ("secondary")
else print ("tertiary");

§697 METAFONT PART 34: SCANNING MACRO DEFINITIONS 279

697. Let’s turn next to the more complex processing associated with def and vardef . When the following
procedure is called, cur mod should be either start def or var def .

〈Declare the procedure called check delimiter 1032 〉
〈Declare the function called scan declared variable 1011 〉
procedure scan def ;

var m: start def . . var def ; { the type of definition }
n: 0 . . 3; { the number of special suffix parameters }
k: 0 . . param size ; { the total number of parameters }
c: general macro . . text macro ; { the kind of macro we’re defining }
r: pointer ; { parameter-substitution list }
q: pointer ; { tail of the macro token list }
p: pointer ; { temporary storage }
base : halfword ; { expr base , suffix base , or text base }
l delim , r delim : pointer ; {matching delimiters }

begin m← cur mod ; c← general macro ; link (hold head)← null ;
q ← get avail ; ref count (q)← null ; r ← null ;
〈Scan the token or variable to be defined; set n, scanner status , and warning info 700 〉;
k ← n;
if cur cmd = left delimiter then 〈Absorb delimited parameters, putting them into lists q and r 703 〉;
if cur cmd = param type then 〈Absorb undelimited parameters, putting them into list r 705 〉;
check equals ; p← get avail ; info(p)← c; link (q)← p;
〈Attach the replacement text to the tail of node p 698 〉;
scanner status ← normal ; get x next ;
end;

698. We don’t put ‘frozen end group ’ into the replacement text of a vardef , because the user may want
to redefine ‘endgroup’.

〈Attach the replacement text to the tail of node p 698 〉 ≡
if m = start def then link (p)← scan toks (macro def , r,null , n)
else begin q ← get avail ; info(q)← bg loc ; link (p)← q; p← get avail ; info(p)← eg loc ;

link (q)← scan toks (macro def , r, p, n);
end;

if warning info = bad vardef then flush token list (value (bad vardef))

This code is used in section 697.

699. 〈Global variables 13 〉 +≡
bg loc , eg loc : 1 . . hash end ; { hash addresses of ‘begingroup’ and ‘endgroup’ }

280 PART 34: SCANNING MACRO DEFINITIONS METAFONT §700

700. 〈Scan the token or variable to be defined; set n, scanner status , and warning info 700 〉 ≡
if m = start def then

begin get clear symbol ; warning info ← cur sym ; get next ; scanner status ← op defining ; n← 0;
eq type (warning info)← defined macro ; equiv (warning info)← q;
end

else begin p← scan declared variable ; flush variable (equiv (info(p)), link (p), true);
warning info ← find variable (p); flush list (p);
if warning info = null then 〈Change to ‘a bad variable’ 701 〉;
scanner status ← var defining ; n← 2;
if cur cmd = macro special then

if cur mod = macro suffix then { @# }
begin n← 3; get next ;
end;

type (warning info)← unsuffixed macro − 2 + n; value (warning info)← q;
end { suffixed macro = unsuffixed macro + 1 }

This code is used in section 697.

701. 〈Change to ‘a bad variable’ 701 〉 ≡
begin print err ("This variable already starts with a macro");
help2 ("After `vardef a´ you can´t say `vardef a.b´.")
("So I´ll have to discard this definition."); error ; warning info ← bad vardef ;
end

This code is used in section 700.

702. 〈 Initialize table entries (done by INIMF only) 176 〉 +≡
name type (bad vardef)← root ; link (bad vardef)← frozen bad vardef ;
equiv (frozen bad vardef)← bad vardef ; eq type (frozen bad vardef)← tag token ;

703. 〈Absorb delimited parameters, putting them into lists q and r 703 〉 ≡
repeat l delim ← cur sym ; r delim ← cur mod ; get next ;

if (cur cmd = param type) ∧ (cur mod ≥ expr base) then base ← cur mod
else begin print err ("Missing parameter type; `expr´ will be assumed");

help1 ("You should´ve had `expr´ or `suffix´ or `text´ here."); back error ;
base ← expr base ;
end;

〈Absorb parameter tokens for type base 704 〉;
check delimiter (l delim , r delim); get next ;

until cur cmd 6= left delimiter

This code is used in section 697.

704. 〈Absorb parameter tokens for type base 704 〉 ≡
repeat link (q)← get avail ; q ← link (q); info(q)← base + k;

get symbol ; p← get node (token node size); value (p)← base + k; info(p)← cur sym ;
if k = param size then overflow ("parameter stack size", param size);
incr (k); link (p)← r; r ← p; get next ;

until cur cmd 6= comma

This code is used in section 703.

§705 METAFONT PART 34: SCANNING MACRO DEFINITIONS 281

705. 〈Absorb undelimited parameters, putting them into list r 705 〉 ≡
begin p← get node (token node size);
if cur mod < expr base then

begin c← cur mod ; value (p)← expr base + k;
end

else begin value (p)← cur mod + k;
if cur mod = expr base then c← expr macro
else if cur mod = suffix base then c← suffix macro

else c← text macro ;
end;

if k = param size then overflow ("parameter stack size", param size);
incr (k); get symbol ; info(p)← cur sym ; link (p)← r; r ← p; get next ;
if c = expr macro then

if cur cmd = of token then
begin c← of macro ; p← get node (token node size);
if k = param size then overflow ("parameter stack size", param size);
value (p)← expr base + k; get symbol ; info(p)← cur sym ; link (p)← r; r ← p; get next ;
end;

end

This code is used in section 697.

282 PART 35: EXPANDING THE NEXT TOKEN METAFONT §706

706. Expanding the next token. Only a few command codes < min command can possibly be
returned by get next ; in increasing order, they are if test , fi or else , input , iteration , repeat loop , exit test ,
relax , scan tokens , expand after , and defined macro .

METAFONT usually gets the next token of input by saying get x next . This is like get next except that
it keeps getting more tokens until finding cur cmd ≥ min command . In other words, get x next expands
macros and removes conditionals or iterations or input instructions that might be present.

It follows that get x next might invoke itself recursively. In fact, there is massive recursion, since macro
expansion can involve the scanning of arbitrarily complex expressions, which in turn involve macro expansion
and conditionals, etc.

Therefore it’s necessary to declare a whole bunch of forward procedures at this point, and to insert some
other procedures that will be invoked by get x next .

procedure scan primary ; forward ;
procedure scan secondary ; forward ;
procedure scan tertiary ; forward ;
procedure scan expression ; forward ;
procedure scan suffix ; forward ;
〈Declare the procedure called macro call 720 〉
procedure get boolean ; forward ;
procedure pass text ; forward ;
procedure conditional ; forward ;
procedure start input ; forward ;
procedure begin iteration ; forward ;
procedure resume iteration ; forward ;
procedure stop iteration ; forward ;

707. An auxiliary subroutine called expand is used by get x next when it has to do exotic expansion
commands.

procedure expand ;
var p: pointer ; { for list manipulation }
k: integer ; { something that we hope is ≤ buf size }
j: pool pointer ; { index into str pool }

begin if internal [tracing commands] > unity then
if cur cmd 6= defined macro then show cur cmd mod ;

case cur cmd of
if test : conditional ; { this procedure is discussed in Part 36 below }
fi or else : 〈Terminate the current conditional and skip to fi 751 〉;
input : 〈 Initiate or terminate input from a file 711 〉;
iteration : if cur mod = end for then 〈Scold the user for having an extra endfor 708 〉

else begin iteration ; { this procedure is discussed in Part 37 below }
repeat loop : 〈Repeat a loop 712 〉;
exit test : 〈Exit a loop if the proper time has come 713 〉;
relax : do nothing ;
expand after : 〈Expand the token after the next token 715 〉;
scan tokens : 〈Put a string into the input buffer 716 〉;
defined macro : macro call (cur mod ,null , cur sym);
end; { there are no other cases }
end;

§708 METAFONT PART 35: EXPANDING THE NEXT TOKEN 283

708. 〈Scold the user for having an extra endfor 708 〉 ≡
begin print err ("Extra `endfor´"); help2 ("I´m not currently working on a for loop,")
("so I had better not try to end anything.");
error ;
end

This code is used in section 707.

709. The processing of input involves the start input subroutine, which will be declared later; the
processing of endinput is trivial.

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("input", input , 0);
primitive ("endinput", input , 1);

710. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
input : if m = 0 then print ("input") else print ("endinput");

711. 〈 Initiate or terminate input from a file 711 〉 ≡
if cur mod > 0 then force eof ← true
else start input

This code is used in section 707.

712. We’ll discuss the complicated parts of loop operations later. For now it suffices to know that there’s
a global variable called loop ptr that will be null if no loop is in progress.

〈Repeat a loop 712 〉 ≡
begin while token state ∧ (loc = null) do end token list ; { conserve stack space }
if loop ptr = null then

begin print err ("Lost loop");
help2 ("I´m confused; after exiting from a loop, I still seem")
("to want to repeat it. I´ll try to forget the problem.");
error ;
end

else resume iteration ; { this procedure is in Part 37 below }
end

This code is used in section 707.

713. 〈Exit a loop if the proper time has come 713 〉 ≡
begin get boolean ;
if internal [tracing commands] > unity then show cmd mod (nullary , cur exp);
if cur exp = true code then

if loop ptr = null then
begin print err ("No loop is in progress");
help1 ("Why say `exitif´ when there´s nothing to exit from?");
if cur cmd = semicolon then error else back error ;
end

else 〈Exit prematurely from an iteration 714 〉
else if cur cmd 6= semicolon then

begin missing err (";");
help2 ("After `exitif <boolean expr>´ I expect to see a semicolon.")
("I shall pretend that one was there."); back error ;
end;

end

This code is used in section 707.

284 PART 35: EXPANDING THE NEXT TOKEN METAFONT §714

714. Here we use the fact that forever text is the only token type that is less than loop text .

〈Exit prematurely from an iteration 714 〉 ≡
begin p← null ;
repeat if file state then end file reading

else begin if token type ≤ loop text then p← start ;
end token list ;
end;

until p 6= null ;
if p 6= info(loop ptr) then fatal error ("*** (loop confusion)");
stop iteration ; { this procedure is in Part 37 below }
end

This code is used in section 713.

715. 〈Expand the token after the next token 715 〉 ≡
begin get next ; p← cur tok ; get next ;
if cur cmd < min command then expand
else back input ;
back list (p);
end

This code is used in section 707.

716. 〈Put a string into the input buffer 716 〉 ≡
begin get x next ; scan primary ;
if cur type 6= string type then

begin disp err (null , "Not a string"); help2 ("I´m going to flush this expression, since")
("scantokens should be followed by a known string."); put get flush error (0);
end

else begin back input ;
if length (cur exp) > 0 then 〈Pretend we’re reading a new one-line file 717 〉;
end;

end

This code is used in section 707.

717. 〈Pretend we’re reading a new one-line file 717 〉 ≡
begin begin file reading ; name ← 2; k ← first + length (cur exp);
if k ≥ max buf stack then

begin if k ≥ buf size then
begin max buf stack ← buf size ; overflow ("buffer size", buf size);
end;

max buf stack ← k + 1;
end;

j ← str start [cur exp]; limit ← k;
while first < limit do

begin buffer [first]← so(str pool [j]); incr (j); incr (first);
end;

buffer [limit]← "%"; first ← limit + 1; loc ← start ; flush cur exp(0);
end

This code is used in section 716.

§718 METAFONT PART 35: EXPANDING THE NEXT TOKEN 285

718. Here finally is get x next .
The expression scanning routines to be considered later communicate via the global quantities cur type

and cur exp ; we must be very careful to save and restore these quantities while macros are being expanded.

procedure get x next ;
var save exp : pointer ; { a capsule to save cur type and cur exp }
begin get next ;
if cur cmd < min command then

begin save exp ← stash cur exp ;
repeat if cur cmd = defined macro then macro call (cur mod ,null , cur sym)

else expand ;
get next ;

until cur cmd ≥ min command ;
unstash cur exp(save exp); { that restores cur type and cur exp }
end;

end;

719. Now let’s consider the macro call procedure, which is used to start up all user-defined macros. Since
the arguments to a macro might be expressions, macro call is recursive.

The first parameter to macro call points to the reference count of the token list that defines the macro. The
second parameter contains any arguments that have already been parsed (see below). The third parameter
points to the symbolic token that names the macro. If the third parameter is null , the macro was defined
by vardef , so its name can be reconstructed from the prefix and “at” arguments found within the second
parameter.

What is this second parameter? It’s simply a linked list of one-word items, whose info fields point to the
arguments. In other words, if arg list = null , no arguments have been scanned yet; otherwise info(arg list)
points to the first scanned argument, and link (arg list) points to the list of further arguments (if any).

Arguments of type expr are so-called capsules, which we will discuss later when we concentrate on
expressions; they can be recognized easily because their link field is void . Arguments of type suffix and
text are token lists without reference counts.

286 PART 35: EXPANDING THE NEXT TOKEN METAFONT §720

720. After argument scanning is complete, the arguments are moved to the param stack . (They can’t be
put on that stack any sooner, because the stack is growing and shrinking in unpredictable ways as more
arguments are being acquired.) Then the macro body is fed to the scanner; i.e., the replacement text of the
macro is placed at the top of the METAFONT’s input stack, so that get next will proceed to read it next.

〈Declare the procedure called macro call 720 〉 ≡
〈Declare the procedure called print macro name 722 〉
〈Declare the procedure called print arg 723 〉
〈Declare the procedure called scan text arg 730 〉
procedure macro call (def ref , arg list ,macro name : pointer);

{ invokes a user-defined sequence of commands }
label found ;
var r: pointer ; { current node in the macro’s token list }
p, q: pointer ; { for list manipulation }
n: integer ; { the number of arguments }
l delim , r delim : pointer ; { a delimiter pair }
tail : pointer ; { tail of the argument list }

begin r ← link (def ref); add mac ref (def ref);
if arg list = null then n← 0
else 〈Determine the number n of arguments already supplied, and set tail to the tail of arg list 724 〉;
if internal [tracing macros] > 0 then
〈Show the text of the macro being expanded, and the existing arguments 721 〉;
〈Scan the remaining arguments, if any; set r to the first token of the replacement text 725 〉;
〈Feed the arguments and replacement text to the scanner 736 〉;
end;

This code is used in section 706.

721. 〈Show the text of the macro being expanded, and the existing arguments 721 〉 ≡
begin begin diagnostic ; print ln ; print macro name (arg list ,macro name);
if n = 3 then print ("@#"); { indicate a suffixed macro }
show macro(def ref ,null , 100000);
if arg list 6= null then

begin n← 0; p← arg list ;
repeat q ← info(p); print arg (q, n, 0); incr (n); p← link (p);
until p = null ;
end;

end diagnostic(false);
end

This code is used in section 720.

722. 〈Declare the procedure called print macro name 722 〉 ≡
procedure print macro name (a, n : pointer);

var p, q: pointer ; { they traverse the first part of a }
begin if n 6= null then slow print (text (n))
else begin p← info(a);

if p = null then slow print (text (info(info(link (a)))))
else begin q ← p;

while link (q) 6= null do q ← link (q);
link (q)← info(link (a)); show token list (p,null , 1000, 0); link (q)← null ;
end;

end;
end;

This code is used in section 720.

§723 METAFONT PART 35: EXPANDING THE NEXT TOKEN 287

723. 〈Declare the procedure called print arg 723 〉 ≡
procedure print arg (q : pointer ; n : integer ; b : pointer);

begin if link (q) = void then print nl ("(EXPR")
else if (b < text base) ∧ (b 6= text macro) then print nl ("(SUFFIX")

else print nl ("(TEXT");
print int (n); print (")<−");
if link (q) = void then print exp(q, 1)
else show token list (q,null , 1000, 0);
end;

This code is used in section 720.

724. 〈Determine the number n of arguments already supplied, and set tail to the tail of arg list 724 〉 ≡
begin n← 1; tail ← arg list ;
while link (tail) 6= null do

begin incr (n); tail ← link (tail);
end;

end

This code is used in section 720.

725. 〈Scan the remaining arguments, if any; set r to the first token of the replacement text 725 〉 ≡
cur cmd ← comma + 1; { anything 6= comma will do }
while info(r) ≥ expr base do

begin 〈Scan the delimited argument represented by info(r) 726 〉;
r ← link (r);
end;

if cur cmd = comma then
begin print err ("Too many arguments to "); print macro name (arg list ,macro name);
print char (";"); print nl (" Missing `"); slow print (text (r delim));
print ("´ has been inserted");
help3 ("I´m going to assume that the comma I just read was a")
("right delimiter, and then I´ll begin expanding the macro.")
("You might want to delete some tokens before continuing."); error ;
end;

if info(r) 6= general macro then 〈Scan undelimited argument(s) 733 〉;
r ← link (r)

This code is used in section 720.

288 PART 35: EXPANDING THE NEXT TOKEN METAFONT §726

726. At this point, the reader will find it advisable to review the explanation of token list format that was
presented earlier, paying special attention to the conventions that apply only at the beginning of a macro’s
token list.

On the other hand, the reader will have to take the expression-parsing aspects of the following program
on faith; we will explain cur type and cur exp later. (Several things in this program depend on each other,
and it’s necessary to jump into the circle somewhere.)

〈Scan the delimited argument represented by info(r) 726 〉 ≡
if cur cmd 6= comma then

begin get x next ;
if cur cmd 6= left delimiter then

begin print err ("Missing argument to "); print macro name (arg list ,macro name);
help3 ("That macro has more parameters than you thought.")
("I´ll continue by pretending that each missing argument")
("is either zero or null.");
if info(r) ≥ suffix base then

begin cur exp ← null ; cur type ← token list ;
end

else begin cur exp ← 0; cur type ← known ;
end;

back error ; cur cmd ← right delimiter ; goto found ;
end;

l delim ← cur sym ; r delim ← cur mod ;
end;
〈Scan the argument represented by info(r) 729 〉;
if cur cmd 6= comma then 〈Check that the proper right delimiter was present 727 〉;

found : 〈Append the current expression to arg list 728 〉
This code is used in section 725.

727. 〈Check that the proper right delimiter was present 727 〉 ≡
if (cur cmd 6= right delimiter) ∨ (cur mod 6= l delim) then

if info(link (r)) ≥ expr base then
begin missing err (","); help3 ("I´ve finished reading a macro argument and am about to")
("read another; the arguments weren´t delimited correctly.")
("You might want to delete some tokens before continuing."); back error ;
cur cmd ← comma ;
end

else begin missing err (text (r delim));
help2 ("I´ve gotten to the end of the macro parameter list.")
("You might want to delete some tokens before continuing."); back error ;
end

This code is used in section 726.

§728 METAFONT PART 35: EXPANDING THE NEXT TOKEN 289

728. A suffix or text parameter will have been scanned as a token list pointed to by cur exp , in which
case we will have cur type = token list .

〈Append the current expression to arg list 728 〉 ≡
begin p← get avail ;
if cur type = token list then info(p)← cur exp
else info(p)← stash cur exp ;
if internal [tracing macros] > 0 then

begin begin diagnostic ; print arg (info(p), n, info(r)); end diagnostic(false);
end;

if arg list = null then arg list ← p
else link (tail)← p;
tail ← p; incr (n);
end

This code is used in sections 726 and 733.

729. 〈Scan the argument represented by info(r) 729 〉 ≡
if info(r) ≥ text base then scan text arg (l delim , r delim)
else begin get x next ;

if info(r) ≥ suffix base then scan suffix
else scan expression ;
end

This code is used in section 726.

730. The parameters to scan text arg are either a pair of delimiters or zero; the latter case is for undelimited
text arguments, which end with the first semicolon or endgroup or end that is not contained in a group.

〈Declare the procedure called scan text arg 730 〉 ≡
procedure scan text arg (l delim , r delim : pointer);

label done ;
var balance : integer ; { excess of l delim over r delim }
p: pointer ; { list tail }

begin warning info ← l delim ; scanner status ← absorbing ; p← hold head ; balance ← 1;
link (hold head)← null ;
loop begin get next ;

if l delim = 0 then 〈Adjust the balance for an undelimited argument; goto done if done 732 〉
else 〈Adjust the balance for a delimited argument; goto done if done 731 〉;
link (p)← cur tok ; p← link (p);
end;

done : cur exp ← link (hold head); cur type ← token list ; scanner status ← normal ;
end;

This code is used in section 720.

290 PART 35: EXPANDING THE NEXT TOKEN METAFONT §731

731. 〈Adjust the balance for a delimited argument; goto done if done 731 〉 ≡
begin if cur cmd = right delimiter then

begin if cur mod = l delim then
begin decr (balance);
if balance = 0 then goto done ;
end;

end
else if cur cmd = left delimiter then

if cur mod = r delim then incr (balance);
end

This code is used in section 730.

732. 〈Adjust the balance for an undelimited argument; goto done if done 732 〉 ≡
begin if end of statement then { cur cmd = semicolon , end group , or stop }

begin if balance = 1 then goto done
else if cur cmd = end group then decr (balance);
end

else if cur cmd = begin group then incr (balance);
end

This code is used in section 730.

733. 〈Scan undelimited argument(s) 733 〉 ≡
begin if info(r) < text macro then

begin get x next ;
if info(r) 6= suffix macro then

if (cur cmd = equals) ∨ (cur cmd = assignment) then get x next ;
end;

case info(r) of
primary macro : scan primary ;
secondary macro : scan secondary ;
tertiary macro : scan tertiary ;
expr macro : scan expression ;
of macro : 〈Scan an expression followed by ‘of 〈primary〉’ 734 〉;
suffix macro : 〈Scan a suffix with optional delimiters 735 〉;
text macro : scan text arg (0, 0);
end; { there are no other cases }
back input ; 〈Append the current expression to arg list 728 〉;
end

This code is used in section 725.

§734 METAFONT PART 35: EXPANDING THE NEXT TOKEN 291

734. 〈Scan an expression followed by ‘of 〈primary〉’ 734 〉 ≡
begin scan expression ; p← get avail ; info(p)← stash cur exp ;
if internal [tracing macros] > 0 then

begin begin diagnostic ; print arg (info(p), n, 0); end diagnostic(false);
end;

if arg list = null then arg list ← p else link (tail)← p;
tail ← p; incr (n);
if cur cmd 6= of token then

begin missing err ("of"); print (" for "); print macro name (arg list ,macro name);
help1 ("I´ve got the first argument; will look now for the other."); back error ;
end;

get x next ; scan primary ;
end

This code is used in section 733.

735. 〈Scan a suffix with optional delimiters 735 〉 ≡
begin if cur cmd 6= left delimiter then l delim ← null
else begin l delim ← cur sym ; r delim ← cur mod ; get x next ;

end;
scan suffix ;
if l delim 6= null then

begin if (cur cmd 6= right delimiter) ∨ (cur mod 6= l delim) then
begin missing err (text (r delim));
help2 ("I´ve gotten to the end of the macro parameter list.")
("You might want to delete some tokens before continuing."); back error ;
end;

get x next ;
end;

end

This code is used in section 733.

736. Before we put a new token list on the input stack, it is wise to clean off all token lists that have
recently been depleted. Then a user macro that ends with a call to itself will not require unbounded stack
space.

〈Feed the arguments and replacement text to the scanner 736 〉 ≡
while token state ∧ (loc = null) do end token list ; { conserve stack space }
if param ptr + n > max param stack then

begin max param stack ← param ptr + n;
if max param stack > param size then overflow ("parameter stack size", param size);
end;

begin token list (def ref ,macro); name ← macro name ; loc ← r;
if n > 0 then

begin p← arg list ;
repeat param stack [param ptr]← info(p); incr (param ptr); p← link (p);
until p = null ;
flush list (arg list);
end

This code is used in section 720.

292 PART 35: EXPANDING THE NEXT TOKEN METAFONT §737

737. It’s sometimes necessary to put a single argument onto param stack . The stack argument subroutine
does this.

procedure stack argument (p : pointer);
begin if param ptr = max param stack then

begin incr (max param stack);
if max param stack > param size then overflow ("parameter stack size", param size);
end;

param stack [param ptr]← p; incr (param ptr);
end;

§738 METAFONT PART 36: CONDITIONAL PROCESSING 293

738. Conditional processing. Let’s consider now the way if commands are handled.
Conditions can be inside conditions, and this nesting has a stack that is independent of other stacks. Four

global variables represent the top of the condition stack: cond ptr points to pushed-down entries, if any;
cur if tells whether we are processing if or elseif ; if limit specifies the largest code of a fi or else command
that is syntactically legal; and if line is the line number at which the current conditional began.

If no conditions are currently in progress, the condition stack has the special state cond ptr = null ,
if limit = normal , cur if = 0, if line = 0. Otherwise cond ptr points to a two-word node; the type ,
name type , and link fields of the first word contain if limit , cur if , and cond ptr at the next level, and the
second word contains the corresponding if line .

define if node size = 2 {number of words in stack entry for conditionals }
define if line field (#) ≡ mem [# + 1].int
define if code = 1 { code for if being evaluated }
define fi code = 2 { code for fi }
define else code = 3 { code for else }
define else if code = 4 { code for elseif }

〈Global variables 13 〉 +≡
cond ptr : pointer ; { top of the condition stack }
if limit : normal . . else if code ; { upper bound on fi or else codes }
cur if : small number ; { type of conditional being worked on }
if line : integer ; { line where that conditional began }

739. 〈Set initial values of key variables 21 〉 +≡
cond ptr ← null ; if limit ← normal ; cur if ← 0; if line ← 0;

740. 〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("if", if test , if code);
primitive ("fi",fi or else ,fi code); eqtb [frozen fi]← eqtb [cur sym];
primitive ("else",fi or else , else code);
primitive ("elseif",fi or else , else if code);

741. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
if test ,fi or else : case m of

if code : print ("if");
fi code : print ("fi");
else code : print ("else");
othercases print ("elseif")
endcases;

294 PART 36: CONDITIONAL PROCESSING METAFONT §742

742. Here is a procedure that ignores text until coming to an elseif , else, or fi at the current level of
if . . .fi nesting. After it has acted, cur mod will indicate the token that was found.

METAFONT’s smallest two command codes are if test and fi or else ; this makes the skipping process a bit
simpler.

procedure pass text ;
label done ;
var l: integer ;
begin scanner status ← skipping ; l← 0; warning info ← line ;
loop begin get next ;

if cur cmd ≤ fi or else then
if cur cmd < fi or else then incr (l)
else begin if l = 0 then goto done ;

if cur mod = fi code then decr (l);
end

else 〈Decrease the string reference count, if the current token is a string 743 〉;
end;

done : scanner status ← normal ;
end;

743. 〈Decrease the string reference count, if the current token is a string 743 〉 ≡
if cur cmd = string token then delete str ref (cur mod)

This code is used in sections 83, 742, 991, and 1016.

744. When we begin to process a new if , we set if limit ← if code ; then if elseif or else or fi occurs
before the current if condition has been evaluated, a colon will be inserted. A construction like ‘if fi’
would otherwise get METAFONT confused.

〈Push the condition stack 744 〉 ≡
begin p← get node (if node size); link (p)← cond ptr ; type (p)← if limit ; name type (p)← cur if ;
if line field (p)← if line ; cond ptr ← p; if limit ← if code ; if line ← line ; cur if ← if code ;
end

This code is used in section 748.

745. 〈Pop the condition stack 745 〉 ≡
begin p← cond ptr ; if line ← if line field (p); cur if ← name type (p); if limit ← type (p);
cond ptr ← link (p); free node (p, if node size);
end

This code is used in sections 748, 749, and 751.

§746 METAFONT PART 36: CONDITIONAL PROCESSING 295

746. Here’s a procedure that changes the if limit code corresponding to a given value of cond ptr .

procedure change if limit (l : small number ; p : pointer);
label exit ;
var q: pointer ;
begin if p = cond ptr then if limit ← l { that’s the easy case }
else begin q ← cond ptr ;

loop begin if q = null then confusion ("if");
if link (q) = p then

begin type (q)← l; return;
end;

q ← link (q);
end;

end;
exit : end;

747. The user is supposed to put colons into the proper parts of conditional statements. Therefore, META-
FONT has to check for their presence.

procedure check colon ;
begin if cur cmd 6= colon then

begin missing err (":");
help2 ("There should´ve been a colon after the condition.")
("I shall pretend that one was there."); back error ;
end;

end;

748. A condition is started when the get x next procedure encounters an if test command; in that case
get x next calls conditional , which is a recursive procedure.

procedure conditional ;
label exit , done , reswitch , found ;
var save cond ptr : pointer ; { cond ptr corresponding to this conditional }

new if limit : fi code . . else if code ; { future value of if limit }
p: pointer ; { temporary register }

begin 〈Push the condition stack 744 〉; save cond ptr ← cond ptr ;
reswitch : get boolean ; new if limit ← else if code ;

if internal [tracing commands] > unity then 〈Display the boolean value of cur exp 750 〉;
found : check colon ;

if cur exp = true code then
begin change if limit (new if limit , save cond ptr); return; {wait for elseif , else, or fi }
end;
〈Skip to elseif or else or fi, then goto done 749 〉;

done : cur if ← cur mod ; if line ← line ;
if cur mod = fi code then 〈Pop the condition stack 745 〉
else if cur mod = else if code then goto reswitch

else begin cur exp ← true code ; new if limit ← fi code ; get x next ; goto found ;
end;

exit : end;

296 PART 36: CONDITIONAL PROCESSING METAFONT §749

749. In a construction like ‘if if true: 0 = 1: foo else: bar fi’, the first else that we come to after
learning that the if is false is not the else we’re looking for. Hence the following curious logic is needed.

〈Skip to elseif or else or fi, then goto done 749 〉 ≡
loop begin pass text ;

if cond ptr = save cond ptr then goto done
else if cur mod = fi code then 〈Pop the condition stack 745 〉;
end

This code is used in section 748.

750. 〈Display the boolean value of cur exp 750 〉 ≡
begin begin diagnostic ;
if cur exp = true code then print ("{true}") else print ("{false}");
end diagnostic(false);
end

This code is used in section 748.

751. The processing of conditionals is complete except for the following code, which is actually part of
get x next . It comes into play when elseif , else, or fi is scanned.

〈Terminate the current conditional and skip to fi 751 〉 ≡
if cur mod > if limit then

if if limit = if code then { condition not yet evaluated }
begin missing err (":"); back input ; cur sym ← frozen colon ; ins error ;
end

else begin print err ("Extra "); print cmd mod (fi or else , cur mod);
help1 ("I´m ignoring this; it doesn´t match any if."); error ;
end

else begin while cur mod 6= fi code do pass text ; { skip to fi }
〈Pop the condition stack 745 〉;
end

This code is used in section 707.

§752 METAFONT PART 37: ITERATIONS 297

752. Iterations. To bring our treatment of get x next to a close, we need to consider what METAFONT

does when it sees for, forsuffixes, and forever.
There’s a global variable loop ptr that keeps track of the for loops that are currently active. If loop ptr =

null , no loops are in progress; otherwise info(loop ptr) points to the iterative text of the current (innermost)
loop, and link (loop ptr) points to the data for any other loops that enclose the current one.

A loop-control node also has two other fields, called loop type and loop list , whose contents depend on the
type of loop:

loop type (loop ptr) = null means that loop list (loop ptr) points to a list of one-word nodes whose info
fields point to the remaining argument values of a suffix list and expression list.

loop type (loop ptr) = void means that the current loop is ‘forever’.

loop type (loop ptr) = p > void means that value (p), step size (p), and final value (p) contain the data for
an arithmetic progression.

In the latter case, p points to a “progression node” whose first word is not used. (No value could be stored
there because the link field of words in the dynamic memory area cannot be arbitrary.)

define loop list loc(#) ≡ # + 1 {where the loop list field resides }
define loop type (#) ≡ info(loop list loc(#)) { the type of for loop }
define loop list (#) ≡ link (loop list loc(#)) { the remaining list elements }
define loop node size = 2 { the number of words in a loop control node }
define progression node size = 4 { the number of words in a progression node }
define step size (#) ≡ mem [# + 2].sc { the step size in an arithmetic progression }
define final value (#) ≡ mem [# + 3].sc { the final value in an arithmetic progression }

〈Global variables 13 〉 +≡
loop ptr : pointer ; { top of the loop-control-node stack }

753. 〈Set initial values of key variables 21 〉 +≡
loop ptr ← null ;

754. If the expressions that define an arithmetic progression in a for loop don’t have known numeric
values, the bad for subroutine screams at the user.

procedure bad for (s : str number);
begin disp err (null , "Improper "); { show the bad expression above the message }
print (s); print (" has been replaced by 0"); help4 ("When you say `for x=a step b until c´,")
("the initial value `a´ and the step size `b´")
("and the final value `c´ must have known numeric values.")
("I´m zeroing this one. Proceed, with fingers crossed."); put get flush error (0);
end;

298 PART 37: ITERATIONS METAFONT §755

755. Here’s what METAFONT does when for, forsuffixes, or forever has just been scanned. (This code
requires slight familiarity with expression-parsing routines that we have not yet discussed; but it seems to
belong in the present part of the program, even though the author didn’t write it until later. The reader
may wish to come back to it.)

procedure begin iteration ;
label continue , done , found ;
var m: halfword ; { expr base (for) or suffix base (forsuffixes) }
n: halfword ; {hash address of the current symbol }
p, q, s, pp : pointer ; { link manipulation registers }

begin m← cur mod ; n← cur sym ; s← get node (loop node size);
if m = start forever then

begin loop type (s)← void ; p← null ; get x next ; goto found ;
end;

get symbol ; p← get node (token node size); info(p)← cur sym ; value (p)← m;
get x next ;
if (cur cmd 6= equals) ∧ (cur cmd 6= assignment) then

begin missing err ("=");
help3 ("The next thing in this loop should have been `=´ or `:=´.")
("But don´t worry; I´ll pretend that an equals sign")
("was present, and I´ll look for the values next.");
back error ;
end;
〈Scan the values to be used in the loop 764 〉;

found : 〈Check for the presence of a colon 756 〉;
〈Scan the loop text and put it on the loop control stack 758 〉;
resume iteration ;
end;

756. 〈Check for the presence of a colon 756 〉 ≡
if cur cmd 6= colon then

begin missing err (":");
help3 ("The next thing in this loop should have been a `:´.")
("So I´ll pretend that a colon was present;")
("everything from here to `endfor´ will be iterated."); back error ;
end

This code is used in section 755.

757. We append a special frozen repeat loop token in place of the ‘endfor’ at the end of the loop. This
will come through METAFONT’s scanner at the proper time to cause the loop to be repeated.

(A user who tries some shenanigan like ‘for . . . let endfor’ will be foiled by the get symbol routine, which
keeps frozen tokens unchanged. Furthermore the frozen repeat loop is an outer token, so it won’t be lost
accidentally.)

758. 〈Scan the loop text and put it on the loop control stack 758 〉 ≡
q ← get avail ; info(q)← frozen repeat loop ; scanner status ← loop defining ; warning info ← n;
info(s)← scan toks (iteration , p, q, 0); scanner status ← normal ;
link (s)← loop ptr ; loop ptr ← s

This code is used in section 755.

759. 〈 Initialize table entries (done by INIMF only) 176 〉 +≡
eq type (frozen repeat loop)← repeat loop + outer tag ; text (frozen repeat loop)← " ENDFOR";

§760 METAFONT PART 37: ITERATIONS 299

760. The loop text is inserted into METAFONT’s scanning apparatus by the resume iteration routine.

procedure resume iteration ;
label not found , exit ;
var p, q: pointer ; { link registers }
begin p← loop type (loop ptr);
if p > void then { p points to a progression node }

begin cur exp ← value (p);
if 〈The arithmetic progression has ended 761 〉 then goto not found ;
cur type ← known ; q ← stash cur exp ; {make q an expr argument }
value (p)← cur exp + step size (p); { set value (p) for the next iteration }
end

else if p < void then
begin p← loop list (loop ptr);
if p = null then goto not found ;
loop list (loop ptr)← link (p); q ← info(p); free avail (p);
end

else begin begin token list (info(loop ptr), forever text); return;
end;

begin token list (info(loop ptr), loop text); stack argument (q);
if internal [tracing commands] > unity then 〈Trace the start of a loop 762 〉;
return;

not found : stop iteration ;
exit : end;

761. 〈The arithmetic progression has ended 761 〉 ≡
((step size (p) > 0) ∧ (cur exp > final value (p))) ∨ ((step size (p) < 0) ∧ (cur exp < final value (p)))

This code is used in section 760.

762. 〈Trace the start of a loop 762 〉 ≡
begin begin diagnostic ; print nl ("{loop value=");
if (q 6= null) ∧ (link (q) = void) then print exp(q, 1)
else show token list (q,null , 50, 0);
print char ("}"); end diagnostic(false);
end

This code is used in section 760.

300 PART 37: ITERATIONS METAFONT §763

763. A level of loop control disappears when resume iteration has decided not to resume, or when an
exitif construction has removed the loop text from the input stack.

procedure stop iteration ;
var p, q: pointer ; { the usual }
begin p← loop type (loop ptr);
if p > void then free node (p, progression node size)
else if p < void then

begin q ← loop list (loop ptr);
while q 6= null do

begin p← info(q);
if p 6= null then

if link (p) = void then { it’s an expr parameter }
begin recycle value (p); free node (p, value node size);
end

else flush token list (p); { it’s a suffix or text parameter }
p← q; q ← link (q); free avail (p);
end;

end;
p← loop ptr ; loop ptr ← link (p); flush token list (info(p)); free node (p, loop node size);
end;

764. Now that we know all about loop control, we can finish up the missing portion of begin iteration and
we’ll be done.

The following code is performed after the ‘=’ has been scanned in a for construction (if m = expr base)
or a forsuffixes construction (if m = suffix base).

〈Scan the values to be used in the loop 764 〉 ≡
loop type (s)← null ; q ← loop list loc(s); link (q)← null ; { link (q) = loop list (s) }
repeat get x next ;

if m 6= expr base then scan suffix
else begin if cur cmd ≥ colon then

if cur cmd ≤ comma then goto continue ;
scan expression ;
if cur cmd = step token then

if q = loop list loc(s) then 〈Prepare for step-until construction and goto done 765 〉;
cur exp ← stash cur exp ;
end;

link (q)← get avail ; q ← link (q); info(q)← cur exp ; cur type ← vacuous ;
continue : until cur cmd 6= comma ;

done :

This code is used in section 755.

§765 METAFONT PART 37: ITERATIONS 301

765. 〈Prepare for step-until construction and goto done 765 〉 ≡
begin if cur type 6= known then bad for ("initial value");
pp ← get node (progression node size); value (pp)← cur exp ;
get x next ; scan expression ;
if cur type 6= known then bad for ("step size");
step size (pp)← cur exp ;
if cur cmd 6= until token then

begin missing err ("until");
help2 ("I assume you meant to say `until´ after `step´.")
("So I´ll look for the final value and colon next."); back error ;
end;

get x next ; scan expression ;
if cur type 6= known then bad for ("final value");
final value (pp)← cur exp ; loop type (s)← pp ; goto done ;
end

This code is used in section 764.

302 PART 38: FILE NAMES METAFONT §766

766. File names. It’s time now to fret about file names. Besides the fact that different operating systems
treat files in different ways, we must cope with the fact that completely different naming conventions are used
by different groups of people. The following programs show what is required for one particular operating
system; similar routines for other systems are not difficult to devise.

METAFONT assumes that a file name has three parts: the name proper; its “extension”; and a “file area”
where it is found in an external file system. The extension of an input file is assumed to be ‘.mf’ unless
otherwise specified; it is ‘.log’ on the transcript file that records each run of METAFONT; it is ‘.tfm’ on the
font metric files that describe characters in the fonts METAFONT creates; it is ‘.gf’ on the output files that
specify generic font information; and it is ‘.base’ on the base files written by INIMF to initialize METAFONT.
The file area can be arbitrary on input files, but files are usually output to the user’s current area. If an
input file cannot be found on the specified area, METAFONT will look for it on a special system area; this
special area is intended for commonly used input files.

Simple uses of METAFONT refer only to file names that have no explicit extension or area. For example,
a person usually says ‘input cmr10’ instead of ‘input cmr10.new’. Simple file names are best, because they
make the METAFONT source files portable; whenever a file name consists entirely of letters and digits, it
should be treated in the same way by all implementations of METAFONT. However, users need the ability to
refer to other files in their environment, especially when responding to error messages concerning unopenable
files; therefore we want to let them use the syntax that appears in their favorite operating system.

767. METAFONT uses the same conventions that have proved to be satisfactory for TEX. In order to isolate
the system-dependent aspects of file names, the system-independent parts of METAFONT are expressed in
terms of three system-dependent procedures called begin name , more name , and end name . In essence, if
the user-specified characters of the file name are c1 . . . cn, the system-independent driver program does the
operations

begin name ; more name (c1); . . . ; more name (cn); end name .

These three procedures communicate with each other via global variables. Afterwards the file name will
appear in the string pool as three strings called cur name, cur area , and cur ext ; the latter two are null
(i.e., ""), unless they were explicitly specified by the user.

Actually the situation is slightly more complicated, because METAFONT needs to know when the file name
ends. The more name routine is a function (with side effects) that returns true on the calls more name (c1),
. . . , more name (cn−1). The final call more name (cn) returns false ; or, it returns true and cn is the last
character on the current input line. In other words, more name is supposed to return true unless it is sure
that the file name has been completely scanned; and end name is supposed to be able to finish the assembly
of cur name , cur area , and cur ext regardless of whether more name (cn) returned true or false .

〈Global variables 13 〉 +≡
cur name : str number ; { name of file just scanned }
cur area : str number ; {file area just scanned, or "" }
cur ext : str number ; { file extension just scanned, or "" }

768. The file names we shall deal with for illustrative purposes have the following structure: If the name
contains ‘>’ or ‘:’, the file area consists of all characters up to and including the final such character; otherwise
the file area is null. If the remaining file name contains ‘.’, the file extension consists of all such characters
from the first remaining ‘.’ to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area
and extension delimiters:

〈Global variables 13 〉 +≡
area delimiter : pool pointer ; { the most recent ‘>’ or ‘:’, if any }
ext delimiter : pool pointer ; { the relevant ‘.’, if any }

§769 METAFONT PART 38: FILE NAMES 303

769. Input files that can’t be found in the user’s area may appear in a standard system area called MF area .
This system area name will, of course, vary from place to place.

define MF area ≡ "MFinputs:"

770. Here now is the first of the system-dependent routines for file name scanning.

procedure begin name ;
begin area delimiter ← 0; ext delimiter ← 0;
end;

771. And here’s the second.

function more name (c : ASCII code): boolean ;
begin if c = " " then more name ← false
else begin if (c = ">") ∨ (c = ":") then

begin area delimiter ← pool ptr ; ext delimiter ← 0;
end

else if (c = ".") ∧ (ext delimiter = 0) then ext delimiter ← pool ptr ;
str room (1); append char (c); { contribute c to the current string }
more name ← true ;
end;

end;

772. The third.

procedure end name ;
begin if str ptr + 3 > max str ptr then

begin if str ptr + 3 > max strings then overflow ("number of strings",max strings − init str ptr);
max str ptr ← str ptr + 3;
end;

if area delimiter = 0 then cur area ← ""

else begin cur area ← str ptr ; incr (str ptr); str start [str ptr]← area delimiter + 1;
end;

if ext delimiter = 0 then
begin cur ext ← ""; cur name ← make string ;
end

else begin cur name ← str ptr ; incr (str ptr); str start [str ptr]← ext delimiter ;
cur ext ← make string ;
end;

end;

773. Conversely, here is a routine that takes three strings and prints a file name that might have produced
them. (The routine is system dependent, because some operating systems put the file area last instead of
first.)

〈Basic printing procedures 57 〉 +≡
procedure print file name (n, a, e : integer);

begin slow print (a); slow print (n); slow print (e);
end;

304 PART 38: FILE NAMES METAFONT §774

774. Another system-dependent routine is needed to convert three internal METAFONT strings to the
name of file value that is used to open files. The present code allows both lowercase and uppercase letters
in the file name.

define append to name (#) ≡
begin c← #; incr (k);
if k ≤ file name size then name of file [k]← xchr [c];
end

procedure pack file name (n, a, e : str number);
var k: integer ; {number of positions filled in name of file }
c: ASCII code ; { character being packed }
j: pool pointer ; { index into str pool }

begin k ← 0;
for j ← str start [a] to str start [a+ 1]− 1 do append to name (so(str pool [j]));
for j ← str start [n] to str start [n+ 1]− 1 do append to name (so(str pool [j]));
for j ← str start [e] to str start [e+ 1]− 1 do append to name (so(str pool [j]));
if k ≤ file name size then name length ← k else name length ← file name size ;
for k ← name length + 1 to file name size do name of file [k]← ´ ´;
end;

775. A messier routine is also needed, since base file names must be scanned before METAFONT’s string
mechanism has been initialized. We shall use the global variable MF base default to supply the text for
default system areas and extensions related to base files.

define base default length = 18 { length of the MF base default string }
define base area length = 8 { length of its area part }
define base ext length = 5 { length of its ‘.base’ part }
define base extension = ".base" { the extension, as a WEB constant }

〈Global variables 13 〉 +≡
MF base default : packed array [1 . . base default length] of char ;

776. 〈Set initial values of key variables 21 〉 +≡
MF base default ← ´MFbases:plain.base´;

777. 〈Check the “constant” values for consistency 14 〉 +≡
if base default length > file name size then bad ← 41;

§778 METAFONT PART 38: FILE NAMES 305

778. Here is the messy routine that was just mentioned. It sets name of file from the first n characters of
MF base default , followed by buffer [a . . b], followed by the last base ext length characters of MF base default .

We dare not give error messages here, since METAFONT calls this routine before the error routine is ready
to roll. Instead, we simply drop excess characters, since the error will be detected in another way when a
strange file name isn’t found.

procedure pack buffered name (n : small number ; a, b : integer);
var k: integer ; {number of positions filled in name of file }
c: ASCII code ; { character being packed }
j: integer ; { index into buffer or MF base default }

begin if n+ b− a+ 1 + base ext length > file name size then
b← a+ file name size − n− 1− base ext length ;

k ← 0;
for j ← 1 to n do append to name (xord [MF base default [j]]);
for j ← a to b do append to name (buffer [j]);
for j ← base default length − base ext length + 1 to base default length do

append to name (xord [MF base default [j]]);
if k ≤ file name size then name length ← k else name length ← file name size ;
for k ← name length + 1 to file name size do name of file [k]← ´ ´;
end;

779. Here is the only place we use pack buffered name . This part of the program becomes active when
a “virgin” METAFONT is trying to get going, just after the preliminary initialization, or when the user is
substituting another base file by typing ‘&’ after the initial ‘**’ prompt. The buffer contains the first line of
input in buffer [loc . . (last − 1)], where loc < last and buffer [loc] 6= " ".

〈Declare the function called open base file 779 〉 ≡
function open base file : boolean ;

label found , exit ;
var j: 0 . . buf size ; { the first space after the file name }
begin j ← loc ;
if buffer [loc] = "&" then

begin incr (loc); j ← loc ; buffer [last]← " ";
while buffer [j] 6= " " do incr (j);
pack buffered name (0, loc , j − 1); { try first without the system file area }
if w open in (base file) then goto found ;
pack buffered name (base area length , loc , j − 1); { now try the system base file area }
if w open in (base file) then goto found ;
wake up terminal ; wterm ln (´Sorry, I can´´t find that base;´, ´ will try PLAIN.´);
update terminal ;
end; { now pull out all the stops: try for the system plain file }

pack buffered name (base default length − base ext length , 1, 0);
if ¬w open in (base file) then

begin wake up terminal ; wterm ln (´I can´´t find the PLAIN base file!´);
open base file ← false ; return;
end;

found : loc ← j; open base file ← true ;
exit : end;

This code is used in section 1187.

306 PART 38: FILE NAMES METAFONT §780

780. Operating systems often make it possible to determine the exact name (and possible version number)
of a file that has been opened. The following routine, which simply makes a METAFONT string from the
value of name of file , should ideally be changed to deduce the full name of file f , which is the file most
recently opened, if it is possible to do this in a Pascal program.

This routine might be called after string memory has overflowed, hence we dare not use ‘str room ’.

function make name string : str number ;
var k: 1 . . file name size ; { index into name of file }
begin if (pool ptr + name length > pool size) ∨ (str ptr = max strings) then make name string ← "?"

else begin for k ← 1 to name length do append char (xord [name of file [k]]);
make name string ← make string ;
end;

end;
function a make name string (var f : alpha file): str number ;

begin a make name string ← make name string ;
end;

function b make name string (var f : byte file): str number ;
begin b make name string ← make name string ;
end;

function w make name string (var f : word file): str number ;
begin w make name string ← make name string ;
end;

781. Now let’s consider the “driver” routines by which METAFONT deals with file names in a system-
independent manner. First comes a procedure that looks for a file name in the input by taking the information
from the input buffer. (We can’t use get next , because the conversion to tokens would destroy necessary
information.)

This procedure doesn’t allow semicolons or percent signs to be part of file names, because of other
conventions of METAFONT. The manual doesn’t use semicolons or percents immediately after file names,
but some users no doubt will find it natural to do so; therefore system-dependent changes to allow such
characters in file names should probably be made with reluctance, and only when an entire file name that
includes special characters is “quoted” somehow.

procedure scan file name ;
label done ;
begin begin name ;
while buffer [loc] = " " do incr (loc);
loop begin if (buffer [loc] = ";") ∨ (buffer [loc] = "%") then goto done ;

if ¬more name (buffer [loc]) then goto done ;
incr (loc);
end;

done : end name ;
end;

782. The global variable job name contains the file name that was first input by the user. This name is
extended by ‘.log’ and ‘.gf’ and ‘.base’ and ‘.tfm’ in the names of METAFONT’s output files.

〈Global variables 13 〉 +≡
job name : str number ; {principal file name }
log opened : boolean ; {has the transcript file been opened? }
log name : str number ; { full name of the log file }

§783 METAFONT PART 38: FILE NAMES 307

783. Initially job name = 0; it becomes nonzero as soon as the true name is known. We have job name = 0
if and only if the ‘log’ file has not been opened, except of course for a short time just after job name has
become nonzero.

〈 Initialize the output routines 55 〉 +≡
job name ← 0; log opened ← false ;

784. Here is a routine that manufactures the output file names, assuming that job name 6= 0. It ignores
and changes the current settings of cur area and cur ext .

define pack cur name ≡ pack file name (cur name , cur area , cur ext)

procedure pack job name (s : str number); { s = ".log", ".gf", ".tfm", or base extension }
begin cur area ← ""; cur ext ← s; cur name ← job name ; pack cur name ;
end;

785. Actually the main output file extension is usually something like ".300gf" instead of just ".gf"; the
additional number indicates the resolution in pixels per inch, based on the setting of hppp when the file is
opened.

〈Global variables 13 〉 +≡
gf ext : str number ; { default extension for the output file }

786. If some trouble arises when METAFONT tries to open a file, the following routine calls upon the user
to supply another file name. Parameter s is used in the error message to identify the type of file; parameter e
is the default extension if none is given. Upon exit from the routine, variables cur name , cur area , cur ext ,
and name of file are ready for another attempt at file opening.

procedure prompt file name (s, e : str number);
label done ;
var k: 0 . . buf size ; { index into buffer }
begin if interaction = scroll mode then wake up terminal ;
if s = "input file name" then print err ("I can´t find file `")
else print err ("I can´t write on file `");
print file name (cur name , cur area , cur ext); print ("´.");
if e = ".mf" then show context ;
print nl ("Please type another "); print (s);
if interaction < scroll mode then fatal error ("*** (job aborted, file error in nonstop mode)");
clear terminal ; prompt input (": "); 〈Scan file name in the buffer 787 〉;
if cur ext = "" then cur ext ← e;
pack cur name ;
end;

787. 〈Scan file name in the buffer 787 〉 ≡
begin begin name ; k ← first ;
while (buffer [k] = " ") ∧ (k < last) do incr (k);
loop begin if k = last then goto done ;

if ¬more name (buffer [k]) then goto done ;
incr (k);
end;

done : end name ;
end

This code is used in section 786.

308 PART 38: FILE NAMES METAFONT §788

788. The open log file routine is used to open the transcript file and to help it catch up to what has
previously been printed on the terminal.

procedure open log file ;
var old setting : 0 . . max selector ; {previous selector setting }
k: 0 . . buf size ; { index into months and buffer }
l: 0 . . buf size ; { end of first input line }
m: integer ; { the current month }
months : packed array [1 . . 36] of char ; { abbreviations of month names }

begin old setting ← selector ;
if job name = 0 then job name ← "mfput";
pack job name (".log");
while ¬a open out (log file) do 〈Try to get a different log file name 789 〉;
log name ← a make name string (log file); selector ← log only ; log opened ← true ;
〈Print the banner line, including the date and time 790 〉;
input stack [input ptr]← cur input ; {make sure bottom level is in memory }
print nl ("**"); l← input stack [0].limit field − 1; { last position of first line }
for k ← 1 to l do print (buffer [k]);
print ln ; {now the transcript file contains the first line of input }
selector ← old setting + 2; { log only or term and log }
end;

789. Sometimes open log file is called at awkward moments when METAFONT is unable to print error
messages or even to show context . The prompt file name routine can result in a fatal error , but the error
routine will not be invoked because log opened will be false.

The normal idea of batch mode is that nothing at all should be written on the terminal. However, in the
unusual case that no log file could be opened, we make an exception and allow an explanatory message to
be seen.

Incidentally, the program always refers to the log file as a ‘transcript file’, because some systems
cannot use the extension ‘.log’ for this file.

〈Try to get a different log file name 789 〉 ≡
begin selector ← term only ; prompt file name ("transcript file name", ".log");
end

This code is used in section 788.

790. 〈Print the banner line, including the date and time 790 〉 ≡
begin wlog (banner); slow print (base ident); print (" "); print int (sys day); print char (" ");
months ← ´JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC´;
for k ← 3 ∗ sys month − 2 to 3 ∗ sys month do wlog (months [k]);
print char (" "); print int (sys year); print char (" "); print dd (sys time div 60); print char (":");
print dd (sys time mod 60);
end

This code is used in section 788.

§791 METAFONT PART 38: FILE NAMES 309

791. Here’s an example of how these file-name-parsing routines work in practice. We shall use the macro
set output file name when it is time to crank up the output file.

define set output file name ≡
begin if job name = 0 then open log file ;
pack job name (gf ext);
while ¬b open out (gf file) do prompt file name ("file name for output", gf ext);
output file name ← b make name string (gf file);
end

〈Global variables 13 〉 +≡
gf file : byte file ; { the generic font output goes here }
output file name : str number ; { full name of the output file }

792. 〈 Initialize the output routines 55 〉 +≡
output file name ← 0;

793. Let’s turn now to the procedure that is used to initiate file reading when an ‘input’ command is
being processed. Beware: For historic reasons, this code foolishly conserves a tiny bit of string pool space;
but that can confuse the interactive ‘E’ option.

procedure start input ; {METAFONT will input something }
label done ;
begin 〈Put the desired file name in (cur name , cur ext , cur area) 795 〉;
if cur ext = "" then cur ext ← ".mf";
pack cur name ;
loop begin begin file reading ; { set up cur file and new level of input }

if a open in (cur file) then goto done ;
if cur area = "" then

begin pack file name (cur name ,MF area , cur ext);
if a open in (cur file) then goto done ;
end;

end file reading ; { remove the level that didn’t work }
prompt file name ("input file name", ".mf");
end;

done : name ← a make name string (cur file); str ref [cur name]← max str ref ;
if job name = 0 then

begin job name ← cur name ; open log file ;
end; { open log file doesn’t show context , so limit and loc needn’t be set to meaningful values yet }

if term offset + length (name) > max print line − 2 then print ln
else if (term offset > 0) ∨ (file offset > 0) then print char (" ");
print char ("("); incr (open parens); slow print (name); update terminal ;
if name = str ptr − 1 then { conserve string pool space (but see note above) }

begin flush string (name); name ← cur name ;
end;
〈Read the first line of the new file 794 〉;
end;

310 PART 38: FILE NAMES METAFONT §794

794. Here we have to remember to tell the input ln routine not to start with a get . If the file is empty, it
is considered to contain a single blank line.

〈Read the first line of the new file 794 〉 ≡
begin line ← 1;
if input ln (cur file , false) then do nothing ;
firm up the line ; buffer [limit]← "%"; first ← limit + 1; loc ← start ;
end

This code is used in section 793.

795. 〈Put the desired file name in (cur name , cur ext , cur area) 795 〉 ≡
while token state ∧ (loc = null) do end token list ;
if token state then

begin print err ("File names can´t appear within macros");
help3 ("Sorry...I´ve converted what follows to tokens,")
("possibly garbaging the name you gave.")
("Please delete the tokens and insert the name again.");
error ;
end;

if file state then scan file name
else begin cur name ← ""; cur ext ← ""; cur area ← "";

end

This code is used in section 793.

§796 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 311

796. Introduction to the parsing routines. We come now to the central nervous system that sparks
many of METAFONT’s activities. By evaluating expressions, from their primary constituents to ever larger
subexpressions, METAFONT builds the structures that ultimately define fonts of type.

Four mutually recursive subroutines are involved in this process: We call them

scan primary , scan secondary , scan tertiary , and scan expression .

Each of them is parameterless and begins with the first token to be scanned already represented in cur cmd ,
cur mod , and cur sym . After execution, the value of the primary or secondary or tertiary or expression that
was found will appear in the global variables cur type and cur exp . The token following the expression will
be represented in cur cmd , cur mod , and cur sym .

Technically speaking, the parsing algorithms are “LL(1),” more or less; backup mechanisms have been
added in order to provide reasonable error recovery.

〈Global variables 13 〉 +≡
cur type : small number ; { the type of the expression just found }
cur exp : integer ; { the value of the expression just found }

797. 〈Set initial values of key variables 21 〉 +≡
cur exp ← 0;

312 PART 39: INTRODUCTION TO THE PARSING ROUTINES METAFONT §798

798. Many different kinds of expressions are possible, so it is wise to have precise descriptions of what
cur type and cur exp mean in all cases:

cur type = vacuous means that this expression didn’t turn out to have a value at all, because it arose from
a begingroup . . . endgroup construction in which there was no expression before the endgroup.
In this case cur exp has some irrelevant value.

cur type = boolean type means that cur exp is either true code or false code .

cur type = unknown boolean means that cur exp points to a capsule node that is in a ring of equivalent
booleans whose value has not yet been defined.

cur type = string type means that cur exp is a string number (i.e., an integer in the range 0 ≤ cur exp <
str ptr). That string’s reference count includes this particular reference.

cur type = unknown string means that cur exp points to a capsule node that is in a ring of equivalent strings
whose value has not yet been defined.

cur type = pen type means that cur exp points to a pen header node. This node contains a reference count,
which takes account of this particular reference.

cur type = unknown pen means that cur exp points to a capsule node that is in a ring of equivalent pens
whose value has not yet been defined.

cur type = future pen means that cur exp points to a knot list that should eventually be made into a pen.
Nobody else points to this particular knot list. The future pen option occurs only as an output of
scan primary and scan secondary , not as an output of scan tertiary or scan expression .

cur type = path type means that cur exp points to the first node of a path; nobody else points to this
particular path. The control points of the path will have been chosen.

cur type = unknown path means that cur exp points to a capsule node that is in a ring of equivalent paths
whose value has not yet been defined.

cur type = picture type means that cur exp points to an edges header node. Nobody else points to this
particular set of edges.

cur type = unknown picture means that cur exp points to a capsule node that is in a ring of equivalent
pictures whose value has not yet been defined.

cur type = transform type means that cur exp points to a transform type capsule node. The value part of
this capsule points to a transform node that contains six numeric values, each of which is independent ,
dependent , proto dependent , or known .

cur type = pair type means that cur exp points to a capsule node whose type is pair type . The value part
of this capsule points to a pair node that contains two numeric values, each of which is independent ,
dependent , proto dependent , or known .

cur type = known means that cur exp is a scaled value.

cur type = dependent means that cur exp points to a capsule node whose type is dependent . The dep list
field in this capsule points to the associated dependency list.

cur type = proto dependent means that cur exp points to a proto dependent capsule node. The dep list field
in this capsule points to the associated dependency list.

cur type = independent means that cur exp points to a capsule node whose type is independent . This some-
what unusual case can arise, for example, in the expression ‘x+ begingroup string x; 0 endgroup’.

cur type = token list means that cur exp points to a linked list of tokens.

The possible settings of cur type have been listed here in increasing numerical order. Notice that cur type
will never be numeric type or suffixed macro or unsuffixed macro , although variables of those types are
allowed. Conversely, METAFONT has no variables of type vacuous or token list .

§799 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 313

799. Capsules are two-word nodes that have a similar meaning to cur type and cur exp . Such nodes have
name type = capsule , and their type field is one of the possibilities for cur type listed above. Also link ≤ void
in capsules that aren’t part of a token list.

The value field of a capsule is, in most cases, the value that corresponds to its type , as cur exp corresponds
to cur type . However, when cur exp would point to a capsule, no extra layer of indirection is present; the
value field is what would have been called value (cur exp) if it had not been encapsulated. Furthermore, if
the type is dependent or proto dependent , the value field of a capsule is replaced by dep list and prev dep
fields, since dependency lists in capsules are always part of the general dep list structure.

The get x next routine is careful not to change the values of cur type and cur exp when it gets an expanded
token. However, get x next might call a macro, which might parse an expression, which might execute lots
of commands in a group; hence it’s possible that cur type might change from, say, unknown boolean to
boolean type , or from dependent to known or independent , during the time get x next is called. The programs
below are careful to stash sensitive intermediate results in capsules, so that METAFONT’s generality doesn’t
cause trouble.

Here’s a procedure that illustrates these conventions. It takes the contents of (cur type , cur exp) and
stashes them away in a capsule. It is not used when cur type = token list . After the operation, cur type =
vacuous ; hence there is no need to copy path lists or to update reference counts, etc.

The special link void is put on the capsule returned by stash cur exp , because this procedure is used to
store macro parameters that must be easily distinguishable from token lists.

〈Declare the stashing/unstashing routines 799 〉 ≡
function stash cur exp : pointer ;

var p: pointer ; { the capsule that will be returned }
begin case cur type of
unknown types , transform type , pair type , dependent , proto dependent , independent : p← cur exp ;
othercases begin p← get node (value node size); name type (p)← capsule ; type (p)← cur type ;

value (p)← cur exp ;
end

endcases;
cur type ← vacuous ; link (p)← void ; stash cur exp ← p;
end;

See also section 800.

This code is used in section 801.

314 PART 39: INTRODUCTION TO THE PARSING ROUTINES METAFONT §800

800. The inverse of stash cur exp is the following procedure, which deletes an unnecessary capsule and
puts its contents into cur type and cur exp .

The program steps of METAFONT can be divided into two categories: those in which cur type and cur exp
are “alive” and those in which they are “dead,” in the sense that cur type and cur exp contain relevant
information or not. It’s important not to ignore them when they’re alive, and it’s important not to pay
attention to them when they’re dead.

There’s also an intermediate category: If cur type = vacuous , then cur exp is irrelevant, hence we can
proceed without caring if cur type and cur exp are alive or dead. In such cases we say that cur type and
cur exp are dormant. It is permissible to call get x next only when they are alive or dormant.

The stash procedure above assumes that cur type and cur exp are alive or dormant. The unstash procedure
assumes that they are dead or dormant; it resuscitates them.

〈Declare the stashing/unstashing routines 799 〉 +≡
procedure unstash cur exp(p : pointer);

begin cur type ← type (p);
case cur type of
unknown types , transform type , pair type , dependent , proto dependent , independent : cur exp ← p;
othercases begin cur exp ← value (p); free node (p, value node size);

end
endcases;
end;

801. The following procedure prints the values of expressions in an abbreviated format. If its first
parameter p is null, the value of (cur type , cur exp) is displayed; otherwise p should be a capsule containing
the desired value. The second parameter controls the amount of output. If it is 0, dependency lists will
be abbreviated to ‘linearform’ unless they consist of a single term. If it is greater than 1, complicated
structures (pens, pictures, and paths) will be displayed in full.

〈Declare subroutines for printing expressions 257 〉 +≡
〈Declare the procedure called print dp 805 〉
〈Declare the stashing/unstashing routines 799 〉
procedure print exp(p : pointer ; verbosity : small number);

var restore cur exp : boolean ; { should cur exp be restored? }
t: small number ; { the type of the expression }
v: integer ; { the value of the expression }
q: pointer ; { a big node being displayed }

begin if p 6= null then restore cur exp ← false
else begin p← stash cur exp ; restore cur exp ← true ;

end;
t← type (p);
if t < dependent then v ← value (p) else if t < independent then v ← dep list (p);
〈Print an abbreviated value of v with format depending on t 802 〉;
if restore cur exp then unstash cur exp(p);
end;

§802 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 315

802. 〈Print an abbreviated value of v with format depending on t 802 〉 ≡
case t of
vacuous : print ("vacuous");
boolean type : if v = true code then print ("true") else print ("false");
unknown types ,numeric type : 〈Display a variable that’s been declared but not defined 806 〉;
string type : begin print char (""""); slow print (v); print char ("""");

end;
pen type , future pen , path type , picture type : 〈Display a complex type 804 〉;
transform type , pair type : if v = null then print type (t)

else 〈Display a big node 803 〉;
known : print scaled (v);
dependent , proto dependent : print dp(t, v, verbosity);
independent : print variable name (p);
othercases confusion ("exp")
endcases

This code is used in section 801.

803. 〈Display a big node 803 〉 ≡
begin print char ("("); q ← v + big node size [t];
repeat if type (v) = known then print scaled (value (v))

else if type (v) = independent then print variable name (v)
else print dp(type (v), dep list (v), verbosity);

v ← v + 2;
if v 6= q then print char (",");

until v = q;
print char (")");
end

This code is used in section 802.

804. Values of type picture, path, and pen are displayed verbosely in the log file only, unless the user
has given a positive value to tracingonline .

〈Display a complex type 804 〉 ≡
if verbosity ≤ 1 then print type (t)
else begin if selector = term and log then

if internal [tracing online] ≤ 0 then
begin selector ← term only ; print type (t); print (" (see the transcript file)");
selector ← term and log ;
end;

case t of
pen type : print pen (v, "", false);
future pen : print path (v, " (future pen)", false);
path type : print path (v, "", false);
picture type : begin cur edges ← v; print edges ("", false , 0, 0);

end;
end; { there are no other cases }
end

This code is used in section 802.

316 PART 39: INTRODUCTION TO THE PARSING ROUTINES METAFONT §805

805. 〈Declare the procedure called print dp 805 〉 ≡
procedure print dp(t : small number ; p : pointer ; verbosity : small number);

var q: pointer ; { the node following p }
begin q ← link (p);
if (info(q) = null) ∨ (verbosity > 0) then print dependency (p, t)
else print ("linearform");
end;

This code is used in section 801.

806. The displayed name of a variable in a ring will not be a capsule unless the ring consists entirely of
capsules.

〈Display a variable that’s been declared but not defined 806 〉 ≡
begin print type (t);
if v 6= null then

begin print char (" ");
while (name type (v) = capsule) ∧ (v 6= p) do v ← value (v);
print variable name (v);
end;

end

This code is used in section 802.

807. When errors are detected during parsing, it is often helpful to display an expression just above the
error message, using exp err or disp err instead of print err .

define exp err (#) ≡ disp err (null , #) { displays the current expression }
〈Declare subroutines for printing expressions 257 〉 +≡
procedure disp err (p : pointer ; s : str number);

begin if interaction = error stop mode then wake up terminal ;
print nl (">> "); print exp(p, 1); { “medium verbose” printing of the expression }
if s 6= "" then

begin print nl ("! "); print (s);
end;

end;

§808 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 317

808. If cur type and cur exp contain relevant information that should be recycled, we will use the following
procedure, which changes cur type to known and stores a given value in cur exp . We can think of cur type
and cur exp as either alive or dormant after this has been done, because cur exp will not contain a pointer
value.

〈Declare the procedure called flush cur exp 808 〉 ≡
procedure flush cur exp(v : scaled);

begin case cur type of
unknown types , transform type , pair type ,

dependent , proto dependent , independent : begin recycle value (cur exp);
free node (cur exp , value node size);
end;

pen type : delete pen ref (cur exp);
string type : delete str ref (cur exp);
future pen , path type : toss knot list (cur exp);
picture type : toss edges (cur exp);
othercases do nothing
endcases;
cur type ← known ; cur exp ← v;
end;

See also section 820.

This code is used in section 246.

809. There’s a much more general procedure that is capable of releasing the storage associated with any
two-word value packet.

〈Declare the recycling subroutines 268 〉 +≡
procedure recycle value (p : pointer);

label done ;
var t: small number ; { a type code }
v: integer ; { a value }
vv : integer ; { another value }
q, r, s, pp : pointer ; { link manipulation registers }

begin t← type (p);
if t < dependent then v ← value (p);
case t of
undefined , vacuous , boolean type , known ,numeric type : do nothing ;
unknown types : ring delete (p);
string type : delete str ref (v);
pen type : delete pen ref (v);
path type , future pen : toss knot list (v);
picture type : toss edges (v);
pair type , transform type : 〈Recycle a big node 810 〉;
dependent , proto dependent : 〈Recycle a dependency list 811 〉;
independent : 〈Recycle an independent variable 812 〉;
token list , structured : confusion ("recycle");
unsuffixed macro , suffixed macro : delete mac ref (value (p));
end; { there are no other cases }
type (p)← undefined ;
end;

318 PART 39: INTRODUCTION TO THE PARSING ROUTINES METAFONT §810

810. 〈Recycle a big node 810 〉 ≡
if v 6= null then

begin q ← v + big node size [t];
repeat q ← q − 2; recycle value (q);
until q = v;
free node (v, big node size [t]);
end

This code is used in section 809.

811. 〈Recycle a dependency list 811 〉 ≡
begin q ← dep list (p);
while info(q) 6= null do q ← link (q);
link (prev dep(p))← link (q); prev dep(link (q))← prev dep(p); link (q)← null ;
flush node list (dep list (p));
end

This code is used in section 809.

§812 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 319

812. When an independent variable disappears, it simply fades away, unless something depends on it. In
the latter case, a dependent variable whose coefficient of dependence is maximal will take its place. The
relevant algorithm is due to Ignacio A. Zabala, who implemented it as part of his Ph.D. thesis (Stanford
University, December 1982).

For example, suppose that variable x is being recycled, and that the only variables depending on x are
y = 2x + a and z = x + b. In this case we want to make y independent and z = .5y − .5a + b; no other
variables will depend on y. If tracingequations > 0 in this situation, we will print ‘### −2x=−y+a’.

There’s a slight complication, however: An independent variable x can occur both in dependency lists and
in proto-dependency lists. This makes it necessary to be careful when deciding which coefficient is maximal.

Furthermore, this complication is not so slight when a proto-dependent variable is chosen to become
independent. For example, suppose that y = 2x + 100a is proto-dependent while z = x + b is dependent;
then we must change z = .5y − 50a+ b to a proto-dependency, because of the large coefficient ‘50’.

In order to deal with these complications without wasting too much time, we shall link together the
occurrences of x among all the linear dependencies, maintaining separate lists for the dependent and proto-
dependent cases.

〈Recycle an independent variable 812 〉 ≡
begin max c [dependent]← 0; max c [proto dependent]← 0;
max link [dependent]← null ; max link [proto dependent]← null ;
q ← link (dep head);
while q 6= dep head do

begin s← value loc(q); {now link (s) = dep list (q) }
loop begin r ← link (s);

if info(r) = null then goto done ;
if info(r) 6= p then s← r
else begin t← type (q); link (s)← link (r); info(r)← q;

if abs (value (r)) > max c [t] then 〈Record a new maximum coefficient of type t 814 〉
else begin link (r)← max link [t]; max link [t]← r;

end;
end;

end;
done : q ← link (r);

end;
if (max c [dependent] > 0) ∨ (max c [proto dependent] > 0) then
〈Choose a dependent variable to take the place of the disappearing independent variable, and change

all remaining dependencies accordingly 815 〉;
end

This code is used in section 809.

813. The code for independency removal makes use of three two-word arrays.

〈Global variables 13 〉 +≡
max c : array [dependent . . proto dependent] of integer ; {max coefficient magnitude }
max ptr : array [dependent . . proto dependent] of pointer ; {where p occurs with max c }
max link : array [dependent . . proto dependent] of pointer ; { other occurrences of p }

814. 〈Record a new maximum coefficient of type t 814 〉 ≡
begin if max c [t] > 0 then

begin link (max ptr [t])← max link [t]; max link [t]← max ptr [t];
end;

max c [t]← abs (value (r)); max ptr [t]← r;
end

This code is used in section 812.

320 PART 39: INTRODUCTION TO THE PARSING ROUTINES METAFONT §815

815. 〈Choose a dependent variable to take the place of the disappearing independent variable, and
change all remaining dependencies accordingly 815 〉 ≡

begin if (max c [dependent] div 1́0000 ≥ max c [proto dependent]) then t← dependent
else t← proto dependent ;
〈Determine the dependency list s to substitute for the independent variable p 816 〉;
t← dependent + proto dependent − t; { complement t }
if max c [t] > 0 then {we need to pick up an unchosen dependency }

begin link (max ptr [t])← max link [t]; max link [t]← max ptr [t];
end;

if t 6= dependent then 〈Substitute new dependencies in place of p 818 〉
else 〈Substitute new proto-dependencies in place of p 819 〉;
flush node list (s);
if fix needed then fix dependencies ;
check arith ;
end

This code is used in section 812.

816. Let s = max ptr [t]. At this point we have value (s) = ±max c [t], and info(s) points to the dependent
variable pp of type t from whose dependency list we have removed node s. We must reinsert node s into the
dependency list, with coefficient −1.0, and with pp as the new independent variable. Since pp will have a
larger serial number than any other variable, we can put node s at the head of the list.

〈Determine the dependency list s to substitute for the independent variable p 816 〉 ≡
s← max ptr [t]; pp ← info(s); v ← value (s);
if t = dependent then value (s)← −fraction one else value (s)← −unity ;
r ← dep list (pp); link (s)← r;
while info(r) 6= null do r ← link (r);
q ← link (r); link (r)← null ; prev dep(q)← prev dep(pp); link (prev dep(pp))← q; new indep(pp);
if cur exp = pp then

if cur type = t then cur type ← independent ;
if internal [tracing equations] > 0 then 〈Show the transformed dependency 817 〉

This code is used in section 815.

817. Now (−v) times the formerly independent variable p is being replaced by the dependency list s.

〈Show the transformed dependency 817 〉 ≡
if interesting (p) then

begin begin diagnostic ; print nl ("### ");
if v > 0 then print char ("−");
if t = dependent then vv ← round fraction (max c [dependent])
else vv ← max c [proto dependent];
if vv 6= unity then print scaled (vv);
print variable name (p);
while value (p) mod s scale > 0 do

begin print ("*4"); value (p)← value (p)− 2;
end;

if t = dependent then print char ("=") else print (" = ");
print dependency (s, t); end diagnostic(false);
end

This code is used in section 816.

§818 METAFONT PART 39: INTRODUCTION TO THE PARSING ROUTINES 321

818. Finally, there are dependent and proto-dependent variables whose dependency lists must be brought
up to date.

〈Substitute new dependencies in place of p 818 〉 ≡
for t← dependent to proto dependent do

begin r ← max link [t];
while r 6= null do

begin q ← info(r); dep list (q)← p plus fq (dep list (q),make fraction (value (r),−v), s, t, dependent);
if dep list (q) = dep final then make known (q, dep final);
q ← r; r ← link (r); free node (q, dep node size);
end;

end

This code is used in section 815.

819. 〈Substitute new proto-dependencies in place of p 819 〉 ≡
for t← dependent to proto dependent do

begin r ← max link [t];
while r 6= null do

begin q ← info(r);
if t = dependent then { for safety’s sake, we change q to proto dependent }

begin if cur exp = q then
if cur type = dependent then cur type ← proto dependent ;

dep list (q)← p over v (dep list (q), unity , dependent , proto dependent);
type (q)← proto dependent ; value (r)← round fraction (value (r));
end;

dep list (q)← p plus fq (dep list (q),make scaled (value (r),−v), s, proto dependent , proto dependent);
if dep list (q) = dep final then make known (q, dep final);
q ← r; r ← link (r); free node (q, dep node size);
end;

end

This code is used in section 815.

820. Here are some routines that provide handy combinations of actions that are often needed during error
recovery. For example, ‘flush error ’ flushes the current expression, replaces it by a given value, and calls
error .

Errors often are detected after an extra token has already been scanned. The ‘put get ’ routines put that
token back before calling error ; then they get it back again. (Or perhaps they get another token, if the user
has changed things.)

〈Declare the procedure called flush cur exp 808 〉 +≡
procedure flush error (v : scaled);

begin error ; flush cur exp(v); end;

procedure back error ; forward ;
procedure get x next ; forward ;

procedure put get error ;
begin back error ; get x next ; end;

procedure put get flush error (v : scaled);
begin put get error ; flush cur exp(v); end;

322 PART 39: INTRODUCTION TO THE PARSING ROUTINES METAFONT §821

821. A global variable called var flag is set to a special command code just before METAFONT calls
scan expression , if the expression should be treated as a variable when this command code immediately
follows. For example, var flag is set to assignment at the beginning of a statement, because we want to
know the location of a variable at the left of ‘:=’, not the value of that variable.

The scan expression subroutine calls scan tertiary , which calls scan secondary , which calls scan primary ,
which sets var flag ← 0. In this way each of the scanning routines “knows” when it has been called with a
special var flag , but var flag is usually zero.

A variable preceding a command that equals var flag is converted to a token list rather than a value.
Furthermore, an ‘=’ sign following an expression with var flag = assignment is not considered to be a
relation that produces boolean expressions.

〈Global variables 13 〉 +≡
var flag : 0 . . max command code ; { command that wants a variable }

822. 〈Set initial values of key variables 21 〉 +≡
var flag ← 0;

§823 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 323

823. Parsing primary expressions. The first parsing routine, scan primary , is also the most compli-
cated one, since it involves so many different cases. But each case—with one exception—is fairly simple by
itself.

When scan primary begins, the first token of the primary to be scanned should already appear in cur cmd ,
cur mod , and cur sym . The values of cur type and cur exp should be either dead or dormant, as explained
earlier. If cur cmd is not between min primary command and max primary command , inclusive, a syntax
error will be signalled.

〈Declare the basic parsing subroutines 823 〉 ≡
procedure scan primary ;

label restart , done , done1 , done2 ;
var p, q, r: pointer ; { for list manipulation }
c: quarterword ; { a primitive operation code }
my var flag : 0 . . max command code ; { initial value of var flag }
l delim , r delim : pointer ; { hash addresses of a delimiter pair }
〈Other local variables for scan primary 831 〉

begin my var flag ← var flag ; var flag ← 0;
restart : check arith ; 〈Supply diagnostic information, if requested 825 〉;

case cur cmd of
left delimiter : 〈Scan a delimited primary 826 〉;
begin group : 〈Scan a grouped primary 832 〉;
string token : 〈Scan a string constant 833 〉;
numeric token : 〈Scan a primary that starts with a numeric token 837 〉;
nullary : 〈Scan a nullary operation 834 〉;
unary , type name , cycle , plus or minus : 〈Scan a unary operation 835 〉;
primary binary : 〈Scan a binary operation with ‘of ’ between its operands 839 〉;
str op : 〈Convert a suffix to a string 840 〉;
internal quantity : 〈Scan an internal numeric quantity 841 〉;
capsule token : make exp copy (cur mod);
tag token : 〈Scan a variable primary; goto restart if it turns out to be a macro 844 〉;
othercases begin bad exp("A primary"); goto restart ;

end
endcases;
get x next ; { the routines goto done if they don’t want this }

done : if cur cmd = left bracket then
if cur type ≥ known then 〈Scan a mediation construction 859 〉;

end;

See also sections 860, 862, 864, 868, and 892.

This code is used in section 1202.

824. Errors at the beginning of expressions are flagged by bad exp .

procedure bad exp(s : str number);
var save flag : 0 . . max command code ;
begin print err (s); print (" expression can´t begin with `"); print cmd mod (cur cmd , cur mod);
print char ("´"); help4 ("I´m afraid I need some sort of value in order to continue,")
("so I´ve tentatively inserted `0´. You may want to")
("delete this zero and insert something else;")
("see Chapter 27 of The METAFONTbook for an example."); back input ; cur sym ← 0;
cur cmd ← numeric token ; cur mod ← 0; ins error ;
save flag ← var flag ; var flag ← 0; get x next ; var flag ← save flag ;
end;

324 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT §825

825. 〈Supply diagnostic information, if requested 825 〉 ≡
debug if panicking then check mem (false);
gubed
if interrupt 6= 0 then

if OK to interrupt then
begin back input ; check interrupt ; get x next ;
end

This code is used in section 823.

826. 〈Scan a delimited primary 826 〉 ≡
begin l delim ← cur sym ; r delim ← cur mod ; get x next ; scan expression ;
if (cur cmd = comma) ∧ (cur type ≥ known) then 〈Scan the second of a pair of numerics 830 〉
else check delimiter (l delim , r delim);
end

This code is used in section 823.

827. The stash in subroutine puts the current (numeric) expression into a field within a “big node.”

procedure stash in (p : pointer);
var q: pointer ; { temporary register }
begin type (p)← cur type ;
if cur type = known then value (p)← cur exp
else begin if cur type = independent then 〈Stash an independent cur exp into a big node 829 〉

else begin mem [value loc(p)]← mem [value loc(cur exp)];
{ dep list (p)← dep list (cur exp) and prev dep(p)← prev dep(cur exp) }

link (prev dep(p))← p;
end;

free node (cur exp , value node size);
end;

cur type ← vacuous ;
end;

828. In rare cases the current expression can become independent . There may be many dependency lists
pointing to such an independent capsule, so we can’t simply move it into place within a big node. Instead,
we copy it, then recycle it.

829. 〈Stash an independent cur exp into a big node 829 〉 ≡
begin q ← single dependency (cur exp);
if q = dep final then

begin type (p)← known ; value (p)← 0; free node (q, dep node size);
end

else begin type (p)← dependent ; new dep(p, q);
end;

recycle value (cur exp);
end

This code is used in section 827.

§830 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 325

830. 〈Scan the second of a pair of numerics 830 〉 ≡
begin p← get node (value node size); type (p)← pair type ; name type (p)← capsule ; init big node (p);
q ← value (p); stash in (x part loc(q));
get x next ; scan expression ;
if cur type < known then

begin exp err ("Nonnumeric ypart has been replaced by 0");
help4 ("I thought you were giving me a pair `(x,y)´; but")
("after finding a nice xpart `x´ I found a ypart `y´")
("that isn´t of numeric type. So I´ve changed y to zero.")
("(The y that I didn´t like appears above the error message.)"); put get flush error (0);
end;

stash in (y part loc(q)); check delimiter (l delim , r delim); cur type ← pair type ; cur exp ← p;
end

This code is used in section 826.

831. The local variable group line keeps track of the line where a begingroup command occurred; this
will be useful in an error message if the group doesn’t actually end.

〈Other local variables for scan primary 831 〉 ≡
group line : integer ; {where a group began }
See also sections 836 and 843.

This code is used in section 823.

832. 〈Scan a grouped primary 832 〉 ≡
begin group line ← line ;
if internal [tracing commands] > 0 then show cur cmd mod ;
save boundary item (p);
repeat do statement ; { ends with cur cmd ≥ semicolon }
until cur cmd 6= semicolon ;
if cur cmd 6= end group then

begin print err ("A group begun on line "); print int (group line); print (" never ended");
help2 ("I saw a `begingroup´ back there that hasn´t been matched")
("by `endgroup´. So I´ve inserted `endgroup´ now."); back error ; cur cmd ← end group ;
end;

unsave ; { this might change cur type , if independent variables are recycled }
if internal [tracing commands] > 0 then show cur cmd mod ;
end

This code is used in section 823.

833. 〈Scan a string constant 833 〉 ≡
begin cur type ← string type ; cur exp ← cur mod ;
end

This code is used in section 823.

326 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT §834

834. Later we’ll come to procedures that perform actual operations like addition, square root, and so on;
our purpose now is to do the parsing. But we might as well mention those future procedures now, so that
the suspense won’t be too bad:

do nullary (c) does primitive operations that have no operands (e.g., ‘true’ or ‘pencircle’);

do unary (c) applies a primitive operation to the current expression;

do binary (p, c) applies a primitive operation to the capsule p and the current expression.

〈Scan a nullary operation 834 〉 ≡
do nullary (cur mod)

This code is used in section 823.

835. 〈Scan a unary operation 835 〉 ≡
begin c← cur mod ; get x next ; scan primary ; do unary (c); goto done ;
end

This code is used in section 823.

836. A numeric token might be a primary by itself, or it might be the numerator of a fraction composed
solely of numeric tokens, or it might multiply the primary that follows (provided that the primary doesn’t
begin with a plus sign or a minus sign). The code here uses the facts that max primary command =
plus or minus and max primary command − 1 = numeric token . If a fraction is found that is less than
unity, we try to retain higher precision when we use it in scalar multiplication.

〈Other local variables for scan primary 831 〉 +≡
num , denom : scaled ; { for primaries that are fractions, like ‘1/2’ }

837. 〈Scan a primary that starts with a numeric token 837 〉 ≡
begin cur exp ← cur mod ; cur type ← known ; get x next ;
if cur cmd 6= slash then

begin num ← 0; denom ← 0;
end

else begin get x next ;
if cur cmd 6= numeric token then

begin back input ; cur cmd ← slash ; cur mod ← over ; cur sym ← frozen slash ; goto done ;
end;

num ← cur exp ; denom ← cur mod ;
if denom = 0 then 〈Protest division by zero 838 〉
else cur exp ← make scaled (num , denom);
check arith ; get x next ;
end;

if cur cmd ≥ min primary command then
if cur cmd < numeric token then { in particular, cur cmd 6= plus or minus }

begin p← stash cur exp ; scan primary ;
if (abs (num) ≥ abs (denom)) ∨ (cur type < pair type) then do binary (p, times)
else begin frac mult (num , denom); free node (p, value node size);

end;
end;

goto done ;
end

This code is used in section 823.

§838 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 327

838. 〈Protest division by zero 838 〉 ≡
begin print err ("Division by zero"); help1 ("I´ll pretend that you meant to divide by 1.");
error ;
end

This code is used in section 837.

839. 〈Scan a binary operation with ‘of ’ between its operands 839 〉 ≡
begin c← cur mod ; get x next ; scan expression ;
if cur cmd 6= of token then

begin missing err ("of"); print (" for "); print cmd mod (primary binary , c);
help1 ("I´ve got the first argument; will look now for the other."); back error ;
end;

p← stash cur exp ; get x next ; scan primary ; do binary (p, c); goto done ;
end

This code is used in section 823.

840. 〈Convert a suffix to a string 840 〉 ≡
begin get x next ; scan suffix ; old setting ← selector ; selector ← new string ;
show token list (cur exp ,null , 100000, 0); flush token list (cur exp); cur exp ← make string ;
selector ← old setting ; cur type ← string type ; goto done ;
end

This code is used in section 823.

841. If an internal quantity appears all by itself on the left of an assignment, we return a token list of
length one, containing the address of the internal quantity plus hash end . (This accords with the conventions
of the save stack, as described earlier.)

〈Scan an internal numeric quantity 841 〉 ≡
begin q ← cur mod ;
if my var flag = assignment then

begin get x next ;
if cur cmd = assignment then

begin cur exp ← get avail ; info(cur exp)← q + hash end ; cur type ← token list ; goto done ;
end;

back input ;
end;

cur type ← known ; cur exp ← internal [q];
end

This code is used in section 823.

842. The most difficult part of scan primary has been saved for last, since it was necessary to build up
some confidence first. We can now face the task of scanning a variable.

As we scan a variable, we build a token list containing the relevant names and subscript values, simulta-
neously following along in the “collective” structure to see if we are actually dealing with a macro instead
of a value.

The local variables pre head and post head will point to the beginning of the prefix and suffix lists; tail
will point to the end of the list that is currently growing.

Another local variable, tt , contains partial information about the declared type of the variable-so-far. If
tt ≥ unsuffixed macro , the relation tt = type (q) will always hold. If tt = undefined , the routine doesn’t
bother to update its information about type. And if undefined < tt < unsuffixed macro , the precise value
of tt isn’t critical.

328 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT §843

843. 〈Other local variables for scan primary 831 〉 +≡
pre head , post head , tail : pointer ; { prefix and suffix list variables }
tt : small number ; { approximation to the type of the variable-so-far }
t: pointer ; { a token }
macro ref : pointer ; { reference count for a suffixed macro }

844. 〈Scan a variable primary; goto restart if it turns out to be a macro 844 〉 ≡
begin fast get avail (pre head); tail ← pre head ; post head ← null ; tt ← vacuous ;
loop begin t← cur tok ; link (tail)← t;

if tt 6= undefined then
begin 〈Find the approximate type tt and corresponding q 850 〉;
if tt ≥ unsuffixed macro then
〈Either begin an unsuffixed macro call or prepare for a suffixed one 845 〉;

end;
get x next ; tail ← t;
if cur cmd = left bracket then
〈Scan for a subscript; replace cur cmd by numeric token if found 846 〉;

if cur cmd > max suffix token then goto done1 ;
if cur cmd < min suffix token then goto done1 ;
end; { now cur cmd is internal quantity , tag token , or numeric token }

done1 : 〈Handle unusual cases that masquerade as variables, and goto restart or goto done if appropriate;
otherwise make a copy of the variable and goto done 852 〉;

end

This code is used in section 823.

845. 〈Either begin an unsuffixed macro call or prepare for a suffixed one 845 〉 ≡
begin link (tail)← null ;
if tt > unsuffixed macro then { tt = suffixed macro }

begin post head ← get avail ; tail ← post head ; link (tail)← t;
tt ← undefined ; macro ref ← value (q); add mac ref (macro ref);
end

else 〈Set up unsuffixed macro call and goto restart 853 〉;
end

This code is used in section 844.

846. 〈Scan for a subscript; replace cur cmd by numeric token if found 846 〉 ≡
begin get x next ; scan expression ;
if cur cmd 6= right bracket then 〈Put the left bracket and the expression back to be rescanned 847 〉
else begin if cur type 6= known then bad subscript ;

cur cmd ← numeric token ; cur mod ← cur exp ; cur sym ← 0;
end;

end

This code is used in section 844.

847. The left bracket that we thought was introducing a subscript might have actually been the left bracket
in a mediation construction like ‘x[a,b]’. So we don’t issue an error message at this point; but we do want
to back up so as to avoid any embarrassment about our incorrect assumption.

〈Put the left bracket and the expression back to be rescanned 847 〉 ≡
begin back input ; { that was the token following the current expression }
back expr ; cur cmd ← left bracket ; cur mod ← 0; cur sym ← frozen left bracket ;
end

This code is used in sections 846 and 859.

§848 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 329

848. Here’s a routine that puts the current expression back to be read again.

procedure back expr ;
var p: pointer ; { capsule token }
begin p← stash cur exp ; link (p)← null ; back list (p);
end;

849. Unknown subscripts lead to the following error message.

procedure bad subscript ;
begin exp err ("Improper subscript has been replaced by zero");
help3 ("A bracketed subscript must have a known numeric value;")
("unfortunately, what I found was the value that appears just")
("above this error message. So I´ll try a zero subscript."); flush error (0);
end;

850. Every time we call get x next , there’s a chance that the variable we’ve been looking at will disappear.
Thus, we cannot safely keep q pointing into the variable structure; we need to start searching from the root
each time.

〈Find the approximate type tt and corresponding q 850 〉 ≡
begin p← link (pre head); q ← info(p); tt ← undefined ;
if eq type (q) mod outer tag = tag token then

begin q ← equiv (q);
if q = null then goto done2 ;
loop begin p← link (p);

if p = null then
begin tt ← type (q); goto done2 ;
end;

if type (q) 6= structured then goto done2 ;
q ← link (attr head (q)); { the collective subscript attribute }
if p ≥ hi mem min then { it’s not a subscript }

begin repeat q ← link (q);
until attr loc(q) ≥ info(p);
if attr loc(q) > info(p) then goto done2 ;
end;

end;
end;

done2 : end

This code is used in section 844.

330 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT §851

851. How do things stand now? Well, we have scanned an entire variable name, including possible sub-
scripts and/or attributes; cur cmd , cur mod , and cur sym represent the token that follows. If post head =
null , a token list for this variable name starts at link (pre head), with all subscripts evaluated. But if
post head 6= null , the variable turned out to be a suffixed macro; pre head is the head of the prefix list, while
post head is the head of a token list containing both ‘@’ and the suffix.

Our immediate problem is to see if this variable still exists. (Variable structures can change drastically
whenever we call get x next ; users aren’t supposed to do this, but the fact that it is possible means that we
must be cautious.)

The following procedure prints an error message when a variable unexpectedly disappears. Its help message
isn’t quite right for our present purposes, but we’ll be able to fix that up.

procedure obliterated (q : pointer);
begin print err ("Variable "); show token list (q,null , 1000, 0); print (" has been obliterated");
help5 ("It seems you did a nasty thing−−−probably by accident,")
("but nevertheless you nearly hornswoggled me...")
("While I was evaluating the right−hand side of this")
("command, something happened, and the left−hand side")
("is no longer a variable! So I won´t change anything.");
end;

852. If the variable does exist, we also need to check for a few other special cases before deciding that a
plain old ordinary variable has, indeed, been scanned.

〈Handle unusual cases that masquerade as variables, and goto restart or goto done if appropriate;
otherwise make a copy of the variable and goto done 852 〉 ≡

if post head 6= null then 〈Set up suffixed macro call and goto restart 854 〉;
q ← link (pre head); free avail (pre head);
if cur cmd = my var flag then

begin cur type ← token list ; cur exp ← q; goto done ;
end;

p← find variable (q);
if p 6= null then make exp copy (p)
else begin obliterated (q);

help line [2]← "While I was evaluating the suffix of this variable,";
help line [1]← "something was redefined, and it´s no longer a variable!";
help line [0]← "In order to get back on my feet, I´ve inserted `0´ instead.";
put get flush error (0);
end;

flush node list (q); goto done

This code is used in section 844.

853. The only complication associated with macro calling is that the prefix and “at” parameters must be
packaged in an appropriate list of lists.

〈Set up unsuffixed macro call and goto restart 853 〉 ≡
begin p← get avail ; info(pre head)← link (pre head); link (pre head)← p; info(p)← t;
macro call (value (q), pre head ,null); get x next ; goto restart ;
end

This code is used in section 845.

§854 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 331

854. If the “variable” that turned out to be a suffixed macro no longer exists, we don’t care, because we
have reserved a pointer (macro ref) to its token list.

〈Set up suffixed macro call and goto restart 854 〉 ≡
begin back input ; p← get avail ; q ← link (post head); info(pre head)← link (pre head);
link (pre head)← post head ; info(post head)← q; link (post head)← p; info(p)← link (q);
link (q)← null ; macro call (macro ref , pre head ,null); decr (ref count (macro ref)); get x next ;
goto restart ;
end

This code is used in section 852.

855. Our remaining job is simply to make a copy of the value that has been found. Some cases are harder
than others, but complexity arises solely because of the multiplicity of possible cases.

〈Declare the procedure called make exp copy 855 〉 ≡
〈Declare subroutines needed by make exp copy 856 〉
procedure make exp copy (p : pointer);

label restart ;
var q, r, t: pointer ; { registers for list manipulation }
begin restart : cur type ← type (p);
case cur type of
vacuous , boolean type , known : cur exp ← value (p);
unknown types : cur exp ← new ring entry (p);
string type : begin cur exp ← value (p); add str ref (cur exp);

end;
pen type : begin cur exp ← value (p); add pen ref (cur exp);

end;
picture type : cur exp ← copy edges (value (p));
path type , future pen : cur exp ← copy path (value (p));
transform type , pair type : 〈Copy the big node p 857 〉;
dependent , proto dependent : encapsulate (copy dep list (dep list (p)));
numeric type : begin new indep(p); goto restart ;

end;
independent : begin q ← single dependency (p);

if q = dep final then
begin cur type ← known ; cur exp ← 0; free node (q, dep node size);
end

else begin cur type ← dependent ; encapsulate (q);
end;

end;
othercases confusion ("copy")
endcases;
end;

This code is used in section 651.

856. The encapsulate subroutine assumes that dep final is the tail of dependency list p.

〈Declare subroutines needed by make exp copy 856 〉 ≡
procedure encapsulate (p : pointer);

begin cur exp ← get node (value node size); type (cur exp)← cur type ; name type (cur exp)← capsule ;
new dep(cur exp , p);
end;

See also section 858.

This code is used in section 855.

332 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT §857

857. The most tedious case arises when the user refers to a pair or transform variable; we must copy
several fields, each of which can be independent , dependent , proto dependent , or known .

〈Copy the big node p 857 〉 ≡
begin if value (p) = null then init big node (p);
t← get node (value node size); name type (t)← capsule ; type (t)← cur type ; init big node (t);
q ← value (p) + big node size [cur type]; r ← value (t) + big node size [cur type];
repeat q ← q − 2; r ← r − 2; install (r, q);
until q = value (p);
cur exp ← t;
end

This code is used in section 855.

858. The install procedure copies a numeric field q into field r of a big node that will be part of a capsule.

〈Declare subroutines needed by make exp copy 856 〉 +≡
procedure install (r, q : pointer);

var p: pointer ; { temporary register }
begin if type (q) = known then

begin value (r)← value (q); type (r)← known ;
end

else if type (q) = independent then
begin p← single dependency (q);
if p = dep final then

begin type (r)← known ; value (r)← 0; free node (p, dep node size);
end

else begin type (r)← dependent ; new dep(r, p);
end;

end
else begin type (r)← type (q); new dep(r, copy dep list (dep list (q)));

end;
end;

§859 METAFONT PART 40: PARSING PRIMARY EXPRESSIONS 333

859. Expressions of the form ‘a[b,c]’ are converted into ‘b+a*(c−b)’, without checking the types of b or c,
provided that a is numeric.

〈Scan a mediation construction 859 〉 ≡
begin p← stash cur exp ; get x next ; scan expression ;
if cur cmd 6= comma then

begin 〈Put the left bracket and the expression back to be rescanned 847 〉;
unstash cur exp(p);
end

else begin q ← stash cur exp ; get x next ; scan expression ;
if cur cmd 6= right bracket then

begin missing err ("]");
help3 ("I´ve scanned an expression of the form `a[b,c´,")
("so a right bracket should have come next.")
("I shall pretend that one was there.");
back error ;
end;

r ← stash cur exp ; make exp copy (q);
do binary (r,minus); do binary (p, times); do binary (q, plus); get x next ;
end;

end

This code is used in section 823.

860. Here is a comparatively simple routine that is used to scan the suffix parameters of a macro.

〈Declare the basic parsing subroutines 823 〉 +≡
procedure scan suffix ;

label done ;
var h, t: pointer ; { head and tail of the list being built }
p: pointer ; { temporary register }

begin h← get avail ; t← h;
loop begin if cur cmd = left bracket then
〈Scan a bracketed subscript and set cur cmd ← numeric token 861 〉;

if cur cmd = numeric token then p← new num tok (cur mod)
else if (cur cmd = tag token) ∨ (cur cmd = internal quantity) then

begin p← get avail ; info(p)← cur sym ;
end

else goto done ;
link (t)← p; t← p; get x next ;
end;

done : cur exp ← link (h); free avail (h); cur type ← token list ;
end;

334 PART 40: PARSING PRIMARY EXPRESSIONS METAFONT §861

861. 〈Scan a bracketed subscript and set cur cmd ← numeric token 861 〉 ≡
begin get x next ; scan expression ;
if cur type 6= known then bad subscript ;
if cur cmd 6= right bracket then

begin missing err ("]");
help3 ("I´ve seen a `[´ and a subscript value, in a suffix,")
("so a right bracket should have come next.")
("I shall pretend that one was there.");
back error ;
end;

cur cmd ← numeric token ; cur mod ← cur exp ;
end

This code is used in section 860.

§862 METAFONT PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS 335

862. Parsing secondary and higher expressions. After the intricacies of scan primary, the
scan secondary routine is refreshingly simple. It’s not trivial, but the operations are relatively straightfor-
ward; the main difficulty is, again, that expressions and data structures might change drastically every time
we call get x next , so a cautious approach is mandatory. For example, a macro defined by primarydef
might have disappeared by the time its second argument has been scanned; we solve this by increasing the
reference count of its token list, so that the macro can be called even after it has been clobbered.

〈Declare the basic parsing subroutines 823 〉 +≡
procedure scan secondary ;

label restart , continue ;
var p: pointer ; { for list manipulation }
c, d: halfword ; { operation codes or modifiers }
mac name : pointer ; { token defined with primarydef }

begin restart : if (cur cmd < min primary command) ∨ (cur cmd > max primary command) then
bad exp("A secondary");

scan primary ;
continue : if cur cmd ≤ max secondary command then

if cur cmd ≥ min secondary command then
begin p← stash cur exp ; c← cur mod ; d← cur cmd ;
if d = secondary primary macro then

begin mac name ← cur sym ; add mac ref (c);
end;

get x next ; scan primary ;
if d 6= secondary primary macro then do binary (p, c)
else begin back input ; binary mac(p, c,mac name); decr (ref count (c)); get x next ; goto restart ;

end;
goto continue ;
end;

end;

863. The following procedure calls a macro that has two parameters, p and cur exp .

procedure binary mac(p, c, n : pointer);
var q, r: pointer ; { nodes in the parameter list }
begin q ← get avail ; r ← get avail ; link (q)← r;
info(q)← p; info(r)← stash cur exp ;
macro call (c, q, n);
end;

336 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT §864

864. The next procedure, scan tertiary , is pretty much the same deal.

〈Declare the basic parsing subroutines 823 〉 +≡
procedure scan tertiary ;

label restart , continue ;
var p: pointer ; { for list manipulation }
c, d: halfword ; { operation codes or modifiers }
mac name : pointer ; { token defined with secondarydef }

begin restart : if (cur cmd < min primary command) ∨ (cur cmd > max primary command) then
bad exp("A tertiary");

scan secondary ;
if cur type = future pen then materialize pen ;

continue : if cur cmd ≤ max tertiary command then
if cur cmd ≥ min tertiary command then

begin p← stash cur exp ; c← cur mod ; d← cur cmd ;
if d = tertiary secondary macro then

begin mac name ← cur sym ; add mac ref (c);
end;

get x next ; scan secondary ;
if d 6= tertiary secondary macro then do binary (p, c)
else begin back input ; binary mac(p, c,mac name); decr (ref count (c)); get x next ; goto restart ;

end;
goto continue ;
end;

end;

865. A future pen becomes a full-fledged pen here.

procedure materialize pen ;
label common ending ;
var a minus b , a plus b ,major axis ,minor axis : scaled ; { ellipse variables }

theta : angle ; { amount by which the ellipse has been rotated }
p: pointer ; { path traverser }
q: pointer ; { the knot list to be made into a pen }

begin q ← cur exp ;
if left type (q) = endpoint then

begin print err ("Pen path must be a cycle");
help2 ("I can´t make a pen from the given path.")
("So I´ve replaced it by the trivial path `(0,0)..cycle´."); put get error ;
cur exp ← null pen ; goto common ending ;
end

else if left type (q) = open then 〈Change node q to a path for an elliptical pen 866 〉;
cur exp ← make pen (q);

common ending : toss knot list (q); cur type ← pen type ;
end;

§866 METAFONT PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS 337

866. We placed the three points (0, 0), (1, 0), (0, 1) into a pencircle, and they have now been transformed
to (u, v), (A + u,B + v), (C + u,D + v); this gives us enough information to deduce the transformation
(x, y) 7→ (Ax+ Cy + u,Bx+Dy + v).

Given (A,B,C,D) we can always find (a, b, θ, φ) such that

A = a cosφ cos θ − b sinφ sin θ;

B = a cosφ sin θ + b sinφ cos θ;

C = −a sinφ cos θ − b cosφ sin θ;

D = −a sinφ sin θ + b cosφ cos θ.

In this notation, the unit circle (cos t, sin t) is transformed into(
a cos(φ+ t) cos θ − b sin(φ+ t) sin θ, a cos(φ+ t) sin θ + b sin(φ+ t) cos θ

)
+ (u, v),

which is an ellipse with semi-axes (a, b), rotated by θ and shifted by (u, v). To solve the stated equations,
we note that it is necessary and sufficient to solve

A−D = (a− b) cos(θ − φ),

B + C = (a− b) sin(θ − φ),

A+D = (a+ b) cos(θ + φ),

B − C = (a+ b) sin(θ + φ);

and it is easy to find a− b, a+ b, θ − φ, and θ + φ from these formulas.
The code below uses (txx , tyx , txy , tyy , tx , ty) to stand for (A,B,C,D, u, v).

〈Change node q to a path for an elliptical pen 866 〉 ≡
begin tx ← x coord (q); ty ← y coord (q); txx ← left x (q)− tx ; tyx ← left y (q)− ty ;
txy ← right x (q)− tx ; tyy ← right y (q)− ty ; a minus b ← pyth add (txx − tyy , tyx + txy);
a plus b ← pyth add (txx + tyy , tyx − txy); major axis ← half (a minus b + a plus b);
minor axis ← half (abs (a plus b − a minus b));
if major axis = minor axis then theta ← 0 { circle }
else theta ← half (n arg (txx − tyy , tyx + txy) + n arg (txx + tyy , tyx − txy));
free node (q, knot node size); q ← make ellipse (major axis ,minor axis , theta);
if (tx 6= 0) ∨ (ty 6= 0) then 〈Shift the coordinates of path q 867 〉;
end

This code is used in section 865.

867. 〈Shift the coordinates of path q 867 〉 ≡
begin p← q;
repeat x coord (p)← x coord (p) + tx ; y coord (p)← y coord (p) + ty ; p← link (p);
until p = q;
end

This code is used in section 866.

338 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT §868

868. Finally we reach the deepest level in our quartet of parsing routines. This one is much like the others;
but it has an extra complication from paths, which materialize here.

define continue path = 25 { a label inside of scan expression }
define finish path = 26 { another }

〈Declare the basic parsing subroutines 823 〉 +≡
procedure scan expression ;

label restart , done , continue , continue path ,finish path , exit ;
var p, q, r, pp , qq : pointer ; { for list manipulation }
c, d: halfword ; { operation codes or modifiers }
my var flag : 0 . . max command code ; { initial value of var flag }
mac name : pointer ; { token defined with tertiarydef }
cycle hit : boolean ; { did a path expression just end with ‘cycle’? }
x, y: scaled ; { explicit coordinates or tension at a path join }
t: endpoint . . open ; { knot type following a path join }

begin my var flag ← var flag ;
restart : if (cur cmd < min primary command) ∨ (cur cmd > max primary command) then

bad exp("An");
scan tertiary ;

continue : if cur cmd ≤ max expression command then
if cur cmd ≥ min expression command then

if (cur cmd 6= equals) ∨ (my var flag 6= assignment) then
begin p← stash cur exp ; c← cur mod ; d← cur cmd ;
if d = expression tertiary macro then

begin mac name ← cur sym ; add mac ref (c);
end;

if (d < ampersand) ∨ ((d = ampersand) ∧ ((type (p) = pair type) ∨ (type (p) = path type))) then
〈Scan a path construction operation; but return if p has the wrong type 869 〉

else begin get x next ; scan tertiary ;
if d 6= expression tertiary macro then do binary (p, c)
else begin back input ; binary mac(p, c,mac name); decr (ref count (c)); get x next ;

goto restart ;
end;

end;
goto continue ;
end;

exit : end;

§869 METAFONT PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS 339

869. The reader should review the data structure conventions for paths before hoping to understand the
next part of this code.

〈Scan a path construction operation; but return if p has the wrong type 869 〉 ≡
begin cycle hit ← false ; 〈Convert the left operand, p, into a partial path ending at q; but return if p

doesn’t have a suitable type 870 〉;
continue path : 〈Determine the path join parameters; but goto finish path if there’s only a direction

specifier 874 〉;
if cur cmd = cycle then 〈Get ready to close a cycle 886 〉
else begin scan tertiary ; 〈Convert the right operand, cur exp , into a partial path from pp to qq 885 〉;

end;
〈 Join the partial paths and reset p and q to the head and tail of the result 887 〉;
if cur cmd ≥ min expression command then

if cur cmd ≤ ampersand then
if ¬cycle hit then goto continue path ;

finish path : 〈Choose control points for the path and put the result into cur exp 891 〉;
end

This code is used in section 868.

870. 〈Convert the left operand, p, into a partial path ending at q; but return if p doesn’t have a suitable
type 870 〉 ≡

begin unstash cur exp(p);
if cur type = pair type then p← new knot
else if cur type = path type then p← cur exp

else return;
q ← p;
while link (q) 6= p do q ← link (q);
if left type (p) 6= endpoint then { open up a cycle }

begin r ← copy knot (p); link (q)← r; q ← r;
end;

left type (p)← open ; right type (q)← open ;
end

This code is used in section 869.

871. A pair of numeric values is changed into a knot node for a one-point path when METAFONT discovers
that the pair is part of a path.

〈Declare the procedure called known pair 872 〉
function new knot : pointer ; { convert a pair to a knot with two endpoints }

var q: pointer ; { the new node }
begin q ← get node (knot node size); left type (q)← endpoint ; right type (q)← endpoint ; link (q)← q;
known pair ; x coord (q)← cur x ; y coord (q)← cur y ; new knot ← q;
end;

340 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT §872

872. The known pair subroutine sets cur x and cur y to the components of the current expression,
assuming that the current expression is a pair of known numerics. Unknown components are zeroed, and
the current expression is flushed.

〈Declare the procedure called known pair 872 〉 ≡
procedure known pair ;

var p: pointer ; { the pair node }
begin if cur type 6= pair type then

begin exp err ("Undefined coordinates have been replaced by (0,0)");
help5 ("I need x and y numbers for this part of the path.")
("The value I found (see above) was no good;")
("so I´ll try to keep going by using zero instead.")
("(Chapter 27 of The METAFONTbook explains that")
("you might want to type `I ???´ now.)"); put get flush error (0); cur x ← 0; cur y ← 0;
end

else begin p← value (cur exp);
〈Make sure that both x and y parts of p are known; copy them into cur x and cur y 873 〉;
flush cur exp(0);
end;

end;

This code is used in section 871.

873. 〈Make sure that both x and y parts of p are known; copy them into cur x and cur y 873 〉 ≡
if type (x part loc(p)) = known then cur x ← value (x part loc(p))
else begin disp err (x part loc(p), "Undefined x coordinate has been replaced by 0");

help5 ("I need a `known´ x value for this part of the path.")
("The value I found (see above) was no good;")
("so I´ll try to keep going by using zero instead.")
("(Chapter 27 of The METAFONTbook explains that")
("you might want to type `I ???´ now.)"); put get error ; recycle value (x part loc(p));
cur x ← 0;
end;

if type (y part loc(p)) = known then cur y ← value (y part loc(p))
else begin disp err (y part loc(p), "Undefined y coordinate has been replaced by 0");

help5 ("I need a `known´ y value for this part of the path.")
("The value I found (see above) was no good;")
("so I´ll try to keep going by using zero instead.")
("(Chapter 27 of The METAFONTbook explains that")
("you might want to type `I ???´ now.)"); put get error ; recycle value (y part loc(p));
cur y ← 0;
end

This code is used in section 872.

§874 METAFONT PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS 341

874. At this point cur cmd is either ampersand , left brace , or path join .

〈Determine the path join parameters; but goto finish path if there’s only a direction specifier 874 〉 ≡
if cur cmd = left brace then 〈Put the pre-join direction information into node q 879 〉;
d← cur cmd ;
if d = path join then 〈Determine the tension and/or control points 881 〉
else if d 6= ampersand then goto finish path ;
get x next ;
if cur cmd = left brace then 〈Put the post-join direction information into x and t 880 〉
else if right type (q) 6= explicit then

begin t← open ; x← 0;
end

This code is used in section 869.

875. The scan direction subroutine looks at the directional information that is enclosed in braces, and
also scans ahead to the following character. A type code is returned, either open (if the direction was (0, 0)),
or curl (if the direction was a curl of known value cur exp), or given (if the direction is given by the angle
value that now appears in cur exp).

There’s nothing difficult about this subroutine, but the program is rather lengthy because a variety of
potential errors need to be nipped in the bud.

function scan direction : small number ;
var t: given . . open ; { the type of information found }
x: scaled ; { an x coordinate }

begin get x next ;
if cur cmd = curl command then 〈Scan a curl specification 876 〉
else 〈Scan a given direction 877 〉;
if cur cmd 6= right brace then

begin missing err ("}");
help3 ("I´ve scanned a direction spec for part of a path,")
("so a right brace should have come next.")
("I shall pretend that one was there.");
back error ;
end;

get x next ; scan direction ← t;
end;

876. 〈Scan a curl specification 876 〉 ≡
begin get x next ; scan expression ;
if (cur type 6= known) ∨ (cur exp < 0) then

begin exp err ("Improper curl has been replaced by 1");
help1 ("A curl must be a known, nonnegative number."); put get flush error (unity);
end;

t← curl ;
end

This code is used in section 875.

342 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT §877

877. 〈Scan a given direction 877 〉 ≡
begin scan expression ;
if cur type > pair type then 〈Get given directions separated by commas 878 〉
else known pair ;
if (cur x = 0) ∧ (cur y = 0) then t← open
else begin t← given ; cur exp ← n arg (cur x , cur y);

end;
end

This code is used in section 875.

878. 〈Get given directions separated by commas 878 〉 ≡
begin if cur type 6= known then

begin exp err ("Undefined x coordinate has been replaced by 0");
help5 ("I need a `known´ x value for this part of the path.")
("The value I found (see above) was no good;")
("so I´ll try to keep going by using zero instead.")
("(Chapter 27 of The METAFONTbook explains that")
("you might want to type `I ???´ now.)"); put get flush error (0);
end;

x← cur exp ;
if cur cmd 6= comma then

begin missing err (",");
help2 ("I´ve got the x coordinate of a path direction;")
("will look for the y coordinate next."); back error ;
end;

get x next ; scan expression ;
if cur type 6= known then

begin exp err ("Undefined y coordinate has been replaced by 0");
help5 ("I need a `known´ y value for this part of the path.")
("The value I found (see above) was no good;")
("so I´ll try to keep going by using zero instead.")
("(Chapter 27 of The METAFONTbook explains that")
("you might want to type `I ???´ now.)"); put get flush error (0);
end;

cur y ← cur exp ; cur x ← x;
end

This code is used in section 877.

879. At this point right type (q) is usually open , but it may have been set to some other value by a previous
operation. We must maintain the value of right type (q) in cases such as ‘..{curl2}z{0,0}..’.

〈Put the pre-join direction information into node q 879 〉 ≡
begin t← scan direction ;
if t 6= open then

begin right type (q)← t; right given (q)← cur exp ;
if left type (q) = open then

begin left type (q)← t; left given (q)← cur exp ;
end; { note that left given (q) = left curl (q) }

end;
end

This code is used in section 874.

§880 METAFONT PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS 343

880. Since left tension and left y share the same position in knot nodes, and since left given is similarly
equivalent to left x , we use x and y to hold the given direction and tension information when there are no
explicit control points.

〈Put the post-join direction information into x and t 880 〉 ≡
begin t← scan direction ;
if right type (q) 6= explicit then x← cur exp
else t← explicit ; { the direction information is superfluous }
end

This code is used in section 874.

881. 〈Determine the tension and/or control points 881 〉 ≡
begin get x next ;
if cur cmd = tension then 〈Set explicit tensions 882 〉
else if cur cmd = controls then 〈Set explicit control points 884 〉

else begin right tension (q)← unity ; y ← unity ; back input ; {default tension }
goto done ;
end;

if cur cmd 6= path join then
begin missing err ("..");
help1 ("A path join command should end with two dots."); back error ;
end;

done : end

This code is used in section 874.

882. 〈Set explicit tensions 882 〉 ≡
begin get x next ; y ← cur cmd ;
if cur cmd = at least then get x next ;
scan primary ; 〈Make sure that the current expression is a valid tension setting 883 〉;
if y = at least then negate (cur exp);
right tension (q)← cur exp ;
if cur cmd = and command then

begin get x next ; y ← cur cmd ;
if cur cmd = at least then get x next ;
scan primary ; 〈Make sure that the current expression is a valid tension setting 883 〉;
if y = at least then negate (cur exp);
end;

y ← cur exp ;
end

This code is used in section 881.

883. define min tension ≡ three quarter unit

〈Make sure that the current expression is a valid tension setting 883 〉 ≡
if (cur type 6= known) ∨ (cur exp < min tension) then

begin exp err ("Improper tension has been set to 1");
help1 ("The expression above should have been a number >=3/4."); put get flush error (unity);
end

This code is used in sections 882 and 882.

344 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT §884

884. 〈Set explicit control points 884 〉 ≡
begin right type (q)← explicit ; t← explicit ; get x next ; scan primary ;
known pair ; right x (q)← cur x ; right y (q)← cur y ;
if cur cmd 6= and command then

begin x← right x (q); y ← right y (q);
end

else begin get x next ; scan primary ;
known pair ; x← cur x ; y ← cur y ;
end;

end

This code is used in section 881.

885. 〈Convert the right operand, cur exp , into a partial path from pp to qq 885 〉 ≡
begin if cur type 6= path type then pp ← new knot
else pp ← cur exp ;
qq ← pp ;
while link (qq) 6= pp do qq ← link (qq);
if left type (pp) 6= endpoint then { open up a cycle }

begin r ← copy knot (pp); link (qq)← r; qq ← r;
end;

left type (pp)← open ; right type (qq)← open ;
end

This code is used in section 869.

886. If a person tries to define an entire path by saying ‘(x,y)&cycle’, we silently change the specification
to ‘(x,y)..cycle’, since a cycle shouldn’t have length zero.

〈Get ready to close a cycle 886 〉 ≡
begin cycle hit ← true ; get x next ; pp ← p; qq ← p;
if d = ampersand then

if p = q then
begin d← path join ; right tension (q)← unity ; y ← unity ;
end;

end

This code is used in section 869.

§887 METAFONT PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS 345

887. 〈 Join the partial paths and reset p and q to the head and tail of the result 887 〉 ≡
begin if d = ampersand then

if (x coord (q) 6= x coord (pp)) ∨ (y coord (q) 6= y coord (pp)) then
begin print err ("Paths don´t touch; `&´ will be changed to `..´");
help3 ("When you join paths `p&q´, the ending point of p")
("must be exactly equal to the starting point of q.")
("So I´m going to pretend that you said `p..q´ instead."); put get error ; d← path join ;
right tension (q)← unity ; y ← unity ;
end;

〈Plug an opening in right type (pp), if possible 889 〉;
if d = ampersand then 〈Splice independent paths together 890 〉
else begin 〈Plug an opening in right type (q), if possible 888 〉;

link (q)← pp ; left y (pp)← y;
if t 6= open then

begin left x (pp)← x; left type (pp)← t;
end;

end;
q ← qq ;
end

This code is used in section 869.

888. 〈Plug an opening in right type (q), if possible 888 〉 ≡
if right type (q) = open then

if (left type (q) = curl) ∨ (left type (q) = given) then
begin right type (q)← left type (q); right given (q)← left given (q);
end

This code is used in section 887.

889. 〈Plug an opening in right type (pp), if possible 889 〉 ≡
if right type (pp) = open then

if (t = curl) ∨ (t = given) then
begin right type (pp)← t; right given (pp)← x;
end

This code is used in section 887.

890. 〈Splice independent paths together 890 〉 ≡
begin if left type (q) = open then

if right type (q) = open then
begin left type (q)← curl ; left curl (q)← unity ;
end;

if right type (pp) = open then
if t = open then

begin right type (pp)← curl ; right curl (pp)← unity ;
end;

right type (q)← right type (pp); link (q)← link (pp);
right x (q)← right x (pp); right y (q)← right y (pp); free node (pp , knot node size);
if qq = pp then qq ← q;
end

This code is used in section 887.

346 PART 41: PARSING SECONDARY AND HIGHER EXPRESSIONS METAFONT §891

891. 〈Choose control points for the path and put the result into cur exp 891 〉 ≡
if cycle hit then

begin if d = ampersand then p← q;
end

else begin left type (p)← endpoint ;
if right type (p) = open then

begin right type (p)← curl ; right curl (p)← unity ;
end;

right type (q)← endpoint ;
if left type (q) = open then

begin left type (q)← curl ; left curl (q)← unity ;
end;

link (q)← p;
end;

make choices (p); cur type ← path type ; cur exp ← p

This code is used in section 869.

892. Finally, we sometimes need to scan an expression whose value is supposed to be either true code or
false code .

〈Declare the basic parsing subroutines 823 〉 +≡
procedure get boolean ;

begin get x next ; scan expression ;
if cur type 6= boolean type then

begin exp err ("Undefined condition will be treated as `false´");
help2 ("The expression shown above should have had a definite")
("true−or−false value. I´m changing it to `false´.");
put get flush error (false code); cur type ← boolean type ;
end;

end;

§893 METAFONT PART 42: DOING THE OPERATIONS 347

893. Doing the operations. The purpose of parsing is primarily to permit people to avoid piles of
parentheses. But the real work is done after the structure of an expression has been recognized; that’s when
new expressions are generated. We turn now to the guts of METAFONT, which handles individual operators
that have come through the parsing mechanism.

We’ll start with the easy ones that take no operands, then work our way up to operators with one and
ultimately two arguments. In other words, we will write the three procedures do nullary , do unary , and
do binary that are invoked periodically by the expression scanners.

First let’s make sure that all of the primitive operators are in the hash table. Although scan primary
and its relatives made use of the cmd code for these operators, the do routines base everything on the
mod code. For example, do binary doesn’t care whether the operation it performs is a primary binary or
secondary binary , etc.

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("true",nullary , true code);
primitive ("false",nullary , false code);
primitive ("nullpicture",nullary ,null picture code);
primitive ("nullpen",nullary ,null pen code);
primitive ("jobname",nullary , job name op);
primitive ("readstring",nullary , read string op);
primitive ("pencircle",nullary , pen circle);
primitive ("normaldeviate",nullary ,normal deviate);
primitive ("odd", unary , odd op);
primitive ("known", unary , known op);
primitive ("unknown", unary , unknown op);
primitive ("not", unary ,not op);
primitive ("decimal", unary , decimal);
primitive ("reverse", unary , reverse);
primitive ("makepath", unary ,make path op);
primitive ("makepen", unary ,make pen op);
primitive ("totalweight", unary , total weight op);
primitive ("oct", unary , oct op);
primitive ("hex", unary , hex op);
primitive ("ASCII", unary ,ASCII op);
primitive ("char", unary , char op);
primitive ("length", unary , length op);
primitive ("turningnumber", unary , turning op);
primitive ("xpart", unary , x part);
primitive ("ypart", unary , y part);
primitive ("xxpart", unary , xx part);
primitive ("xypart", unary , xy part);
primitive ("yxpart", unary , yx part);
primitive ("yypart", unary , yy part);
primitive ("sqrt", unary , sqrt op);
primitive ("mexp", unary ,m exp op);
primitive ("mlog", unary ,m log op);
primitive ("sind", unary , sin d op);
primitive ("cosd", unary , cos d op);
primitive ("floor", unary ,floor op);
primitive ("uniformdeviate", unary , uniform deviate);
primitive ("charexists", unary , char exists op);
primitive ("angle", unary , angle op);
primitive ("cycle", cycle , cycle op);
primitive ("+", plus or minus , plus);

348 PART 42: DOING THE OPERATIONS METAFONT §893

primitive ("−", plus or minus ,minus);
primitive ("*", secondary binary , times);
primitive ("/", slash , over); eqtb [frozen slash]← eqtb [cur sym];
primitive ("++", tertiary binary , pythag add);
primitive ("+−+", tertiary binary , pythag sub);
primitive ("and", and command , and op);
primitive ("or", tertiary binary , or op);
primitive ("<", expression binary , less than);
primitive ("<=", expression binary , less or equal);
primitive (">", expression binary , greater than);
primitive (">=", expression binary , greater or equal);
primitive ("=", equals , equal to);
primitive ("<>", expression binary , unequal to);
primitive ("substring", primary binary , substring of);
primitive ("subpath", primary binary , subpath of);
primitive ("directiontime", primary binary , direction time of);
primitive ("point", primary binary , point of);
primitive ("precontrol", primary binary , precontrol of);
primitive ("postcontrol", primary binary , postcontrol of);
primitive ("penoffset", primary binary , pen offset of);
primitive ("&", ampersand , concatenate);
primitive ("rotated", secondary binary , rotated by);
primitive ("slanted", secondary binary , slanted by);
primitive ("scaled", secondary binary , scaled by);
primitive ("shifted", secondary binary , shifted by);
primitive ("transformed", secondary binary , transformed by);
primitive ("xscaled", secondary binary , x scaled);
primitive ("yscaled", secondary binary , y scaled);
primitive ("zscaled", secondary binary , z scaled);
primitive ("intersectiontimes", tertiary binary , intersect);

894. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
nullary , unary , primary binary , secondary binary , tertiary binary , expression binary , cycle , plus or minus ,

slash , ampersand , equals , and command : print op(m);

§895 METAFONT PART 42: DOING THE OPERATIONS 349

895. OK, let’s look at the simplest do procedure first.

procedure do nullary (c : quarterword);
var k: integer ; { all-purpose loop index }
begin check arith ;
if internal [tracing commands] > two then show cmd mod (nullary , c);
case c of
true code , false code : begin cur type ← boolean type ; cur exp ← c;

end;
null picture code : begin cur type ← picture type ; cur exp ← get node (edge header size);

init edges (cur exp);
end;

null pen code : begin cur type ← pen type ; cur exp ← null pen ;
end;

normal deviate : begin cur type ← known ; cur exp ← norm rand ;
end;

pen circle : 〈Make a special knot node for pencircle 896 〉;
job name op : begin if job name = 0 then open log file ;

cur type ← string type ; cur exp ← job name ;
end;

read string op : 〈Read a string from the terminal 897 〉;
end; { there are no other cases }
check arith ;
end;

896. 〈Make a special knot node for pencircle 896 〉 ≡
begin cur type ← future pen ; cur exp ← get node (knot node size); left type (cur exp)← open ;
right type (cur exp)← open ; link (cur exp)← cur exp ;
x coord (cur exp)← 0; y coord (cur exp)← 0;
left x (cur exp)← unity ; left y (cur exp)← 0;
right x (cur exp)← 0; right y (cur exp)← unity ;
end

This code is used in section 895.

897. 〈Read a string from the terminal 897 〉 ≡
begin if interaction ≤ nonstop mode then

fatal error ("*** (cannot readstring in nonstop modes)");
begin file reading ; name ← 1; prompt input (""); str room (last − start);
for k ← start to last − 1 do append char (buffer [k]);
end file reading ; cur type ← string type ; cur exp ← make string ;
end

This code is used in section 895.

350 PART 42: DOING THE OPERATIONS METAFONT §898

898. Things get a bit more interesting when there’s an operand. The operand to do unary appears in
cur type and cur exp .

〈Declare unary action procedures 899 〉
procedure do unary (c : quarterword);

var p, q: pointer ; { for list manipulation }
x: integer ; { a temporary register }

begin check arith ;
if internal [tracing commands] > two then 〈Trace the current unary operation 902 〉;
case c of
plus : if cur type < pair type then

if cur type 6= picture type then bad unary (plus);
minus : 〈Negate the current expression 903 〉;
〈Additional cases of unary operators 905 〉
end; { there are no other cases }
check arith ;
end;

899. The nice pair function returns true if both components of a pair are known.

〈Declare unary action procedures 899 〉 ≡
function nice pair (p : integer ; t : quarterword): boolean ;

label exit ;
begin if t = pair type then

begin p← value (p);
if type (x part loc(p)) = known then

if type (y part loc(p)) = known then
begin nice pair ← true ; return;
end;

end;
nice pair ← false ;

exit : end;

See also sections 900, 901, 904, 908, 910, 913, 916, and 919.

This code is used in section 898.

900. 〈Declare unary action procedures 899 〉 +≡
procedure print known or unknown type (t : small number ; v : integer);

begin print char ("(");
if t < dependent then

if t 6= pair type then print type (t)
else if nice pair (v, pair type) then print ("pair")

else print ("unknown pair")
else print ("unknown numeric");
print char (")");
end;

901. 〈Declare unary action procedures 899 〉 +≡
procedure bad unary (c : quarterword);

begin exp err ("Not implemented: "); print op(c); print known or unknown type (cur type , cur exp);
help3 ("I´m afraid I don´t know how to apply that operation to that")
("particular type. Continue, and I´ll simply return the")
("argument (shown above) as the result of the operation."); put get error ;
end;

§902 METAFONT PART 42: DOING THE OPERATIONS 351

902. 〈Trace the current unary operation 902 〉 ≡
begin begin diagnostic ; print nl ("{"); print op(c); print char ("(");
print exp(null , 0); { show the operand, but not verbosely }
print (")}"); end diagnostic(false);
end

This code is used in section 898.

903. Negation is easy except when the current expression is of type independent , or when it is a pair with
one or more independent components.

It is tempting to argue that the negative of an independent variable is an independent variable, hence we
don’t have to do anything when negating it. The fallacy is that other dependent variables pointing to the
current expression must change the sign of their coefficients if we make no change to the current expression.

Instead, we work around the problem by copying the current expression and recycling it afterwards (cf. the
stash in routine).

〈Negate the current expression 903 〉 ≡
case cur type of
pair type , independent : begin q ← cur exp ; make exp copy (q);

if cur type = dependent then negate dep list (dep list (cur exp))
else if cur type = pair type then

begin p← value (cur exp);
if type (x part loc(p)) = known then negate (value (x part loc(p)))
else negate dep list (dep list (x part loc(p)));
if type (y part loc(p)) = known then negate (value (y part loc(p)))
else negate dep list (dep list (y part loc(p)));
end; { if cur type = known then cur exp = 0 }

recycle value (q); free node (q, value node size);
end;

dependent , proto dependent : negate dep list (dep list (cur exp));
known : negate (cur exp);
picture type : negate edges (cur exp);
othercases bad unary (minus)
endcases

This code is used in section 898.

904. 〈Declare unary action procedures 899 〉 +≡
procedure negate dep list (p : pointer);

label exit ;
begin loop begin negate (value (p));

if info(p) = null then return;
p← link (p);
end;

exit : end;

905. 〈Additional cases of unary operators 905 〉 ≡
not op : if cur type 6= boolean type then bad unary (not op)

else cur exp ← true code + false code − cur exp ;

See also sections 906, 907, 909, 912, 915, 917, 918, 920, and 921.

This code is used in section 898.

352 PART 42: DOING THE OPERATIONS METAFONT §906

906. define three sixty units ≡ 23592960 { that’s 360 ∗ unity }
define boolean reset (#) ≡

if # then cur exp ← true code else cur exp ← false code

〈Additional cases of unary operators 905 〉 +≡
sqrt op ,m exp op ,m log op , sin d op , cos d op ,floor op , uniform deviate , odd op , char exists op :

if cur type 6= known then bad unary (c)
else case c of

sqrt op : cur exp ← square rt (cur exp);
m exp op : cur exp ← m exp(cur exp);
m log op : cur exp ← m log (cur exp);
sin d op , cos d op : begin n sin cos ((cur exp mod three sixty units) ∗ 16);

if c = sin d op then cur exp ← round fraction (n sin)
else cur exp ← round fraction (n cos);
end;

floor op : cur exp ← floor scaled (cur exp);
uniform deviate : cur exp ← unif rand (cur exp);
odd op : begin boolean reset (odd (round unscaled (cur exp))); cur type ← boolean type ;

end;
char exists op : 〈Determine if a character has been shipped out 1181 〉;
end; { there are no other cases }

907. 〈Additional cases of unary operators 905 〉 +≡
angle op : if nice pair (cur exp , cur type) then

begin p← value (cur exp); x← n arg (value (x part loc(p)), value (y part loc(p)));
if x ≥ 0 then flush cur exp((x+ 8) div 16)
else flush cur exp(−((−x+ 8) div 16));
end

else bad unary (angle op);

908. If the current expression is a pair, but the context wants it to be a path, we call pair to path .

〈Declare unary action procedures 899 〉 +≡
procedure pair to path ;

begin cur exp ← new knot ; cur type ← path type ;
end;

909. 〈Additional cases of unary operators 905 〉 +≡
x part , y part : if (cur type ≤ pair type) ∧ (cur type ≥ transform type) then take part (c)

else bad unary (c);
xx part , xy part , yx part , yy part : if cur type = transform type then take part (c)

else bad unary (c);

910. In the following procedure, cur exp points to a capsule, which points to a big node. We want to
delete all but one part of the big node.

〈Declare unary action procedures 899 〉 +≡
procedure take part (c : quarterword);

var p: pointer ; { the big node }
begin p← value (cur exp); value (temp val)← p; type (temp val)← cur type ; link (p)← temp val ;
free node (cur exp , value node size); make exp copy (p+ 2 ∗ (c− x part)); recycle value (temp val);
end;

§911 METAFONT PART 42: DOING THE OPERATIONS 353

911. 〈 Initialize table entries (done by INIMF only) 176 〉 +≡
name type (temp val)← capsule ;

912. 〈Additional cases of unary operators 905 〉 +≡
char op : if cur type 6= known then bad unary (char op)

else begin cur exp ← round unscaled (cur exp) mod 256; cur type ← string type ;
if cur exp < 0 then cur exp ← cur exp + 256;
if length (cur exp) 6= 1 then

begin str room (1); append char (cur exp); cur exp ← make string ;
end;

end;
decimal : if cur type 6= known then bad unary (decimal)

else begin old setting ← selector ; selector ← new string ; print scaled (cur exp);
cur exp ← make string ; selector ← old setting ; cur type ← string type ;
end;

oct op , hex op ,ASCII op : if cur type 6= string type then bad unary (c)
else str to num (c);

913. 〈Declare unary action procedures 899 〉 +≡
procedure str to num (c : quarterword); { converts a string to a number }

var n: integer ; { accumulator }
m: ASCII code ; { current character }
k: pool pointer ; { index into str pool }
b: 8 . . 16; { radix of conversion }
bad char : boolean ; { did the string contain an invalid digit? }

begin if c = ASCII op then
if length (cur exp) = 0 then n← −1
else n← so(str pool [str start [cur exp]])

else begin if c = oct op then b← 8 else b← 16;
n← 0; bad char ← false ;
for k ← str start [cur exp] to str start [cur exp + 1]− 1 do

begin m← so(str pool [k]);
if (m ≥ "0") ∧ (m ≤ "9") then m← m− "0"

else if (m ≥ "A") ∧ (m ≤ "F") then m← m− "A" + 10
else if (m ≥ "a") ∧ (m ≤ "f") then m← m− "a" + 10

else begin bad char ← true ; m← 0;
end;

if m ≥ b then
begin bad char ← true ; m← 0;
end;

if n < 32768 div b then n← n ∗ b+m else n← 32767;
end;

〈Give error messages if bad char or n ≥ 4096 914 〉;
end;

flush cur exp(n ∗ unity);
end;

354 PART 42: DOING THE OPERATIONS METAFONT §914

914. 〈Give error messages if bad char or n ≥ 4096 914 〉 ≡
if bad char then

begin exp err ("String contains illegal digits");
if c = oct op then help1 ("I zeroed out characters that weren´t in the range 0..7.")
else help1 ("I zeroed out characters that weren´t hex digits.");
put get error ;
end;

if n > 4095 then
begin print err ("Number too large ("); print int (n); print char (")");
help1 ("I have trouble with numbers greater than 4095; watch out."); put get error ;
end

This code is used in section 913.

915. The length operation is somewhat unusual in that it applies to a variety of different types of operands.

〈Additional cases of unary operators 905 〉 +≡
length op : if cur type = string type then flush cur exp(length (cur exp) ∗ unity)

else if cur type = path type then flush cur exp(path length)
else if cur type = known then cur exp ← abs (cur exp)

else if nice pair (cur exp , cur type) then
flush cur exp(pyth add (value (x part loc(value (cur exp))), value (y part loc(value (cur exp)))))

else bad unary (c);

916. 〈Declare unary action procedures 899 〉 +≡
function path length : scaled ; { computes the length of the current path }

var n: scaled ; { the path length so far }
p: pointer ; { traverser }

begin p← cur exp ;
if left type (p) = endpoint then n← −unity else n← 0;
repeat p← link (p); n← n+ unity ;
until p = cur exp ;
path length ← n;
end;

917. The turning number is computed only with respect to null pens. A different pen might affect the
turning number, in degenerate cases, because autorounding will produce a slightly different path, or because
excessively large coordinates might be truncated.

〈Additional cases of unary operators 905 〉 +≡
turning op : if cur type = pair type then flush cur exp(0)

else if cur type 6= path type then bad unary (turning op)
else if left type (cur exp) = endpoint then flush cur exp(0) { not a cyclic path }

else begin cur pen ← null pen ; cur path type ← contour code ;
cur exp ← make spec(cur exp , fraction one − half unit − 1− el gordo , 0);
flush cur exp(turning number ∗ unity); { convert to scaled }
end;

§918 METAFONT PART 42: DOING THE OPERATIONS 355

918. define type test end ≡ flush cur exp(true code)
else flush cur exp(false code); cur type ← boolean type ;

end
define type range end (#) ≡ (cur type ≤ #) then type test end
define type range (#) ≡

begin
if (cur type ≥ #) ∧ type range end

define type test (#) ≡
begin if cur type = # then type test end

〈Additional cases of unary operators 905 〉 +≡
boolean type : type range (boolean type)(unknown boolean);
string type : type range (string type)(unknown string);
pen type : type range (pen type)(future pen);
path type : type range (path type)(unknown path);
picture type : type range (picture type)(unknown picture);
transform type , pair type : type test (c);
numeric type : type range (known)(independent);
known op , unknown op : test known (c);

919. 〈Declare unary action procedures 899 〉 +≡
procedure test known (c : quarterword);

label done ;
var b: true code . . false code ; { is the current expression known? }
p, q: pointer ; { locations in a big node }

begin b← false code ;
case cur type of
vacuous , boolean type , string type , pen type , future pen , path type , picture type , known : b← true code ;
transform type , pair type : begin p← value (cur exp); q ← p+ big node size [cur type];

repeat q ← q − 2;
if type (q) 6= known then goto done ;

until q = p;
b← true code ;

done : end;
othercases do nothing
endcases;
if c = known op then flush cur exp(b)
else flush cur exp(true code + false code − b);
cur type ← boolean type ;
end;

920. 〈Additional cases of unary operators 905 〉 +≡
cycle op : begin if cur type 6= path type then flush cur exp(false code)

else if left type (cur exp) 6= endpoint then flush cur exp(true code)
else flush cur exp(false code);

cur type ← boolean type ;
end;

356 PART 42: DOING THE OPERATIONS METAFONT §921

921. 〈Additional cases of unary operators 905 〉 +≡
make pen op : begin if cur type = pair type then pair to path ;

if cur type = path type then cur type ← future pen
else bad unary (make pen op);
end;

make path op : begin if cur type = future pen then materialize pen ;
if cur type 6= pen type then bad unary (make path op)
else begin flush cur exp(make path (cur exp)); cur type ← path type ;

end;
end;

total weight op : if cur type 6= picture type then bad unary (total weight op)
else flush cur exp(total weight (cur exp));

reverse : if cur type = path type then
begin p← htap ypoc(cur exp);
if right type (p) = endpoint then p← link (p);
toss knot list (cur exp); cur exp ← p;
end

else if cur type = pair type then pair to path
else bad unary (reverse);

922. Finally, we have the operations that combine a capsule p with the current expression.

〈Declare binary action procedures 923 〉
procedure do binary (p : pointer ; c : quarterword);

label done , done1 , exit ;
var q, r, rr : pointer ; { for list manipulation }

old p , old exp : pointer ; { capsules to recycle }
v: integer ; { for numeric manipulation }

begin check arith ;
if internal [tracing commands] > two then 〈Trace the current binary operation 924 〉;
〈Sidestep independent cases in capsule p 926 〉;
〈Sidestep independent cases in the current expression 927 〉;
case c of
plus ,minus : 〈Add or subtract the current expression from p 929 〉;
〈Additional cases of binary operators 936 〉
end; { there are no other cases }
recycle value (p); free node (p, value node size); { return to avoid this }

exit : check arith ; 〈Recycle any sidestepped independent capsules 925 〉;
end;

923. 〈Declare binary action procedures 923 〉 ≡
procedure bad binary (p : pointer ; c : quarterword);

begin disp err (p, ""); exp err ("Not implemented: ");
if c ≥ min of then print op(c);
print known or unknown type (type (p), p);
if c ≥ min of then print ("of") else print op(c);
print known or unknown type (cur type , cur exp);
help3 ("I´m afraid I don´t know how to apply that operation to that")
("combination of types. Continue, and I´ll return the second")
("argument (see above) as the result of the operation."); put get error ;
end;

See also sections 928, 930, 943, 946, 949, 953, 960, 961, 962, 963, 966, 976, 977, 978, 982, 984, and 985.

This code is used in section 922.

§924 METAFONT PART 42: DOING THE OPERATIONS 357

924. 〈Trace the current binary operation 924 〉 ≡
begin begin diagnostic ; print nl ("{("); print exp(p, 0); { show the operand, but not verbosely }
print char (")"); print op(c); print char ("(");
print exp(null , 0); print (")}"); end diagnostic(false);
end

This code is used in section 922.

925. Several of the binary operations are potentially complicated by the fact that independent values
can sneak into capsules. For example, we’ve seen an instance of this difficulty in the unary operation of
negation. In order to reduce the number of cases that need to be handled, we first change the two operands
(if necessary) to rid them of independent components. The original operands are put into capsules called
old p and old exp , which will be recycled after the binary operation has been safely carried out.

〈Recycle any sidestepped independent capsules 925 〉 ≡
if old p 6= null then

begin recycle value (old p); free node (old p , value node size);
end;

if old exp 6= null then
begin recycle value (old exp); free node (old exp , value node size);
end

This code is used in section 922.

926. A big node is considered to be “tarnished” if it contains at least one independent component. We
will define a simple function called ‘tarnished ’ that returns null if and only if its argument is not tarnished.

〈Sidestep independent cases in capsule p 926 〉 ≡
case type (p) of
transform type , pair type : old p ← tarnished (p);
independent : old p ← void ;
othercases old p ← null
endcases;
if old p 6= null then

begin q ← stash cur exp ; old p ← p; make exp copy (old p); p← stash cur exp ; unstash cur exp(q);
end;

This code is used in section 922.

927. 〈Sidestep independent cases in the current expression 927 〉 ≡
case cur type of
transform type , pair type : old exp ← tarnished (cur exp);
independent : old exp ← void ;
othercases old exp ← null
endcases;
if old exp 6= null then

begin old exp ← cur exp ; make exp copy (old exp);
end

This code is used in section 922.

358 PART 42: DOING THE OPERATIONS METAFONT §928

928. 〈Declare binary action procedures 923 〉 +≡
function tarnished (p : pointer): pointer ;

label exit ;
var q: pointer ; {beginning of the big node }
r: pointer ; { current position in the big node }

begin q ← value (p); r ← q + big node size [type (p)];
repeat r ← r − 2;

if type (r) = independent then
begin tarnished ← void ; return;
end;

until r = q;
tarnished ← null ;

exit : end;

929. 〈Add or subtract the current expression from p 929 〉 ≡
if (cur type < pair type) ∨ (type (p) < pair type) then

if (cur type = picture type) ∧ (type (p) = picture type) then
begin if c = minus then negate edges (cur exp);
cur edges ← cur exp ; merge edges (value (p));
end

else bad binary (p, c)
else if cur type = pair type then

if type (p) 6= pair type then bad binary (p, c)
else begin q ← value (p); r ← value (cur exp); add or subtract (x part loc(q), x part loc(r), c);

add or subtract (y part loc(q), y part loc(r), c);
end

else if type (p) = pair type then bad binary (p, c)
else add or subtract (p,null , c)

This code is used in section 922.

§930 METAFONT PART 42: DOING THE OPERATIONS 359

930. The first argument to add or subtract is the location of a value node in a capsule or pair node that
will soon be recycled. The second argument is either a location within a pair or transform node of cur exp ,
or it is null (which means that cur exp itself should be the second argument). The third argument is either
plus or minus .

The sum or difference of the numeric quantities will replace the second operand. Arithmetic overflow may
go undetected; users aren’t supposed to be monkeying around with really big values.

〈Declare binary action procedures 923 〉 +≡
〈Declare the procedure called dep finish 935 〉
procedure add or subtract (p, q : pointer ; c : quarterword);

label done , exit ;
var s, t: small number ; { operand types }
r: pointer ; { list traverser }
v: integer ; { second operand value }

begin if q = null then
begin t← cur type ;
if t < dependent then v ← cur exp else v ← dep list (cur exp);
end

else begin t← type (q);
if t < dependent then v ← value (q) else v ← dep list (q);
end;

if t = known then
begin if c = minus then negate (v);
if type (p) = known then

begin v ← slow add (value (p), v);
if q = null then cur exp ← v else value (q)← v;
return;
end;

〈Add a known value to the constant term of dep list (p) 931 〉;
end

else begin if c = minus then negate dep list (v);
〈Add operand p to the dependency list v 932 〉;
end;

exit : end;

931. 〈Add a known value to the constant term of dep list (p) 931 〉 ≡
r ← dep list (p);
while info(r) 6= null do r ← link (r);
value (r)← slow add (value (r), v);
if q = null then

begin q ← get node (value node size); cur exp ← q; cur type ← type (p); name type (q)← capsule ;
end;

dep list (q)← dep list (p); type (q)← type (p); prev dep(q)← prev dep(p); link (prev dep(p))← q;
type (p)← known ; { this will keep the recycler from collecting non-garbage }

This code is used in section 930.

360 PART 42: DOING THE OPERATIONS METAFONT §932

932. We prefer dependent lists to proto dependent ones, because it is nice to retain the extra accuracy of
fraction coefficients. But we have to handle both kinds, and mixtures too.

〈Add operand p to the dependency list v 932 〉 ≡
if type (p) = known then 〈Add the known value (p) to the constant term of v 933 〉
else begin s← type (p); r ← dep list (p);

if t = dependent then
begin if s = dependent then

if max coef (r) + max coef (v) < coef bound then
begin v ← p plus q (v, r, dependent); goto done ;
end; {fix needed will necessarily be false }

t← proto dependent ; v ← p over v (v, unity , dependent , proto dependent);
end;

if s = proto dependent then v ← p plus q (v, r, proto dependent)
else v ← p plus fq (v, unity , r, proto dependent , dependent);

done : 〈Output the answer, v (which might have become known) 934 〉;
end

This code is used in section 930.

933. 〈Add the known value (p) to the constant term of v 933 〉 ≡
begin while info(v) 6= null do v ← link (v);
value (v)← slow add (value (p), value (v));
end

This code is used in section 932.

934. 〈Output the answer, v (which might have become known) 934 〉 ≡
if q 6= null then dep finish (v, q, t)
else begin cur type ← t; dep finish (v,null , t);

end

This code is used in section 932.

935. Here’s the current situation: The dependency list v of type t should either be put into the current
expression (if q = null) or into location q within a pair node (otherwise). The destination (cur exp or q)
formerly held a dependency list with the same final pointer as the list v.

〈Declare the procedure called dep finish 935 〉 ≡
procedure dep finish (v, q : pointer ; t : small number);

var p: pointer ; { the destination }
vv : scaled ; { the value, if it is known }

begin if q = null then p← cur exp else p← q;
dep list (p)← v; type (p)← t;
if info(v) = null then

begin vv ← value (v);
if q = null then flush cur exp(vv)
else begin recycle value (p); type (q)← known ; value (q)← vv ;

end;
end

else if q = null then cur type ← t;
if fix needed then fix dependencies ;
end;

This code is used in section 930.

§936 METAFONT PART 42: DOING THE OPERATIONS 361

936. Let’s turn now to the six basic relations of comparison.

〈Additional cases of binary operators 936 〉 ≡
less than , less or equal , greater than , greater or equal , equal to , unequal to : begin

if (cur type > pair type) ∧ (type (p) > pair type) then add or subtract (p,null ,minus)
{ cur exp ← (p)− cur exp }

else if cur type 6= type (p) then
begin bad binary (p, c); goto done ;
end

else if cur type = string type then flush cur exp(str vs str (value (p), cur exp))
else if (cur type = unknown string) ∨ (cur type = unknown boolean) then
〈Check if unknowns have been equated 938 〉

else if (cur type = pair type) ∨ (cur type = transform type) then
〈Reduce comparison of big nodes to comparison of scalars 939 〉

else if cur type = boolean type then flush cur exp(cur exp − value (p))
else begin bad binary (p, c); goto done ;

end;
〈Compare the current expression with zero 937 〉;

done : end;

See also sections 940, 941, 948, 951, 952, 975, 983, and 988.

This code is used in section 922.

937. 〈Compare the current expression with zero 937 〉 ≡
if cur type 6= known then

begin if cur type < known then
begin disp err (p, ""); help1 ("The quantities shown above have not been equated.")
end

else help2 ("Oh dear. I can´t decide if the expression above is positive,")
("negative, or zero. So this comparison test won´t be `true´.");
exp err ("Unknown relation will be considered false"); put get flush error (false code);
end

else case c of
less than : boolean reset (cur exp < 0);
less or equal : boolean reset (cur exp ≤ 0);
greater than : boolean reset (cur exp > 0);
greater or equal : boolean reset (cur exp ≥ 0);
equal to : boolean reset (cur exp = 0);
unequal to : boolean reset (cur exp 6= 0);
end; { there are no other cases }

cur type ← boolean type

This code is used in section 936.

938. When two unknown strings are in the same ring, we know that they are equal. Otherwise, we don’t
know whether they are equal or not, so we make no change.

〈Check if unknowns have been equated 938 〉 ≡
begin q ← value (cur exp);
while (q 6= cur exp) ∧ (q 6= p) do q ← value (q);
if q = p then flush cur exp(0);
end

This code is used in section 936.

362 PART 42: DOING THE OPERATIONS METAFONT §939

939. 〈Reduce comparison of big nodes to comparison of scalars 939 〉 ≡
begin q ← value (p); r ← value (cur exp); rr ← r + big node size [cur type]− 2;
loop begin add or subtract (q, r,minus);

if type (r) 6= known then goto done1 ;
if value (r) 6= 0 then goto done1 ;
if r = rr then goto done1 ;
q ← q + 2; r ← r + 2;
end;

done1 : take part (x part + half (r − value (cur exp)));
end

This code is used in section 936.

940. Here we use the sneaky fact that and op − false code = or op − true code .

〈Additional cases of binary operators 936 〉 +≡
and op , or op : if (type (p) 6= boolean type) ∨ (cur type 6= boolean type) then bad binary (p, c)

else if value (p) = c+ false code − and op then cur exp ← value (p);

941. 〈Additional cases of binary operators 936 〉 +≡
times : if (cur type < pair type) ∨ (type (p) < pair type) then bad binary (p, times)

else if (cur type = known) ∨ (type (p) = known) then
〈Multiply when at least one operand is known 942 〉

else if (nice pair (p, type (p)) ∧ (cur type > pair type)) ∨ (nice pair (cur exp ,
cur type) ∧ (type (p) > pair type)) then

begin hard times (p); return;
end

else bad binary (p, times);

942. 〈Multiply when at least one operand is known 942 〉 ≡
begin if type (p) = known then

begin v ← value (p); free node (p, value node size);
end

else begin v ← cur exp ; unstash cur exp(p);
end;

if cur type = known then cur exp ← take scaled (cur exp , v)
else if cur type = pair type then

begin p← value (cur exp); dep mult (x part loc(p), v, true); dep mult (y part loc(p), v, true);
end

else dep mult (null , v, true);
return;
end

This code is used in section 941.

§943 METAFONT PART 42: DOING THE OPERATIONS 363

943. 〈Declare binary action procedures 923 〉 +≡
procedure dep mult (p : pointer ; v : integer ; v is scaled : boolean);

label exit ;
var q: pointer ; { the dependency list being multiplied by v }
s, t: small number ; { its type, before and after }

begin if p = null then q ← cur exp
else if type (p) 6= known then q ← p

else begin if v is scaled then value (p)← take scaled (value (p), v)
else value (p)← take fraction (value (p), v);
return;
end;

t← type (q); q ← dep list (q); s← t;
if t = dependent then

if v is scaled then
if ab vs cd (max coef (q), abs (v), coef bound − 1, unity) ≥ 0 then t← proto dependent ;

q ← p times v (q, v, s, t, v is scaled); dep finish (q, p, t);
exit : end;

944. Here is a routine that is similar to times ; but it is invoked only internally, when v is a fraction whose
magnitude is at most 1, and when cur type ≥ pair type .

procedure frac mult (n, d : scaled); {multiplies cur exp by n/d }
var p: pointer ; { a pair node }

old exp : pointer ; { a capsule to recycle }
v: fraction ; {n/d }

begin if internal [tracing commands] > two then 〈Trace the fraction multiplication 945 〉;
case cur type of
transform type , pair type : old exp ← tarnished (cur exp);
independent : old exp ← void ;
othercases old exp ← null
endcases;
if old exp 6= null then

begin old exp ← cur exp ; make exp copy (old exp);
end;

v ← make fraction (n, d);
if cur type = known then cur exp ← take fraction (cur exp , v)
else if cur type = pair type then

begin p← value (cur exp); dep mult (x part loc(p), v, false); dep mult (y part loc(p), v, false);
end

else dep mult (null , v, false);
if old exp 6= null then

begin recycle value (old exp); free node (old exp , value node size);
end

end;

945. 〈Trace the fraction multiplication 945 〉 ≡
begin begin diagnostic ; print nl ("{("); print scaled (n); print char ("/"); print scaled (d);
print (")*("); print exp(null , 0); print (")}"); end diagnostic(false);
end

This code is used in section 944.

364 PART 42: DOING THE OPERATIONS METAFONT §946

946. The hard times routine multiplies a nice pair by a dependency list.

〈Declare binary action procedures 923 〉 +≡
procedure hard times (p : pointer);

var q: pointer ; { a copy of the dependent variable p }
r: pointer ; { the big node for the nice pair }
u, v: scaled ; { the known values of the nice pair }

begin if type (p) = pair type then
begin q ← stash cur exp ; unstash cur exp(p); p← q;
end; { now cur type = pair type }

r ← value (cur exp); u← value (x part loc(r)); v ← value (y part loc(r));
〈Move the dependent variable p into both parts of the pair node r 947 〉;
dep mult (x part loc(r), u, true); dep mult (y part loc(r), v, true);
end;

947. 〈Move the dependent variable p into both parts of the pair node r 947 〉 ≡
type (y part loc(r))← type (p); new dep(y part loc(r), copy dep list (dep list (p)));
type (x part loc(r))← type (p); mem [value loc(x part loc(r))]← mem [value loc(p)];
link (prev dep(p))← x part loc(r); free node (p, value node size)

This code is used in section 946.

948. 〈Additional cases of binary operators 936 〉 +≡
over : if (cur type 6= known) ∨ (type (p) < pair type) then bad binary (p, over)

else begin v ← cur exp ; unstash cur exp(p);
if v = 0 then 〈Squeal about division by zero 950 〉
else begin if cur type = known then cur exp ← make scaled (cur exp , v)

else if cur type = pair type then
begin p← value (cur exp); dep div (x part loc(p), v); dep div (y part loc(p), v);
end

else dep div (null , v);
end;

return;
end;

949. 〈Declare binary action procedures 923 〉 +≡
procedure dep div (p : pointer ; v : scaled);

label exit ;
var q: pointer ; { the dependency list being divided by v }
s, t: small number ; { its type, before and after }

begin if p = null then q ← cur exp
else if type (p) 6= known then q ← p

else begin value (p)← make scaled (value (p), v); return;
end;

t← type (q); q ← dep list (q); s← t;
if t = dependent then

if ab vs cd (max coef (q), unity , coef bound − 1, abs (v)) ≥ 0 then t← proto dependent ;
q ← p over v (q, v, s, t); dep finish (q, p, t);

exit : end;

§950 METAFONT PART 42: DOING THE OPERATIONS 365

950. 〈Squeal about division by zero 950 〉 ≡
begin exp err ("Division by zero");
help2 ("You´re trying to divide the quantity shown above the error")
("message by zero. I´m going to divide it by one instead."); put get error ;
end

This code is used in section 948.

951. 〈Additional cases of binary operators 936 〉 +≡
pythag add , pythag sub : if (cur type = known) ∧ (type (p) = known) then

if c = pythag add then cur exp ← pyth add (value (p), cur exp)
else cur exp ← pyth sub(value (p), cur exp)

else bad binary (p, c);

952. The next few sections of the program deal with affine transformations of coordinate data.

〈Additional cases of binary operators 936 〉 +≡
rotated by , slanted by , scaled by , shifted by , transformed by , x scaled , y scaled , z scaled :

if (type (p) = path type) ∨ (type (p) = future pen) ∨ (type (p) = pen type) then
begin path trans (p, c); return;
end

else if (type (p) = pair type) ∨ (type (p) = transform type) then big trans (p, c)
else if type (p) = picture type then

begin edges trans (p, c); return;
end

else bad binary (p, c);

953. Let c be one of the eight transform operators. The procedure call set up trans (c) first changes cur exp
to a transform that corresponds to c and the original value of cur exp . (In particular, cur exp doesn’t change
at all if c = transformed by .)

Then, if all components of the resulting transform are known , they are moved to the global variables txx ,
txy , tyx , tyy , tx , ty ; and cur exp is changed to the known value zero.

〈Declare binary action procedures 923 〉 +≡
procedure set up trans (c : quarterword);

label done , exit ;
var p, q, r: pointer ; { list manipulation registers }
begin if (c 6= transformed by) ∨ (cur type 6= transform type) then
〈Put the current transform into cur exp 955 〉;
〈 If the current transform is entirely known, stash it in global variables; otherwise return 956 〉;

exit : end;

954. 〈Global variables 13 〉 +≡
txx , txy , tyx , tyy , tx , ty : scaled ; { current transform coefficients }

366 PART 42: DOING THE OPERATIONS METAFONT §955

955. 〈Put the current transform into cur exp 955 〉 ≡
begin p← stash cur exp ; cur exp ← id transform ; cur type ← transform type ; q ← value (cur exp);
case c of
〈For each of the eight cases, change the relevant fields of cur exp and goto done ; but do nothing if

capsule p doesn’t have the appropriate type 957 〉
end; { there are no other cases }
disp err (p, "Improper transformation argument");
help3 ("The expression shown above has the wrong type,")
("so I can´t transform anything using it.")
("Proceed, and I´ll omit the transformation."); put get error ;

done : recycle value (p); free node (p, value node size);
end

This code is used in section 953.

956. 〈 If the current transform is entirely known, stash it in global variables; otherwise return 956 〉 ≡
q ← value (cur exp); r ← q + transform node size ;
repeat r ← r − 2;

if type (r) 6= known then return;
until r = q;
txx ← value (xx part loc(q)); txy ← value (xy part loc(q)); tyx ← value (yx part loc(q));
tyy ← value (yy part loc(q)); tx ← value (x part loc(q)); ty ← value (y part loc(q)); flush cur exp(0)

This code is used in section 953.

957. 〈For each of the eight cases, change the relevant fields of cur exp and goto done ; but do nothing if
capsule p doesn’t have the appropriate type 957 〉 ≡

rotated by : if type (p) = known then 〈 Install sines and cosines, then goto done 958 〉;
slanted by : if type (p) > pair type then

begin install (xy part loc(q), p); goto done ;
end;

scaled by : if type (p) > pair type then
begin install (xx part loc(q), p); install (yy part loc(q), p); goto done ;
end;

shifted by : if type (p) = pair type then
begin r ← value (p); install (x part loc(q), x part loc(r)); install (y part loc(q), y part loc(r));
goto done ;
end;

x scaled : if type (p) > pair type then
begin install (xx part loc(q), p); goto done ;
end;

y scaled : if type (p) > pair type then
begin install (yy part loc(q), p); goto done ;
end;

z scaled : if type (p) = pair type then 〈 Install a complex multiplier, then goto done 959 〉;
transformed by : do nothing ;

This code is used in section 955.

958. 〈 Install sines and cosines, then goto done 958 〉 ≡
begin n sin cos ((value (p) mod three sixty units) ∗ 16); value (xx part loc(q))← round fraction (n cos);
value (yx part loc(q))← round fraction (n sin); value (xy part loc(q))← −value (yx part loc(q));
value (yy part loc(q))← value (xx part loc(q)); goto done ;
end

This code is used in section 957.

§959 METAFONT PART 42: DOING THE OPERATIONS 367

959. 〈 Install a complex multiplier, then goto done 959 〉 ≡
begin r ← value (p); install (xx part loc(q), x part loc(r)); install (yy part loc(q), x part loc(r));
install (yx part loc(q), y part loc(r));
if type (y part loc(r)) = known then negate (value (y part loc(r)))
else negate dep list (dep list (y part loc(r)));
install (xy part loc(q), y part loc(r)); goto done ;
end

This code is used in section 957.

960. Procedure set up known trans is like set up trans , but it insists that the transformation be entirely
known.

〈Declare binary action procedures 923 〉 +≡
procedure set up known trans (c : quarterword);

begin set up trans (c);
if cur type 6= known then

begin exp err ("Transform components aren´t all known");
help3 ("I´m unable to apply a partially specified transformation")
("except to a fully known pair or transform.")
("Proceed, and I´ll omit the transformation."); put get flush error (0); txx ← unity ; txy ← 0;
tyx ← 0; tyy ← unity ; tx ← 0; ty ← 0;
end;

end;

961. Here’s a procedure that applies the transform txx . . ty to a pair of coordinates in locations p and q.

〈Declare binary action procedures 923 〉 +≡
procedure trans (p, q : pointer);

var v: scaled ; { the new x value }
begin v ← take scaled (mem [p].sc , txx) + take scaled (mem [q].sc , txy) + tx ;
mem [q].sc ← take scaled (mem [p].sc , tyx) + take scaled (mem [q].sc , tyy) + ty ; mem [p].sc ← v;
end;

962. The simplest transformation procedure applies a transform to all coordinates of a path. The null pen
remains unchanged if it isn’t being shifted.

〈Declare binary action procedures 923 〉 +≡
procedure path trans (p : pointer ; c : quarterword);

label exit ;
var q: pointer ; { list traverser }
begin set up known trans (c); unstash cur exp(p);
if cur type = pen type then

begin if max offset (cur exp) = 0 then
if tx = 0 then

if ty = 0 then return;
flush cur exp(make path (cur exp)); cur type ← future pen ;
end;

q ← cur exp ;
repeat if left type (q) 6= endpoint then trans (q + 3, q + 4); { that’s left x and left y }

trans (q + 1, q + 2); { that’s x coord and y coord }
if right type (q) 6= endpoint then trans (q + 5, q + 6); { that’s right x and right y }
q ← link (q);

until q = cur exp ;
exit : end;

368 PART 42: DOING THE OPERATIONS METAFONT §963

963. The next simplest transformation procedure applies to edges. It is simple primarily because META-
FONT doesn’t allow very general transformations to be made, and because the tricky subroutines for edge
transformation have already been written.

〈Declare binary action procedures 923 〉 +≡
procedure edges trans (p : pointer ; c : quarterword);

label exit ;
begin set up known trans (c); unstash cur exp(p); cur edges ← cur exp ;
if empty edges (cur edges) then return; { the empty set is easy to transform }
if txx = 0 then

if tyy = 0 then
if txy mod unity = 0 then

if tyx mod unity = 0 then
begin xy swap edges ; txx ← txy ; tyy ← tyx ; txy ← 0; tyx ← 0;
if empty edges (cur edges) then return;
end;

if txy = 0 then
if tyx = 0 then

if txx mod unity = 0 then
if tyy mod unity = 0 then 〈Scale the edges, shift them, and return 964 〉;

print err ("That transformation is too hard");
help3 ("I can apply complicated transformations to paths,")
("but I can only do integer operations on pictures.")
("Proceed, and I´ll omit the transformation."); put get error ;

exit : end;

964. 〈Scale the edges, shift them, and return 964 〉 ≡
begin if (txx = 0) ∨ (tyy = 0) then

begin toss edges (cur edges); cur exp ← get node (edge header size); init edges (cur exp);
end

else begin if txx < 0 then
begin x reflect edges ; txx ← −txx ;
end;

if tyy < 0 then
begin y reflect edges ; tyy ← −tyy ;
end;

if txx 6= unity then x scale edges (txx div unity);
if tyy 6= unity then y scale edges (tyy div unity);
〈Shift the edges by (tx , ty), rounded 965 〉;
end;

return;
end

This code is used in section 963.

§965 METAFONT PART 42: DOING THE OPERATIONS 369

965. 〈Shift the edges by (tx , ty), rounded 965 〉 ≡
tx ← round unscaled (tx); ty ← round unscaled (ty);
if (m min (cur edges) + tx ≤ 0) ∨ (m max (cur edges) + tx ≥ 8192) ∨

(n min (cur edges) + ty ≤ 0) ∨ (n max (cur edges) + ty ≥ 8191) ∨
(abs (tx) ≥ 4096) ∨ (abs (ty) ≥ 4096) then

begin print err ("Too far to shift");
help3 ("I can´t shift the picture as requested−−−it would")
("make some coordinates too large or too small.")
("Proceed, and I´ll omit the transformation."); put get error ;
end

else begin if tx 6= 0 then
begin if ¬valid range (m offset (cur edges)− tx) then fix offset ;
m min (cur edges)← m min (cur edges) + tx ; m max (cur edges)← m max (cur edges) + tx ;
m offset (cur edges)← m offset (cur edges)− tx ; last window time (cur edges)← 0;
end;

if ty 6= 0 then
begin n min (cur edges)← n min (cur edges) + ty ; n max (cur edges)← n max (cur edges) + ty ;
n pos (cur edges)← n pos (cur edges) + ty ; last window time (cur edges)← 0;
end;

end

This code is used in section 964.

966. The hard cases of transformation occur when big nodes are involved, and when some of their
components are unknown.

〈Declare binary action procedures 923 〉 +≡
〈Declare subroutines needed by big trans 968 〉
procedure big trans (p : pointer ; c : quarterword);

label exit ;
var q, r, pp , qq : pointer ; { list manipulation registers }
s: small number ; { size of a big node }

begin s← big node size [type (p)]; q ← value (p); r ← q + s;
repeat r ← r − 2;

if type (r) 6= known then 〈Transform an unknown big node and return 967 〉;
until r = q;
〈Transform a known big node 970 〉;

exit : end; { node p will now be recycled by do binary }

967. 〈Transform an unknown big node and return 967 〉 ≡
begin set up known trans (c); make exp copy (p); r ← value (cur exp);
if cur type = transform type then

begin bilin1 (yy part loc(r), tyy , xy part loc(q), tyx , 0); bilin1 (yx part loc(r), tyy , xx part loc(q), tyx , 0);
bilin1 (xy part loc(r), txx , yy part loc(q), txy , 0); bilin1 (xx part loc(r), txx , yx part loc(q), txy , 0);
end;

bilin1 (y part loc(r), tyy , x part loc(q), tyx , ty); bilin1 (x part loc(r), txx , y part loc(q), txy , tx); return;
end

This code is used in section 966.

370 PART 42: DOING THE OPERATIONS METAFONT §968

968. Let p point to a two-word value field inside a big node of cur exp , and let q point to a another value
field. The bilin1 procedure replaces p by p · t+ q · u+ δ.

〈Declare subroutines needed by big trans 968 〉 ≡
procedure bilin1 (p : pointer ; t : scaled ; q : pointer ; u, delta : scaled);

var r: pointer ; { list traverser }
begin if t 6= unity then dep mult (p, t, true);
if u 6= 0 then

if type (q) = known then delta ← delta + take scaled (value (q), u)
else begin 〈Ensure that type (p) = proto dependent 969 〉;

dep list (p)← p plus fq (dep list (p), u, dep list (q), proto dependent , type (q));
end;

if type (p) = known then value (p)← value (p) + delta
else begin r ← dep list (p);

while info(r) 6= null do r ← link (r);
delta ← value (r) + delta ;
if r 6= dep list (p) then value (r)← delta
else begin recycle value (p); type (p)← known ; value (p)← delta ;

end;
end;

if fix needed then fix dependencies ;
end;

See also sections 971, 972, and 974.

This code is used in section 966.

969. 〈Ensure that type (p) = proto dependent 969 〉 ≡
if type (p) 6= proto dependent then

begin if type (p) = known then new dep(p, const dependency (value (p)))
else dep list (p)← p times v (dep list (p), unity , dependent , proto dependent , true);
type (p)← proto dependent ;
end

This code is used in section 968.

970. 〈Transform a known big node 970 〉 ≡
set up trans (c);
if cur type = known then 〈Transform known by known 973 〉
else begin pp ← stash cur exp ; qq ← value (pp); make exp copy (p); r ← value (cur exp);

if cur type = transform type then
begin bilin2 (yy part loc(r), yy part loc(qq), value (xy part loc(q)), yx part loc(qq),null);
bilin2 (yx part loc(r), yy part loc(qq), value (xx part loc(q)), yx part loc(qq),null);
bilin2 (xy part loc(r), xx part loc(qq), value (yy part loc(q)), xy part loc(qq),null);
bilin2 (xx part loc(r), xx part loc(qq), value (yx part loc(q)), xy part loc(qq),null);
end;

bilin2 (y part loc(r), yy part loc(qq), value (x part loc(q)), yx part loc(qq), y part loc(qq));
bilin2 (x part loc(r), xx part loc(qq), value (y part loc(q)), xy part loc(qq), x part loc(qq));
recycle value (pp); free node (pp , value node size);
end;

This code is used in section 966.

§971 METAFONT PART 42: DOING THE OPERATIONS 371

971. Let p be a proto dependent value whose dependency list ends at dep final . The following procedure
adds v times another numeric quantity to p.

〈Declare subroutines needed by big trans 968 〉 +≡
procedure add mult dep(p : pointer ; v : scaled ; r : pointer);

begin if type (r) = known then value (dep final)← value (dep final) + take scaled (value (r), v)
else begin dep list (p)← p plus fq (dep list (p), v, dep list (r), proto dependent , type (r));

if fix needed then fix dependencies ;
end;

end;

972. The bilin2 procedure is something like bilin1 , but with known and unknown quantities reversed.
Parameter p points to a value field within the big node for cur exp ; and type (p) = known . Parameters t
and u point to value fields elsewhere; so does parameter q, unless it is null (which stands for zero). Location p
will be replaced by p · t+ v · u+ q.

〈Declare subroutines needed by big trans 968 〉 +≡
procedure bilin2 (p, t : pointer ; v : scaled ; u, q : pointer);

var vv : scaled ; { temporary storage for value (p) }
begin vv ← value (p); type (p)← proto dependent ; new dep(p, const dependency (0));

{ this sets dep final }
if vv 6= 0 then add mult dep(p, vv , t); { dep final doesn’t change }
if v 6= 0 then add mult dep(p, v, u);
if q 6= null then add mult dep(p, unity , q);
if dep list (p) = dep final then

begin vv ← value (dep final); recycle value (p); type (p)← known ; value (p)← vv ;
end;

end;

973. 〈Transform known by known 973 〉 ≡
begin make exp copy (p); r ← value (cur exp);
if cur type = transform type then

begin bilin3 (yy part loc(r), tyy , value (xy part loc(q)), tyx , 0);
bilin3 (yx part loc(r), tyy , value (xx part loc(q)), tyx , 0);
bilin3 (xy part loc(r), txx , value (yy part loc(q)), txy , 0);
bilin3 (xx part loc(r), txx , value (yx part loc(q)), txy , 0);
end;

bilin3 (y part loc(r), tyy , value (x part loc(q)), tyx , ty);
bilin3 (x part loc(r), txx , value (y part loc(q)), txy , tx);
end

This code is used in section 970.

974. Finally, in bilin3 everything is known .

〈Declare subroutines needed by big trans 968 〉 +≡
procedure bilin3 (p : pointer ; t, v, u, delta : scaled);

begin if t 6= unity then delta ← delta + take scaled (value (p), t)
else delta ← delta + value (p);
if u 6= 0 then value (p)← delta + take scaled (v, u)
else value (p)← delta ;
end;

372 PART 42: DOING THE OPERATIONS METAFONT §975

975. 〈Additional cases of binary operators 936 〉 +≡
concatenate : if (cur type = string type) ∧ (type (p) = string type) then cat (p)

else bad binary (p, concatenate);
substring of : if nice pair (p, type (p)) ∧ (cur type = string type) then chop string (value (p))

else bad binary (p, substring of);
subpath of : begin if cur type = pair type then pair to path ;

if nice pair (p, type (p)) ∧ (cur type = path type) then chop path (value (p))
else bad binary (p, subpath of);
end;

976. 〈Declare binary action procedures 923 〉 +≡
procedure cat (p : pointer);

var a, b: str number ; { the strings being concatenated }
k: pool pointer ; { index into str pool }

begin a← value (p); b← cur exp ; str room (length (a) + length (b));
for k ← str start [a] to str start [a+ 1]− 1 do append char (so(str pool [k]));
for k ← str start [b] to str start [b+ 1]− 1 do append char (so(str pool [k]));
cur exp ← make string ; delete str ref (b);
end;

977. 〈Declare binary action procedures 923 〉 +≡
procedure chop string (p : pointer);

var a, b: integer ; { start and stop points }
l: integer ; { length of the original string }
k: integer ; { runs from a to b }
s: str number ; { the original string }
reversed : boolean ; {was a > b? }

begin a← round unscaled (value (x part loc(p))); b← round unscaled (value (y part loc(p)));
if a ≤ b then reversed ← false
else begin reversed ← true ; k ← a; a← b; b← k;

end;
s← cur exp ; l← length (s);
if a < 0 then

begin a← 0;
if b < 0 then b← 0;
end;

if b > l then
begin b← l;
if a > l then a← l;
end;

str room (b− a);
if reversed then

for k ← str start [s] + b− 1 downto str start [s] + a do append char (so(str pool [k]))
else for k ← str start [s] + a to str start [s] + b− 1 do append char (so(str pool [k]));
cur exp ← make string ; delete str ref (s);
end;

§978 METAFONT PART 42: DOING THE OPERATIONS 373

978. 〈Declare binary action procedures 923 〉 +≡
procedure chop path (p : pointer);

var q: pointer ; { a knot in the original path }
pp , qq , rr , ss : pointer ; { link variables for copies of path nodes }
a, b, k, l: scaled ; { indices for chopping }
reversed : boolean ; {was a > b? }

begin l← path length ; a← value (x part loc(p)); b← value (y part loc(p));
if a ≤ b then reversed ← false
else begin reversed ← true ; k ← a; a← b; b← k;

end;
〈Dispense with the cases a < 0 and/or b > l 979 〉;
q ← cur exp ;
while a ≥ unity do

begin q ← link (q); a← a− unity ; b← b− unity ;
end;

if b = a then 〈Construct a path from pp to qq of length zero 981 〉
else 〈Construct a path from pp to qq of length dbe 980 〉;
left type (pp)← endpoint ; right type (qq)← endpoint ; link (qq)← pp ; toss knot list (cur exp);
if reversed then

begin cur exp ← link (htap ypoc(pp)); toss knot list (pp);
end

else cur exp ← pp ;
end;

979. 〈Dispense with the cases a < 0 and/or b > l 979 〉 ≡
if a < 0 then

if left type (cur exp) = endpoint then
begin a← 0;
if b < 0 then b← 0;
end

else repeat a← a+ l; b← b+ l;
until a ≥ 0; { a cycle always has length l > 0 }

if b > l then
if left type (cur exp) = endpoint then

begin b← l;
if a > l then a← l;
end

else while a ≥ l do
begin a← a− l; b← b− l;
end

This code is used in section 978.

374 PART 42: DOING THE OPERATIONS METAFONT §980

980. 〈Construct a path from pp to qq of length dbe 980 〉 ≡
begin pp ← copy knot (q); qq ← pp ;
repeat q ← link (q); rr ← qq ; qq ← copy knot (q); link (rr)← qq ; b← b− unity ;
until b ≤ 0;
if a > 0 then

begin ss ← pp ; pp ← link (pp); split cubic(ss , a ∗ 1́0000 , x coord (pp), y coord (pp)); pp ← link (ss);
free node (ss , knot node size);
if rr = ss then

begin b← make scaled (b, unity − a); rr ← pp ;
end;

end;
if b < 0 then

begin split cubic(rr , (b+ unity) ∗ 1́0000 , x coord (qq), y coord (qq)); free node (qq , knot node size);
qq ← link (rr);
end;

end

This code is used in section 978.

981. 〈Construct a path from pp to qq of length zero 981 〉 ≡
begin if a > 0 then

begin qq ← link (q); split cubic(q, a ∗ 1́0000 , x coord (qq), y coord (qq)); q ← link (q);
end;

pp ← copy knot (q); qq ← pp ;
end

This code is used in section 978.

982. The pair value routine changes the current expression to a given ordered pair of values.

〈Declare binary action procedures 923 〉 +≡
procedure pair value (x, y : scaled);

var p: pointer ; { a pair node }
begin p← get node (value node size); flush cur exp(p); cur type ← pair type ; type (p)← pair type ;
name type (p)← capsule ; init big node (p); p← value (p);
type (x part loc(p))← known ; value (x part loc(p))← x;
type (y part loc(p))← known ; value (y part loc(p))← y;
end;

983. 〈Additional cases of binary operators 936 〉 +≡
point of , precontrol of , postcontrol of : begin if cur type = pair type then pair to path ;

if (cur type = path type) ∧ (type (p) = known) then find point (value (p), c)
else bad binary (p, c);
end;

pen offset of : begin if cur type = future pen then materialize pen ;
if (cur type = pen type) ∧ nice pair (p, type (p)) then set up offset (value (p))
else bad binary (p, pen offset of);
end;

direction time of : begin if cur type = pair type then pair to path ;
if (cur type = path type) ∧ nice pair (p, type (p)) then set up direction time (value (p))
else bad binary (p, direction time of);
end;

§984 METAFONT PART 42: DOING THE OPERATIONS 375

984. 〈Declare binary action procedures 923 〉 +≡
procedure set up offset (p : pointer);

begin find offset (value (x part loc(p)), value (y part loc(p)), cur exp); pair value (cur x , cur y);
end;

procedure set up direction time (p : pointer);
begin flush cur exp(find direction time (value (x part loc(p)), value (y part loc(p)), cur exp));
end;

985. 〈Declare binary action procedures 923 〉 +≡
procedure find point (v : scaled ; c : quarterword);

var p: pointer ; { the path }
n: scaled ; { its length }
q: pointer ; { successor of p }

begin p← cur exp ;
if left type (p) = endpoint then n← −unity else n← 0;
repeat p← link (p); n← n+ unity ;
until p = cur exp ;
if n = 0 then v ← 0
else if v < 0 then

if left type (p) = endpoint then v ← 0
else v ← n− 1− ((−v − 1) mod n)

else if v > n then
if left type (p) = endpoint then v ← n
else v ← v mod n;

p← cur exp ;
while v ≥ unity do

begin p← link (p); v ← v − unity ;
end;

if v 6= 0 then 〈 Insert a fractional node by splitting the cubic 986 〉;
〈Set the current expression to the desired path coordinates 987 〉;
end;

986. 〈 Insert a fractional node by splitting the cubic 986 〉 ≡
begin q ← link (p); split cubic(p, v ∗ 1́0000 , x coord (q), y coord (q)); p← link (p);
end

This code is used in section 985.

987. 〈Set the current expression to the desired path coordinates 987 〉 ≡
case c of
point of : pair value (x coord (p), y coord (p));
precontrol of : if left type (p) = endpoint then pair value (x coord (p), y coord (p))

else pair value (left x (p), left y (p));
postcontrol of : if right type (p) = endpoint then pair value (x coord (p), y coord (p))

else pair value (right x (p), right y (p));
end { there are no other cases }

This code is used in section 985.

376 PART 42: DOING THE OPERATIONS METAFONT §988

988. 〈Additional cases of binary operators 936 〉 +≡
intersect : begin if type (p) = pair type then

begin q ← stash cur exp ; unstash cur exp(p); pair to path ; p← stash cur exp ; unstash cur exp(q);
end;

if cur type = pair type then pair to path ;
if (cur type = path type) ∧ (type (p) = path type) then

begin path intersection (value (p), cur exp); pair value (cur t , cur tt);
end

else bad binary (p, intersect);
end;

§989 METAFONT PART 43: STATEMENTS AND COMMANDS 377

989. Statements and commands. The chief executive of METAFONT is the do statement routine,
which contains the master switch that causes all the various pieces of METAFONT to do their things, in the
right order.

In a sense, this is the grand climax of the program: It applies all the tools that we have worked so hard
to construct. In another sense, this is the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can’t fully understand what is going on without paging back and
forth to be reminded of conventions that are defined elsewhere. We are now at the hub of the web.

The structure of do statement itself is quite simple. The first token of the statement is fetched using
get x next . If it can be the first token of an expression, we look for an equation, an assignment, or a title.
Otherwise we use a case construction to branch at high speed to the appropriate routine for various and
sundry other types of commands, each of which has an “action procedure” that does the necessary work.

The program uses the fact that

min primary command = max statement command = type name

to interpret a statement that starts with, e.g., ‘string’, as a type declaration rather than a boolean expression.

〈Declare generic font output procedures 1154 〉
〈Declare action procedures for use by do statement 995 〉
procedure do statement ; { governs METAFONT’s activities }

begin cur type ← vacuous ; get x next ;
if cur cmd > max primary command then 〈Worry about bad statement 990 〉
else if cur cmd > max statement command then
〈Do an equation, assignment, title, or ‘〈 expression 〉 endgroup’ 993 〉

else 〈Do a statement that doesn’t begin with an expression 992 〉;
if cur cmd < semicolon then 〈Flush unparsable junk that was found after the statement 991 〉;
error count ← 0;
end;

990. The only command codes > max primary command that can be present at the beginning of a
statement are semicolon and higher; these occur when the statement is null.

〈Worry about bad statement 990 〉 ≡
begin if cur cmd < semicolon then

begin print err ("A statement can´t begin with `"); print cmd mod (cur cmd , cur mod);
print char ("´"); help5 ("I was looking for the beginning of a new statement.")
("If you just proceed without changing anything, I´ll ignore")
("everything up to the next `;´. Please insert a semicolon")
("now in front of anything that you don´t want me to delete.")
("(See Chapter 27 of The METAFONTbook for an example.)");
back error ; get x next ;
end;

end

This code is used in section 989.

378 PART 43: STATEMENTS AND COMMANDS METAFONT §991

991. The help message printed here says that everything is flushed up to a semicolon, but actually the
commands end group and stop will also terminate a statement.

〈Flush unparsable junk that was found after the statement 991 〉 ≡
begin print err ("Extra tokens will be flushed");
help6 ("I´ve just read as much of that statement as I could fathom,")
("so a semicolon should have been next. It´s very puzzling...")
("but I´ll try to get myself back together, by ignoring")
("everything up to the next `;´. Please insert a semicolon")
("now in front of anything that you don´t want me to delete.")
("(See Chapter 27 of The METAFONTbook for an example.)");
back error ; scanner status ← flushing ;
repeat get next ; 〈Decrease the string reference count, if the current token is a string 743 〉;
until end of statement ; { cur cmd = semicolon , end group , or stop }
scanner status ← normal ;
end

This code is used in section 989.

992. If do statement ends with cur cmd = end group , we should have cur type = vacuous unless the
statement was simply an expression; in the latter case, cur type and cur exp should represent that expression.

〈Do a statement that doesn’t begin with an expression 992 〉 ≡
begin if internal [tracing commands] > 0 then show cur cmd mod ;
case cur cmd of
type name : do type declaration ;
macro def : if cur mod > var def then make op def

else if cur mod > end def then scan def ;
〈Cases of do statement that invoke particular commands 1020 〉
end; { there are no other cases }
cur type ← vacuous ;
end

This code is used in section 989.

993. The most important statements begin with expressions.

〈Do an equation, assignment, title, or ‘〈 expression 〉 endgroup’ 993 〉 ≡
begin var flag ← assignment ; scan expression ;
if cur cmd < end group then

begin if cur cmd = equals then do equation
else if cur cmd = assignment then do assignment

else if cur type = string type then 〈Do a title 994 〉
else if cur type 6= vacuous then

begin exp err ("Isolated expression");
help3 ("I couldn´t find an `=´ or `:=´ after the")
("expression that is shown above this error message,")
("so I guess I´ll just ignore it and carry on."); put get error ;
end;

flush cur exp(0); cur type ← vacuous ;
end;

end

This code is used in section 989.

§994 METAFONT PART 43: STATEMENTS AND COMMANDS 379

994. 〈Do a title 994 〉 ≡
begin if internal [tracing titles] > 0 then

begin print nl (""); slow print (cur exp); update terminal ;
end;

if internal [proofing] > 0 then 〈Send the current expression as a title to the output file 1179 〉;
end

This code is used in section 993.

995. Equations and assignments are performed by the pair of mutually recursive routines do equation
and do assignment . These routines are called when cur cmd = equals and when cur cmd = assignment ,
respectively; the left-hand side is in cur type and cur exp , while the right-hand side is yet to be scanned.
After the routines are finished, cur type and cur exp will be equal to the right-hand side (which will normally
be equal to the left-hand side).

〈Declare action procedures for use by do statement 995 〉 ≡
〈Declare the procedure called try eq 1006 〉
〈Declare the procedure called make eq 1001 〉
procedure do assignment ; forward ;
procedure do equation ;

var lhs : pointer ; { capsule for the left-hand side }
p: pointer ; { temporary register }

begin lhs ← stash cur exp ; get x next ; var flag ← assignment ; scan expression ;
if cur cmd = equals then do equation
else if cur cmd = assignment then do assignment ;
if internal [tracing commands] > two then 〈Trace the current equation 997 〉;
if cur type = unknown path then

if type (lhs) = pair type then
begin p← stash cur exp ; unstash cur exp(lhs); lhs ← p;
end; { in this case make eq will change the pair to a path }

make eq (lhs); { equate lhs to (cur type , cur exp) }
end;

See also sections 996, 1015, 1021, 1029, 1031, 1034, 1035, 1036, 1040, 1041, 1044, 1045, 1046, 1049, 1050, 1051, 1054, 1057,
1059, 1070, 1071, 1072, 1073, 1074, 1082, 1103, 1104, 1106, 1177, and 1186.

This code is used in section 989.

380 PART 43: STATEMENTS AND COMMANDS METAFONT §996

996. And do assignment is similar to do equation :

〈Declare action procedures for use by do statement 995 〉 +≡
procedure do assignment ;

var lhs : pointer ; { token list for the left-hand side }
p: pointer ; {where the left-hand value is stored }
q: pointer ; { temporary capsule for the right-hand value }

begin if cur type 6= token list then
begin exp err ("Improper `:=´ will be changed to `=´");
help2 ("I didn´t find a variable name at the left of the `:=´,")
("so I´m going to pretend that you said `=´ instead.");
error ; do equation ;
end

else begin lhs ← cur exp ; cur type ← vacuous ;
get x next ; var flag ← assignment ; scan expression ;
if cur cmd = equals then do equation
else if cur cmd = assignment then do assignment ;
if internal [tracing commands] > two then 〈Trace the current assignment 998 〉;
if info(lhs) > hash end then 〈Assign the current expression to an internal variable 999 〉
else 〈Assign the current expression to the variable lhs 1000 〉;
flush node list (lhs);
end;

end;

997. 〈Trace the current equation 997 〉 ≡
begin begin diagnostic ; print nl ("{("); print exp(lhs , 0); print (")=("); print exp(null , 0); print (")}");
end diagnostic(false);
end

This code is used in section 995.

998. 〈Trace the current assignment 998 〉 ≡
begin begin diagnostic ; print nl ("{");
if info(lhs) > hash end then slow print (int name [info(lhs)− (hash end)])
else show token list (lhs ,null , 1000, 0);
print (":="); print exp(null , 0); print char ("}"); end diagnostic(false);
end

This code is used in section 996.

999. 〈Assign the current expression to an internal variable 999 〉 ≡
if cur type = known then internal [info(lhs)− (hash end)]← cur exp
else begin exp err ("Internal quantity `"); slow print (int name [info(lhs)− (hash end)]);

print ("´ must receive a known value");
help2 ("I can´t set an internal quantity to anything but a known")
("numeric value, so I´ll have to ignore this assignment."); put get error ;
end

This code is used in section 996.

§1000 METAFONT PART 43: STATEMENTS AND COMMANDS 381

1000. 〈Assign the current expression to the variable lhs 1000 〉 ≡
begin p← find variable (lhs);
if p 6= null then

begin q ← stash cur exp ; cur type ← und type (p); recycle value (p); type (p)← cur type ;
value (p)← null ; make exp copy (p); p← stash cur exp ; unstash cur exp(q); make eq (p);
end

else begin obliterated (lhs); put get error ;
end;

end

This code is used in section 996.

1001. And now we get to the nitty-gritty. The make eq procedure is given a pointer to a capsule that is
to be equated to the current expression.

〈Declare the procedure called make eq 1001 〉 ≡
procedure make eq (lhs : pointer);

label restart , done ,not found ;
var t: small number ; { type of the left-hand side }
v: integer ; { value of the left-hand side }
p, q: pointer ; { pointers inside of big nodes }

begin restart : t← type (lhs);
if t ≤ pair type then v ← value (lhs);
case t of
〈For each type t, make an equation and goto done unless cur type is incompatible with t 1003 〉
end; { all cases have been listed }
〈Announce that the equation cannot be performed 1002 〉;

done : check arith ; recycle value (lhs); free node (lhs , value node size);
end;

This code is used in section 995.

1002. 〈Announce that the equation cannot be performed 1002 〉 ≡
disp err (lhs , ""); exp err ("Equation cannot be performed (");
if type (lhs) ≤ pair type then print type (type (lhs)) else print ("numeric");
print char ("=");
if cur type ≤ pair type then print type (cur type) else print ("numeric");
print char (")");
help2 ("I´m sorry, but I don´t know how to make such things equal.")
("(See the two expressions just above the error message.)"); put get error

This code is used in section 1001.

382 PART 43: STATEMENTS AND COMMANDS METAFONT §1003

1003. 〈For each type t, make an equation and goto done unless cur type is incompatible with t 1003 〉 ≡
boolean type , string type , pen type , path type , picture type : if cur type = t+ unknown tag then

begin nonlinear eq (v, cur exp , false); unstash cur exp(cur exp); goto done ;
end

else if cur type = t then 〈Report redundant or inconsistent equation and goto done 1004 〉;
unknown types : if cur type = t− unknown tag then

begin nonlinear eq (cur exp , lhs , true); goto done ;
end

else if cur type = t then
begin ring merge (lhs , cur exp); goto done ;
end

else if cur type = pair type then
if t = unknown path then

begin pair to path ; goto restart ;
end;

transform type , pair type : if cur type = t then 〈Do multiple equations and goto done 1005 〉;
known , dependent , proto dependent , independent : if cur type ≥ known then

begin try eq (lhs ,null); goto done ;
end;

vacuous : do nothing ;

This code is used in section 1001.

1004. 〈Report redundant or inconsistent equation and goto done 1004 〉 ≡
begin if cur type ≤ string type then

begin if cur type = string type then
begin if str vs str (v, cur exp) 6= 0 then goto not found ;
end

else if v 6= cur exp then goto not found ;
〈Exclaim about a redundant equation 623 〉;
goto done ;
end;

print err ("Redundant or inconsistent equation");
help2 ("An equation between already−known quantities can´t help.")
("But don´t worry; continue and I´ll just ignore it."); put get error ; goto done ;

not found : print err ("Inconsistent equation");
help2 ("The equation I just read contradicts what was said before.")
("But don´t worry; continue and I´ll just ignore it."); put get error ; goto done ;
end

This code is used in section 1003.

1005. 〈Do multiple equations and goto done 1005 〉 ≡
begin p← v + big node size [t]; q ← value (cur exp) + big node size [t];
repeat p← p− 2; q ← q − 2; try eq (p, q);
until p = v;
goto done ;
end

This code is used in section 1003.

§1006 METAFONT PART 43: STATEMENTS AND COMMANDS 383

1006. The first argument to try eq is the location of a value node in a capsule that will soon be recycled.
The second argument is either a location within a pair or transform node pointed to by cur exp , or it is null
(which means that cur exp itself serves as the second argument). The idea is to leave cur exp unchanged,
but to equate the two operands.

〈Declare the procedure called try eq 1006 〉 ≡
procedure try eq (l, r : pointer);

label done , done1 ;
var p: pointer ; { dependency list for right operand minus left operand }
t: known . . independent ; { the type of list p }
q: pointer ; { the constant term of p is here }
pp : pointer ; { dependency list for right operand }
tt : dependent . . independent ; { the type of list pp }
copied : boolean ; { have we copied a list that ought to be recycled? }

begin 〈Remove the left operand from its container, negate it, and put it into dependency list p with
constant term q 1007 〉;

〈Add the right operand to list p 1009 〉;
if info(p) = null then 〈Deal with redundant or inconsistent equation 1008 〉
else begin linear eq (p, t);

if r = null then
if cur type 6= known then

if type (cur exp) = known then
begin pp ← cur exp ; cur exp ← value (cur exp); cur type ← known ;
free node (pp , value node size);
end;

end;
end;

This code is used in section 995.

1007. 〈Remove the left operand from its container, negate it, and put it into dependency list p with
constant term q 1007 〉 ≡

t← type (l);
if t = known then

begin t← dependent ; p← const dependency (−value (l)); q ← p;
end

else if t = independent then
begin t← dependent ; p← single dependency (l); negate (value (p)); q ← dep final ;
end

else begin p← dep list (l); q ← p;
loop begin negate (value (q));

if info(q) = null then goto done ;
q ← link (q);
end;

done : link (prev dep(l))← link (q); prev dep(link (q))← prev dep(l); type (l)← known ;
end

This code is used in section 1006.

384 PART 43: STATEMENTS AND COMMANDS METAFONT §1008

1008. 〈Deal with redundant or inconsistent equation 1008 〉 ≡
begin if abs (value (p)) > 64 then { off by .001 or more }

begin print err ("Inconsistent equation");
print (" (off by "); print scaled (value (p)); print char (")");
help2 ("The equation I just read contradicts what was said before.")
("But don´t worry; continue and I´ll just ignore it."); put get error ;
end

else if r = null then 〈Exclaim about a redundant equation 623 〉;
free node (p, dep node size);
end

This code is used in section 1006.

1009. 〈Add the right operand to list p 1009 〉 ≡
if r = null then

if cur type = known then
begin value (q)← value (q) + cur exp ; goto done1 ;
end

else begin tt ← cur type ;
if tt = independent then pp ← single dependency (cur exp)
else pp ← dep list (cur exp);
end

else if type (r) = known then
begin value (q)← value (q) + value (r); goto done1 ;
end

else begin tt ← type (r);
if tt = independent then pp ← single dependency (r)
else pp ← dep list (r);
end;

if tt 6= independent then copied ← false
else begin copied ← true ; tt ← dependent ;

end;
〈Add dependency list pp of type tt to dependency list p of type t 1010 〉;
if copied then flush node list (pp);

done1 :

This code is used in section 1006.

1010. 〈Add dependency list pp of type tt to dependency list p of type t 1010 〉 ≡
watch coefs ← false ;
if t = tt then p← p plus q (p, pp , t)
else if t = proto dependent then p← p plus fq (p, unity , pp , proto dependent , dependent)

else begin q ← p;
while info(q) 6= null do

begin value (q)← round fraction (value (q)); q ← link (q);
end;

t← proto dependent ; p← p plus q (p, pp , t);
end;

watch coefs ← true ;

This code is used in section 1009.

§1011 METAFONT PART 43: STATEMENTS AND COMMANDS 385

1011. Our next goal is to process type declarations. For this purpose it’s convenient to have a procedure
that scans a 〈declared variable 〉 and returns the corresponding token list. After the following procedure has
acted, the token after the declared variable will have been scanned, so it will appear in cur cmd , cur mod ,
and cur sym .

〈Declare the function called scan declared variable 1011 〉 ≡
function scan declared variable : pointer ;

label done ;
var x: pointer ; { hash address of the variable’s root }
h, t: pointer ; { head and tail of the token list to be returned }
l: pointer ; { hash address of left bracket }

begin get symbol ; x← cur sym ;
if cur cmd 6= tag token then clear symbol (x, false);
h← get avail ; info(h)← x; t← h;
loop begin get x next ;

if cur sym = 0 then goto done ;
if cur cmd 6= tag token then

if cur cmd 6= internal quantity then
if cur cmd = left bracket then 〈Descend past a collective subscript 1012 〉
else goto done ;

link (t)← get avail ; t← link (t); info(t)← cur sym ;
end;

done : if eq type (x) mod outer tag 6= tag token then clear symbol (x, false);
if equiv (x) = null then new root (x);
scan declared variable ← h;
end;

This code is used in section 697.

1012. If the subscript isn’t collective, we don’t accept it as part of the declared variable.

〈Descend past a collective subscript 1012 〉 ≡
begin l← cur sym ; get x next ;
if cur cmd 6= right bracket then

begin back input ; cur sym ← l; cur cmd ← left bracket ; goto done ;
end

else cur sym ← collective subscript ;
end

This code is used in section 1011.

1013. Type declarations are introduced by the following primitive operations.

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("numeric", type name ,numeric type);
primitive ("string", type name , string type);
primitive ("boolean", type name , boolean type);
primitive ("path", type name , path type);
primitive ("pen", type name , pen type);
primitive ("picture", type name , picture type);
primitive ("transform", type name , transform type);
primitive ("pair", type name , pair type);

1014. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
type name : print type (m);

386 PART 43: STATEMENTS AND COMMANDS METAFONT §1015

1015. Now we are ready to handle type declarations, assuming that a type name has just been scanned.

〈Declare action procedures for use by do statement 995 〉 +≡
procedure do type declaration ;

var t: small number ; { the type being declared }
p: pointer ; { token list for a declared variable }
q: pointer ; { value node for the variable }

begin if cur mod ≥ transform type then t← cur mod else t← cur mod + unknown tag ;
repeat p← scan declared variable ; flush variable (equiv (info(p)), link (p), false);
q ← find variable (p);
if q 6= null then

begin type (q)← t; value (q)← null ;
end

else begin print err ("Declared variable conflicts with previous vardef");
help2 ("You can´t use, e.g., `numeric foo[]´ after `vardef foo´.")
("Proceed, and I´ll ignore the illegal redeclaration."); put get error ;
end;

flush list (p);
if cur cmd < comma then 〈Flush spurious symbols after the declared variable 1016 〉;

until end of statement ;
end;

1016. 〈Flush spurious symbols after the declared variable 1016 〉 ≡
begin print err ("Illegal suffix of declared variable will be flushed");
help5 ("Variables in declarations must consist entirely of")
("names and collective subscripts, e.g., `x[]a´.")
("Are you trying to use a reserved word in a variable name?")
("I´m going to discard the junk I found here,")
("up to the next comma or the end of the declaration.");
if cur cmd = numeric token then

help line [2]← "Explicit subscripts like `x15a´ aren´t permitted.";
put get error ; scanner status ← flushing ;
repeat get next ; 〈Decrease the string reference count, if the current token is a string 743 〉;
until cur cmd ≥ comma ; { either end of statement or cur cmd = comma }
scanner status ← normal ;
end

This code is used in section 1015.

1017. METAFONT’s main control procedure just calls do statement repeatedly until coming to the end of
the user’s program. Each execution of do statement concludes with cur cmd = semicolon , end group , or
stop .

procedure main control ;
begin repeat do statement ;

if cur cmd = end group then
begin print err ("Extra `endgroup´");
help2 ("I´m not currently working on a `begingroup´,")
("so I had better not try to end anything."); flush error (0);
end;

until cur cmd = stop ;
end;

§1018 METAFONT PART 43: STATEMENTS AND COMMANDS 387

1018. 〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("end", stop , 0);
primitive ("dump", stop , 1);

1019. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
stop : if m = 0 then print ("end") else print ("dump");

388 PART 44: COMMANDS METAFONT §1020

1020. Commands. Let’s turn now to statements that are classified as “commands” because of their
imperative nature. We’ll begin with simple ones, so that it will be clear how to hook command processing
into the do statement routine; then we’ll tackle the tougher commands.

Here’s one of the simplest:

〈Cases of do statement that invoke particular commands 1020 〉 ≡
random seed : do random seed ;

See also sections 1023, 1026, 1030, 1033, 1039, 1058, 1069, 1076, 1081, 1100, and 1175.

This code is used in section 992.

1021. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do random seed ;

begin get x next ;
if cur cmd 6= assignment then

begin missing err (":="); help1 ("Always say `randomseed:=<numeric expression>´.");
back error ;
end;

get x next ; scan expression ;
if cur type 6= known then

begin exp err ("Unknown value will be ignored");
help2 ("Your expression was too random for me to handle,")
("so I won´t change the random seed just now.");
put get flush error (0);
end

else 〈 Initialize the random seed to cur exp 1022 〉;
end;

1022. 〈 Initialize the random seed to cur exp 1022 〉 ≡
begin init randoms (cur exp);
if selector ≥ log only then

begin old setting ← selector ; selector ← log only ; print nl ("{randomseed:=");
print scaled (cur exp); print char ("}"); print nl (""); selector ← old setting ;
end;

end

This code is used in section 1021.

1023. And here’s another simple one (somewhat different in flavor):

〈Cases of do statement that invoke particular commands 1020 〉 +≡
mode command : begin print ln ; interaction ← cur mod ;
〈 Initialize the print selector based on interaction 70 〉;
if log opened then selector ← selector + 2;
get x next ;
end;

1024. 〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("batchmode",mode command , batch mode);
primitive ("nonstopmode",mode command ,nonstop mode);
primitive ("scrollmode",mode command , scroll mode);
primitive ("errorstopmode",mode command , error stop mode);

§1025 METAFONT PART 44: COMMANDS 389

1025. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
mode command : case m of

batch mode : print ("batchmode");
nonstop mode : print ("nonstopmode");
scroll mode : print ("scrollmode");
othercases print ("errorstopmode")
endcases;

1026. The ‘inner’ and ‘outer’ commands are only slightly harder.

〈Cases of do statement that invoke particular commands 1020 〉 +≡
protection command : do protection ;

1027. 〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("inner", protection command , 0);
primitive ("outer", protection command , 1);

1028. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
protection command : if m = 0 then print ("inner") else print ("outer");

1029. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do protection ;

var m: 0 . . 1; { 0 to unprotect, 1 to protect }
t: halfword ; { the eq type before we change it }

begin m← cur mod ;
repeat get symbol ; t← eq type (cur sym);

if m = 0 then
begin if t ≥ outer tag then eq type (cur sym)← t− outer tag ;
end

else if t < outer tag then eq type (cur sym)← t+ outer tag ;
get x next ;

until cur cmd 6= comma ;
end;

1030. METAFONT never defines the tokens ‘(’ and ‘)’ to be primitives, but plain METAFONT begins with
the declaration ‘delimiters ()’. Such a declaration assigns the command code left delimiter to ‘(’ and
right delimiter to ‘)’; the equiv of each delimiter is the hash address of its mate.

〈Cases of do statement that invoke particular commands 1020 〉 +≡
delimiters : def delims ;

1031. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure def delims ;

var l delim , r delim : pointer ; { the new delimiter pair }
begin get clear symbol ; l delim ← cur sym ;
get clear symbol ; r delim ← cur sym ;
eq type (l delim)← left delimiter ; equiv (l delim)← r delim ;
eq type (r delim)← right delimiter ; equiv (r delim)← l delim ;
get x next ;
end;

390 PART 44: COMMANDS METAFONT §1032

1032. Here is a procedure that is called when METAFONT has reached a point where some right delimiter
is mandatory.

〈Declare the procedure called check delimiter 1032 〉 ≡
procedure check delimiter (l delim , r delim : pointer);

label exit ;
begin if cur cmd = right delimiter then

if cur mod = l delim then return;
if cur sym 6= r delim then

begin missing err (text (r delim));
help2 ("I found no right delimiter to match a left one. So I´ve")
("put one in, behind the scenes; this may fix the problem."); back error ;
end

else begin print err ("The token `"); slow print (text (r delim));
print ("´ is no longer a right delimiter");
help3 ("Strange: This token has lost its former meaning!")
("I´ll read it as a right delimiter this time;")
("but watch out, I´ll probably miss it later."); error ;
end;

exit : end;

This code is used in section 697.

1033. The next four commands save or change the values associated with tokens.

〈Cases of do statement that invoke particular commands 1020 〉 +≡
save command : repeat get symbol ; save variable (cur sym); get x next ;

until cur cmd 6= comma ;
interim command : do interim ;
let command : do let ;
new internal : do new internal ;

1034. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do statement ; forward ;
procedure do interim ;

begin get x next ;
if cur cmd 6= internal quantity then

begin print err ("The token `");
if cur sym = 0 then print ("(%CAPSULE)")
else slow print (text (cur sym));
print ("´ isn´t an internal quantity");
help1 ("Something like `tracingonline´ should follow `interim´."); back error ;
end

else begin save internal (cur mod); back input ;
end;

do statement ;
end;

§1035 METAFONT PART 44: COMMANDS 391

1035. The following procedure is careful not to undefine the left-hand symbol too soon, lest commands
like ‘let x=x’ have a surprising effect.

〈Declare action procedures for use by do statement 995 〉 +≡
procedure do let ;

var l: pointer ; {hash location of the left-hand symbol }
begin get symbol ; l← cur sym ; get x next ;
if cur cmd 6= equals then

if cur cmd 6= assignment then
begin missing err ("="); help3 ("You should have said `let symbol = something´.")
("But don´t worry; I´ll pretend that an equals sign")
("was present. The next token I read will be `something´."); back error ;
end;

get symbol ;
case cur cmd of
defined macro , secondary primary macro , tertiary secondary macro , expression tertiary macro :

add mac ref (cur mod);
othercases do nothing
endcases;
clear symbol (l, false); eq type (l)← cur cmd ;
if cur cmd = tag token then equiv (l)← null
else equiv (l)← cur mod ;
get x next ;
end;

1036. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do new internal ;

begin repeat if int ptr = max internal then overflow ("number of internals",max internal);
get clear symbol ; incr (int ptr); eq type (cur sym)← internal quantity ; equiv (cur sym)← int ptr ;
int name [int ptr]← text (cur sym); internal [int ptr]← 0; get x next ;

until cur cmd 6= comma ;
end;

1037. The various ‘show’ commands are distinguished by modifier fields in the usual way.

define show token code = 0 { show the meaning of a single token }
define show stats code = 1 { show current memory and string usage }
define show code = 2 { show a list of expressions }
define show var code = 3 { show a variable and its descendents }
define show dependencies code = 4 { show dependent variables in terms of independents }

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("showtoken", show command , show token code);
primitive ("showstats", show command , show stats code);
primitive ("show", show command , show code);
primitive ("showvariable", show command , show var code);
primitive ("showdependencies", show command , show dependencies code);

392 PART 44: COMMANDS METAFONT §1038

1038. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
show command : case m of

show token code : print ("showtoken");
show stats code : print ("showstats");
show code : print ("show");
show var code : print ("showvariable");
othercases print ("showdependencies")
endcases;

1039. 〈Cases of do statement that invoke particular commands 1020 〉 +≡
show command : do show whatever ;

1040. The value of cur mod controls the verbosity in the print exp routine: If it’s show code , complicated
structures are abbreviated, otherwise they aren’t.

〈Declare action procedures for use by do statement 995 〉 +≡
procedure do show ;

begin repeat get x next ; scan expression ; print nl (">> "); print exp(null , 2); flush cur exp(0);
until cur cmd 6= comma ;
end;

1041. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure disp token ;

begin print nl ("> ");
if cur sym = 0 then 〈Show a numeric or string or capsule token 1042 〉
else begin slow print (text (cur sym)); print char ("=");

if eq type (cur sym) ≥ outer tag then print ("(outer) ");
print cmd mod (cur cmd , cur mod);
if cur cmd = defined macro then

begin print ln ; show macro(cur mod ,null , 100000);
end; { this avoids recursion between show macro and print cmd mod }

end;
end;

1042. 〈Show a numeric or string or capsule token 1042 〉 ≡
begin if cur cmd = numeric token then print scaled (cur mod)
else if cur cmd = capsule token then

begin g pointer ← cur mod ; print capsule ;
end

else begin print char (""""); slow print (cur mod); print char (""""); delete str ref (cur mod);
end;

end

This code is used in section 1041.

§1043 METAFONT PART 44: COMMANDS 393

1043. The following cases of print cmd mod might arise in connection with disp token , although they
don’t necessarily correspond to primitive tokens.

〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
left delimiter , right delimiter : begin if c = left delimiter then print ("lef")

else print ("righ");
print ("t delimiter that matches "); slow print (text (m));
end;

tag token : if m = null then print ("tag") else print ("variable");
defined macro : print ("macro:");
secondary primary macro , tertiary secondary macro , expression tertiary macro : begin

print cmd mod (macro def , c); print ("´d macro:"); print ln ;
show token list (link (link (m)),null , 1000, 0);
end;

repeat loop : print ("[repeat the loop]");
internal quantity : slow print (int name [m]);

1044. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do show token ;

begin repeat get next ; disp token ; get x next ;
until cur cmd 6= comma ;
end;

1045. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do show stats ;

begin print nl ("Memory usage ");
stat print int (var used); print char ("&"); print int (dyn used);
if false then
tats
print ("unknown"); print (" ("); print int (hi mem min − lo mem max − 1);
print (" still untouched)"); print ln ; print nl ("String usage "); print int (str ptr − init str ptr);
print char ("&"); print int (pool ptr − init pool ptr); print (" ("); print int (max strings −max str ptr);
print char ("&"); print int (pool size −max pool ptr); print (" still untouched)"); print ln ; get x next ;
end;

1046. Here’s a recursive procedure that gives an abbreviated account of a variable, for use by do show var .

〈Declare action procedures for use by do statement 995 〉 +≡
procedure disp var (p : pointer);

var q: pointer ; { traverses attributes and subscripts }
n: 0 . . max print line ; { amount of macro text to show }

begin if type (p) = structured then 〈Descend the structure 1047 〉
else if type (p) ≥ unsuffixed macro then 〈Display a variable macro 1048 〉

else if type (p) 6= undefined then
begin print nl (""); print variable name (p); print char ("="); print exp(p, 0);
end;

end;

394 PART 44: COMMANDS METAFONT §1047

1047. 〈Descend the structure 1047 〉 ≡
begin q ← attr head (p);
repeat disp var (q); q ← link (q);
until q = end attr ;
q ← subscr head (p);
while name type (q) = subscr do

begin disp var (q); q ← link (q);
end;

end

This code is used in section 1046.

1048. 〈Display a variable macro 1048 〉 ≡
begin print nl (""); print variable name (p);
if type (p) > unsuffixed macro then print ("@#"); { suffixed macro }
print ("=macro:");
if file offset ≥ max print line − 20 then n← 5
else n← max print line − file offset − 15;
show macro(value (p),null , n);
end

This code is used in section 1046.

1049. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do show var ;

label done ;
begin repeat get next ;

if cur sym > 0 then
if cur sym ≤ hash end then

if cur cmd = tag token then
if cur mod 6= null then

begin disp var (cur mod); goto done ;
end;

disp token ;
done : get x next ;
until cur cmd 6= comma ;
end;

§1050 METAFONT PART 44: COMMANDS 395

1050. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do show dependencies ;

var p: pointer ; { link that runs through all dependencies }
begin p← link (dep head);
while p 6= dep head do

begin if interesting (p) then
begin print nl (""); print variable name (p);
if type (p) = dependent then print char ("=")
else print (" = "); { extra spaces imply proto-dependency }
print dependency (dep list (p), type (p));
end;

p← dep list (p);
while info(p) 6= null do p← link (p);
p← link (p);
end;

get x next ;
end;

1051. Finally we are ready for the procedure that governs all of the show commands.

〈Declare action procedures for use by do statement 995 〉 +≡
procedure do show whatever ;

begin if interaction = error stop mode then wake up terminal ;
case cur mod of
show token code : do show token ;
show stats code : do show stats ;
show code : do show ;
show var code : do show var ;
show dependencies code : do show dependencies ;
end; { there are no other cases }
if internal [showstopping] > 0 then

begin print err ("OK");
if interaction < error stop mode then

begin help0 ; decr (error count);
end

else help1 ("This isn´t an error message; I´m just showing something.");
if cur cmd = semicolon then error else put get error ;
end;

end;

1052. The ‘addto’ command needs the following additional primitives:

define drop code = 0 { command modifier for ‘dropping’ }
define keep code = 1 { command modifier for ‘keeping’ }

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("contour", thing to add , contour code);
primitive ("doublepath", thing to add , double path code);
primitive ("also", thing to add , also code);
primitive ("withpen",with option , pen type);
primitive ("withweight",with option , known);
primitive ("dropping", cull op , drop code);
primitive ("keeping", cull op , keep code);

396 PART 44: COMMANDS METAFONT §1053

1053. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
thing to add : if m = contour code then print ("contour")

else if m = double path code then print ("doublepath")
else print ("also");

with option : if m = pen type then print ("withpen")
else print ("withweight");

cull op : if m = drop code then print ("dropping")
else print ("keeping");

1054. 〈Declare action procedures for use by do statement 995 〉 +≡
function scan with : boolean ;

var t: small number ; { known or pen type }
result : boolean ; { the value to return }

begin t← cur mod ; cur type ← vacuous ; get x next ; scan expression ; result ← false ;
if cur type 6= t then 〈Complain about improper type 1055 〉
else if cur type = pen type then result ← true

else 〈Check the tentative weight 1056 〉;
scan with ← result ;
end;

1055. 〈Complain about improper type 1055 〉 ≡
begin exp err ("Improper type");
help2 ("Next time say `withweight <known numeric expression>´;")
("I´ll ignore the bad `with´ clause and look for another.");
if t = pen type then help line [1]← "Next time say `withpen <known pen expression>´;";
put get flush error (0);
end

This code is used in section 1054.

1056. 〈Check the tentative weight 1056 〉 ≡
begin cur exp ← round unscaled (cur exp);
if (abs (cur exp) < 4) ∧ (cur exp 6= 0) then result ← true
else begin print err ("Weight must be −3, −2, −1, +1, +2, or +3");

help1 ("I´ll ignore the bad `with´ clause and look for another."); put get flush error (0);
end;

end

This code is used in section 1054.

§1057 METAFONT PART 44: COMMANDS 397

1057. One of the things we need to do when we’ve parsed an addto or similar command is set cur edges
to the header of a supposed picture variable, given a token list for that variable.

〈Declare action procedures for use by do statement 995 〉 +≡
procedure find edges var (t : pointer);

var p: pointer ;
begin p← find variable (t); cur edges ← null ;
if p = null then

begin obliterated (t); put get error ;
end

else if type (p) 6= picture type then
begin print err ("Variable "); show token list (t,null , 1000, 0); print (" is the wrong type (");
print type (type (p)); print char (")");
help2 ("I was looking for a ""known"" picture variable.")
("So I´ll not change anything just now."); put get error ;
end

else cur edges ← value (p);
flush node list (t);
end;

1058. 〈Cases of do statement that invoke particular commands 1020 〉 +≡
add to command : do add to ;

1059. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do add to ;

label done ,not found ;
var lhs , rhs : pointer ; { variable on left, path on right }
w: integer ; { tentative weight }
p: pointer ; { list manipulation register }
q: pointer ; {beginning of second half of doubled path }
add to type : double path code . . also code ; {modifier of addto }

begin get x next ; var flag ← thing to add ; scan primary ;
if cur type 6= token list then 〈Abandon edges command because there’s no variable 1060 〉
else begin lhs ← cur exp ; add to type ← cur mod ;

cur type ← vacuous ; get x next ; scan expression ;
if add to type = also code then 〈Augment some edges by others 1061 〉
else 〈Get ready to fill a contour, and fill it 1062 〉;
end;

end;

1060. 〈Abandon edges command because there’s no variable 1060 〉 ≡
begin exp err ("Not a suitable variable");
help4 ("At this point I needed to see the name of a picture variable.")
("(Or perhaps you have indeed presented me with one; I might")
("have missed it, if it wasn´t followed by the proper token.)")
("So I´ll not change anything just now."); put get flush error (0);
end

This code is used in sections 1059, 1070, 1071, and 1074.

398 PART 44: COMMANDS METAFONT §1061

1061. 〈Augment some edges by others 1061 〉 ≡
begin find edges var (lhs);
if cur edges = null then flush cur exp(0)
else if cur type 6= picture type then

begin exp err ("Improper `addto´");
help2 ("This expression should have specified a known picture.")
("So I´ll not change anything just now."); put get flush error (0);
end

else begin merge edges (cur exp); flush cur exp(0);
end;

end

This code is used in section 1059.

1062. 〈Get ready to fill a contour, and fill it 1062 〉 ≡
begin if cur type = pair type then pair to path ;
if cur type 6= path type then

begin exp err ("Improper `addto´");
help2 ("This expression should have been a known path.")
("So I´ll not change anything just now."); put get flush error (0); flush token list (lhs);
end

else begin rhs ← cur exp ; w ← 1; cur pen ← null pen ;
while cur cmd = with option do

if scan with then
if cur type = known then w ← cur exp
else 〈Change the tentative pen 1063 〉;

〈Complete the contour filling operation 1064 〉;
delete pen ref (cur pen);
end;

end

This code is used in section 1059.

1063. We could say ‘add pen ref (cur pen); flush cur exp(0)’ after changing cur pen here. But that would
have no effect, because the current expression will not be flushed. Thus we save a bit of code (at the risk of
being too tricky).

〈Change the tentative pen 1063 〉 ≡
begin delete pen ref (cur pen); cur pen ← cur exp ;
end

This code is used in section 1062.

§1064 METAFONT PART 44: COMMANDS 399

1064. 〈Complete the contour filling operation 1064 〉 ≡
find edges var (lhs);
if cur edges = null then toss knot list (rhs)
else begin lhs ← null ; cur path type ← add to type ;

if left type (rhs) = endpoint then
if cur path type = double path code then 〈Double the path 1065 〉
else 〈Complain about non-cycle and goto not found 1067 〉

else if cur path type = double path code then lhs ← htap ypoc(rhs);
cur wt ← w; rhs ← make spec(rhs ,max offset (cur pen), internal [tracing specs]);
〈Check the turning number 1068 〉;
if max offset (cur pen) = 0 then fill spec(rhs)
else fill envelope (rhs);
if lhs 6= null then

begin rev turns ← true ; lhs ← make spec(lhs ,max offset (cur pen), internal [tracing specs]);
rev turns ← false ;
if max offset (cur pen) = 0 then fill spec(lhs)
else fill envelope (lhs);
end;

not found : end

This code is used in section 1062.

1065. 〈Double the path 1065 〉 ≡
if link (rhs) = rhs then 〈Make a trivial one-point path cycle 1066 〉
else begin p← htap ypoc(rhs); q ← link (p);

right x (path tail)← right x (q); right y (path tail)← right y (q); right type (path tail)← right type (q);
link (path tail)← link (q); free node (q, knot node size);
right x (p)← right x (rhs); right y (p)← right y (rhs); right type (p)← right type (rhs);
link (p)← link (rhs); free node (rhs , knot node size);
rhs ← p;
end

This code is used in section 1064.

1066. 〈Make a trivial one-point path cycle 1066 〉 ≡
begin right x (rhs)← x coord (rhs); right y (rhs)← y coord (rhs); left x (rhs)← x coord (rhs);
left y (rhs)← y coord (rhs); left type (rhs)← explicit ; right type (rhs)← explicit ;
end

This code is used in section 1065.

1067. 〈Complain about non-cycle and goto not found 1067 〉 ≡
begin print err ("Not a cycle");
help2 ("That contour should have ended with `..cycle´ or `&cycle´.")
("So I´ll not change anything just now."); put get error ; toss knot list (rhs); goto not found ;
end

This code is used in section 1064.

400 PART 44: COMMANDS METAFONT §1068

1068. 〈Check the turning number 1068 〉 ≡
if turning number ≤ 0 then

if cur path type 6= double path code then
if internal [turning check] > 0 then

if (turning number < 0) ∧ (link (cur pen) = null) then negate (cur wt)
else begin if turning number = 0 then

if (internal [turning check] ≤ unity) ∧ (link (cur pen) = null) then goto done
else print strange ("Strange path (turning number is zero)")

else print strange ("Backwards path (turning number is negative)");
help3 ("The path doesn´t have a counterclockwise orientation,")
("so I´ll probably have trouble drawing it.")
("(See Chapter 27 of The METAFONTbook for more help.)"); put get error ;
end;

done :

This code is used in section 1064.

1069. 〈Cases of do statement that invoke particular commands 1020 〉 +≡
ship out command : do ship out ;
display command : do display ;
open window : do open window ;
cull command : do cull ;

1070. 〈Declare action procedures for use by do statement 995 〉 +≡
〈Declare the function called tfm check 1098 〉
procedure do ship out ;

label exit ;
var c: integer ; { the character code }
begin get x next ; var flag ← semicolon ; scan expression ;
if cur type 6= token list then

if cur type = picture type then cur edges ← cur exp
else begin 〈Abandon edges command because there’s no variable 1060 〉;

return;
end

else begin find edges var (cur exp); cur type ← vacuous ;
end;

if cur edges 6= null then
begin c← round unscaled (internal [char code]) mod 256;
if c < 0 then c← c+ 256;
〈Store the width information for character code c 1099 〉;
if internal [proofing] ≥ 0 then ship out (c);
end;

flush cur exp(0);
exit : end;

§1071 METAFONT PART 44: COMMANDS 401

1071. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do display ;

label not found , common ending , exit ;
var e: pointer ; { token list for a picture variable }
begin get x next ; var flag ← in window ; scan primary ;
if cur type 6= token list then 〈Abandon edges command because there’s no variable 1060 〉
else begin e← cur exp ; cur type ← vacuous ; get x next ; scan expression ;

if cur type 6= known then goto common ending ;
cur exp ← round unscaled (cur exp);
if cur exp < 0 then goto not found ;
if cur exp > 15 then goto not found ;
if ¬window open [cur exp] then goto not found ;
find edges var (e);
if cur edges 6= null then disp edges (cur exp);
return;

not found : cur exp ← cur exp ∗ unity ;
common ending : exp err ("Bad window number");

help1 ("It should be the number of an open window."); put get flush error (0);
flush token list (e);
end;

exit : end;

1072. The only thing difficult about ‘openwindow’ is that the syntax allows the user to go astray in
many ways. The following subroutine helps keep the necessary program reasonably short and sweet.

〈Declare action procedures for use by do statement 995 〉 +≡
function get pair (c : command code): boolean ;

var p: pointer ; { a pair of values that are known (we hope) }
b: boolean ; { did we find such a pair? }

begin if cur cmd 6= c then get pair ← false
else begin get x next ; scan expression ;

if nice pair (cur exp , cur type) then
begin p← value (cur exp); cur x ← value (x part loc(p)); cur y ← value (y part loc(p)); b← true ;
end

else b← false ;
flush cur exp(0); get pair ← b;
end;

end;

402 PART 44: COMMANDS METAFONT §1073

1073. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do open window ;

label not found , exit ;
var k: integer ; { the window number in question }

r0 , c0 , r1 , c1 : scaled ; {window coordinates }
begin get x next ; scan expression ;
if cur type 6= known then goto not found ;
k ← round unscaled (cur exp);
if k < 0 then goto not found ;
if k > 15 then goto not found ;
if ¬get pair (from token) then goto not found ;
r0 ← cur x ; c0 ← cur y ;
if ¬get pair (to token) then goto not found ;
r1 ← cur x ; c1 ← cur y ;
if ¬get pair (at token) then goto not found ;
open a window (k, r0 , c0 , r1 , c1 , cur x , cur y); return;

not found : print err ("Improper `openwindow´");
help2 ("Say `openwindow k from (r0,c0) to (r1,c1) at (x,y)´,")
("where all quantities are known and k is between 0 and 15."); put get error ;

exit : end;

1074. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do cull ;

label not found , exit ;
var e: pointer ; { token list for a picture variable }

keeping : drop code . . keep code ; {modifier of cull op }
w,w in ,w out : integer ; { culling weights }

begin w ← 1; get x next ; var flag ← cull op ; scan primary ;
if cur type 6= token list then 〈Abandon edges command because there’s no variable 1060 〉
else begin e← cur exp ; cur type ← vacuous ; keeping ← cur mod ;

if ¬get pair (cull op) then goto not found ;
while (cur cmd = with option) ∧ (cur mod = known) do

if scan with then w ← cur exp ;
〈Set up the culling weights, or goto not found if the thresholds are bad 1075 〉;
find edges var (e);
if cur edges 6= null then

cull edges (floor unscaled (cur x + unity − 1),floor unscaled (cur y),w out ,w in);
return;

not found : print err ("Bad culling amounts");
help1 ("Always cull by known amounts that exclude 0."); put get error ; flush token list (e);
end;

exit : end;

§1075 METAFONT PART 44: COMMANDS 403

1075. 〈Set up the culling weights, or goto not found if the thresholds are bad 1075 〉 ≡
if cur x > cur y then goto not found ;
if keeping = drop code then

begin if (cur x > 0) ∨ (cur y < 0) then goto not found ;
w out ← w; w in ← 0;
end

else begin if (cur x ≤ 0) ∧ (cur y ≥ 0) then goto not found ;
w out ← 0; w in ← w;
end

This code is used in section 1074.

1076. The everyjob command simply assigns a nonzero value to the global variable start sym .

〈Cases of do statement that invoke particular commands 1020 〉 +≡
every job command : begin get symbol ; start sym ← cur sym ; get x next ;

end;

1077. 〈Global variables 13 〉 +≡
start sym : halfword ; { a symbolic token to insert at beginning of job }

1078. 〈Set initial values of key variables 21 〉 +≡
start sym ← 0;

1079. Finally, we have only the “message” commands remaining.

define message code = 0
define err message code = 1
define err help code = 2

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("message",message command ,message code);
primitive ("errmessage",message command , err message code);
primitive ("errhelp",message command , err help code);

1080. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
message command : if m < err message code then print ("message")

else if m = err message code then print ("errmessage")
else print ("errhelp");

1081. 〈Cases of do statement that invoke particular commands 1020 〉 +≡
message command : do message ;

404 PART 44: COMMANDS METAFONT §1082

1082. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do message ;

var m: message code . . err help code ; { the type of message }
begin m← cur mod ; get x next ; scan expression ;
if cur type 6= string type then

begin exp err ("Not a string"); help1 ("A message should be a known string expression.");
put get error ;
end

else case m of
message code : begin print nl (""); slow print (cur exp);

end;
err message code : 〈Print string cur exp as an error message 1086 〉;
err help code : 〈Save string cur exp as the err help 1083 〉;
end; { there are no other cases }

flush cur exp(0);
end;

1083. The global variable err help is zero when the user has most recently given an empty help string, or
if none has ever been given.

〈Save string cur exp as the err help 1083 〉 ≡
begin if err help 6= 0 then delete str ref (err help);
if length (cur exp) = 0 then err help ← 0
else begin err help ← cur exp ; add str ref (err help);

end;
end

This code is used in section 1082.

1084. If errmessage occurs often in scroll mode , without user-defined errhelp, we don’t want to give a
long help message each time. So we give a verbose explanation only once.

〈Global variables 13 〉 +≡
long help seen : boolean ; {has the long errmessage help been used? }

1085. 〈Set initial values of key variables 21 〉 +≡
long help seen ← false ;

1086. 〈Print string cur exp as an error message 1086 〉 ≡
begin print err (""); slow print (cur exp);
if err help 6= 0 then use err help ← true
else if long help seen then help1 ("(That was another `errmessage´.)")

else begin if interaction < error stop mode then long help seen ← true ;
help4 ("This error message was generated by an `errmessage´")
("command, so I can´t give any explicit help.")
("Pretend that you´re Miss Marple: Examine all clues,")
("and deduce the truth by inspired guesses.");
end;

put get error ; use err help ← false ;
end

This code is used in section 1082.

§1087 METAFONT PART 45: FONT METRIC DATA 405

1087. Font metric data. TEX gets its knowledge about fonts from font metric files, also called TFM

files; the ‘T’ in ‘TFM’ stands for TEX, but other programs know about them too. One of METAFONT’s duties
is to write TFM files so that the user’s fonts can readily be applied to typesetting.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always
a multiple of 4, we could also regard the file as a sequence of 32-bit words, but METAFONT uses the byte
interpretation. The format of TFM files was designed by Lyle Ramshaw in 1980. The intent is to convey a
lot of different kinds of information in a compact but useful form.

〈Global variables 13 〉 +≡
tfm file : byte file ; { the font metric output goes here }
metric file name : str number ; { full name of the font metric file }

1088. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

lf = length of the entire file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;

nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = number of words in the italic correction table;
nl = number of words in the lig/kern table;
nk = number of words in the kern table;
ne = number of words in the extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 215. We must have bc − 1 ≤ ec ≤ 255, ne ≤ 256, and

lf = 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np .

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = ec + 1).

Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most
significant bytes appear first in the file. This is called BigEndian order.

406 PART 45: FONT METRIC DATA METAFONT §1089

1089. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal
specification

header : array [0 . . lh − 1] of stuff
char info : array [bc . . ec] of char info word

width : array [0 . . nw − 1] of fix word
height : array [0 . . nh − 1] of fix word
depth : array [0 . . nd − 1] of fix word
italic : array [0 . . ni − 1] of fix word

lig kern : array [0 . . nl − 1] of lig kern command
kern : array [0 . . nk − 1] of fix word

exten : array [0 . . ne − 1] of extensible recipe
param : array [1 . . np] of fix word

The most important data type used here is a fix word , which is a 32-bit representation of a binary fraction.
A fix word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fix word , exactly 12 are to the left of the binary point; thus, the largest fix word value is
2048− 2−20, and the smallest is −2048. We will see below, however, that all but two of the fix word values
must lie between −16 and +16.

1090. The first data array is a block of header information, which contains general facts about the font.
The header must contain at least two words, header [0] and header [1], whose meaning is explained below.
Additional header information of use to other software routines might also be included, and METAFONT will
generate it if the headerbyte command occurs. For example, 16 more words of header information are in
use at the Xerox Palo Alto Research Center; the first ten specify the character coding scheme used (e.g.,
‘XEROX TEXT’ or ‘TEX MATHSY’), the next five give the font family name (e.g., ‘HELVETICA’ or ‘CMSY’), and
the last gives the “face byte.”

header [0] is a 32-bit check sum that METAFONT will copy into the GF output file. This helps ensure
consistency between files, since TEX records the check sums from the TFM’s it reads, and these should
match the check sums on actual fonts that are used. The actual relation between this check sum and
the rest of the TFM file is not important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check sums.

header [1] is a fix word containing the design size of the font, in units of TEX points. This number must be
at least 1.0; it is fairly arbitrary, but usually the design size is 10.0 for a “10 point” font, i.e., a font
that was designed to look best at a 10-point size, whatever that really means. When a TEX user asks
for a font ‘at δ pt’, the effect is to override the design size and replace it by δ, and to multiply the x
and y coordinates of the points in the font image by a factor of δ divided by the design size. All other
dimensions in the TFM file are fix word numbers in design-size units. Thus, for example, the value of
param [6], which defines the em unit, is often the fix word value 220 = 1.0, since many fonts have a
design size equal to one em. The other dimensions must be less than 16 design-size units in absolute
value; thus, header [1] and param [1] are the only fix word entries in the whole TFM file whose first byte
might be something besides 0 or 255.

§1091 METAFONT PART 45: FONT METRIC DATA 407

1091. Next comes the char info array, which contains one char info word per character. Each word in
this part of the file contains six fields packed into four bytes as follows.

first byte: width index (8 bits)
second byte: height index (4 bits) times 16, plus depth index (4 bits)
third byte: italic index (6 bits) times 4, plus tag (2 bits)
fourth byte: remainder (8 bits)

The actual width of a character is width [width index], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights, 16
different depths, and 64 different italic corrections.

Incidentally, the relation width [0] = height [0] = depth [0] = italic [0] = 0 should always hold, so that an
index of zero implies a value of zero. The width index should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero width index .

1092. The tag field in a char info word has four values that explain how to interpret the remainder field.

tag = 0 (no tag) means that remainder is unused.
tag = 1 (lig tag) means that this character has a ligature/kerning program starting at location remainder

in the lig kern array.
tag = 2 (list tag) means that this character is part of a chain of characters of ascending sizes, and not the

largest in the chain. The remainder field gives the character code of the next larger character.
tag = 3 (ext tag) means that this character code represents an extensible character, i.e., a character that

is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [remainder].

Characters with tag = 2 and tag = 3 are treated as characters with tag = 0 unless they are used in special
circumstances in math formulas. For example, TEX’s \sum operation looks for a list tag , and the \left

operation looks for both list tag and ext tag .

define no tag = 0 { vanilla character }
define lig tag = 1 { character has a ligature/kerning program }
define list tag = 2 { character has a successor in a charlist }
define ext tag = 3 { character is extensible }

408 PART 45: FONT METRIC DATA METAFONT §1093

1093. The lig kern array contains instructions in a simple programming language that explains what to
do for special letter pairs. Each word in this array is a lig kern command of four bytes.

first byte: skip byte , indicates that this is the final program step if the byte is 128 or more, otherwise the
next step is obtained by skipping this number of intervening steps.

second byte: next char , “if next char follows the current character, then perform the operation and stop,
otherwise continue.”

third byte: op byte , indicates a ligature step if less than 128, a kern step otherwise.
fourth byte: remainder .

In a kern step, an additional space equal to kern [256 ∗ (op byte − 128) + remainder] is inserted between the
current character and next char . This amount is often negative, so that the characters are brought closer
together by kerning; but it might be positive.

There are eight kinds of ligature steps, having op byte codes 4a+2b+c where 0 ≤ a ≤ b+c and 0 ≤ b, c ≤ 1.
The character whose code is remainder is inserted between the current character and next char ; then the
current character is deleted if b = 0, and next char is deleted if c = 0; then we pass over a characters to
reach the next current character (which may have a ligature/kerning program of its own).

If the very first instruction of the lig kern array has skip byte = 255, the next char byte is the so-called
boundary character of this font; the value of next char need not lie between bc and ec . If the very last
instruction of the lig kern array has skip byte = 255, there is a special ligature/kerning program for a
boundary character at the left, beginning at location 256 ∗ op byte + remainder . The interpretation is that
TEX puts implicit boundary characters before and after each consecutive string of characters from the same
font. These implicit characters do not appear in the output, but they can affect ligatures and kerning.

If the very first instruction of a character’s lig kern program has skip byte > 128, the program actually
begins in location 256 ∗ op byte + remainder . This feature allows access to large lig kern arrays, because the
first instruction must otherwise appear in a location ≤ 255.

Any instruction with skip byte > 128 in the lig kern array must satisfy the condition

256 ∗ op byte + remainder < nl .

If such an instruction is encountered during normal program execution, it denotes an unconditional halt; no
ligature or kerning command is performed.

define stop flag = 128 + min quarterword { value indicating ‘STOP’ in a lig/kern program }
define kern flag = 128 + min quarterword { op code for a kern step }
define skip byte (#) ≡ lig kern [#].b0
define next char (#) ≡ lig kern [#].b1
define op byte (#) ≡ lig kern [#].b2
define rem byte (#) ≡ lig kern [#].b3

1094. Extensible characters are specified by an extensible recipe , which consists of four bytes called top ,
mid , bot , and rep (in this order). These bytes are the character codes of individual pieces used to build up
a large symbol. If top , mid , or bot are zero, they are not present in the built-up result. For example, an
extensible vertical line is like an extensible bracket, except that the top and bottom pieces are missing.

Let T , M , B, and R denote the respective pieces, or an empty box if the piece isn’t present. Then the
extensible characters have the form TRkMRkB from top to bottom, for some k ≥ 0, unless M is absent; in
the latter case we can have TRkB for both even and odd values of k. The width of the extensible character is
the width of R; and the height-plus-depth is the sum of the individual height-plus-depths of the components
used, since the pieces are butted together in a vertical list.

define ext top(#) ≡ exten [#].b0 { top piece in a recipe }
define ext mid (#) ≡ exten [#].b1 {mid piece in a recipe }
define ext bot (#) ≡ exten [#].b2 { bot piece in a recipe }
define ext rep(#) ≡ exten [#].b3 { rep piece in a recipe }

§1095 METAFONT PART 45: FONT METRIC DATA 409

1095. The final portion of a TFM file is the param array, which is another sequence of fix word values.

param [1] = slant is the amount of italic slant, which is used to help position accents. For example, slant = .25
means that when you go up one unit, you also go .25 units to the right. The slant is a pure number;
it is the only fix word other than the design size itself that is not scaled by the design size.

param [2] = space is the normal spacing between words in text. Note that character 4́0 in the font need not
have anything to do with blank spaces.

param [3] = space stretch is the amount of glue stretching between words.
param [4] = space shrink is the amount of glue shrinking between words.
param [5] = x height is the size of one ex in the font; it is also the height of letters for which accents don’t

have to be raised or lowered.
param [6] = quad is the size of one em in the font.
param [7] = extra space is the amount added to param [2] at the ends of sentences.

If fewer than seven parameters are present, TEX sets the missing parameters to zero.

define slant code = 1
define space code = 2
define space stretch code = 3
define space shrink code = 4
define x height code = 5
define quad code = 6
define extra space code = 7

410 PART 45: FONT METRIC DATA METAFONT §1096

1096. So that is what TFM files hold. One of METAFONT’s duties is to output such information, and it
does this all at once at the end of a job. In order to prepare for such frenetic activity, it squirrels away the
necessary facts in various arrays as information becomes available.

Character dimensions (charwd, charht, chardp, and charic) are stored respectively in tfm width ,
tfm height , tfm depth , and tfm ital corr . Other information about a character (e.g., about its ligatures
or successors) is accessible via the char tag and char remainder arrays. Other information about the font
as a whole is kept in additional arrays called header byte , lig kern , kern , exten , and param .

define undefined label ≡ lig table size { an undefined local label }
〈Global variables 13 〉 +≡
bc , ec : eight bits ; { smallest and largest character codes shipped out }
tfm width : array [eight bits] of scaled ; { charwd values }
tfm height : array [eight bits] of scaled ; { charht values }
tfm depth : array [eight bits] of scaled ; { chardp values }
tfm ital corr : array [eight bits] of scaled ; { charic values }
char exists : array [eight bits] of boolean ; { has this code been shipped out? }
char tag : array [eight bits] of no tag . . ext tag ; { remainder category }
char remainder : array [eight bits] of 0 . . lig table size ; { the remainder byte }
header byte : array [1 . . header size] of −1 . . 255; { bytes of the TFM header, or −1 if unset }
lig kern : array [0 . . lig table size] of four quarters ; { the ligature/kern table }
nl : 0 . . 32767− 256; { the number of ligature/kern steps so far }
kern : array [0 . . max kerns] of scaled ; { distinct kerning amounts }
nk : 0 . . max kerns ; { the number of distinct kerns so far }
exten : array [eight bits] of four quarters ; { extensible character recipes }
ne : 0 . . 256; { the number of extensible characters so far }
param : array [1 . . max font dimen] of scaled ; { fontdimen parameters }
np : 0 . . max font dimen ; { the largest fontdimen parameter specified so far }
nw ,nh ,nd ,ni : 0 . . 256; { sizes of TFM subtables }
skip table : array [eight bits] of 0 . . lig table size ; { local label status }
lk started : boolean ; { has there been a lig/kern step in this command yet? }
bchar : integer ; { right boundary character }
bch label : 0 . . lig table size ; { left boundary starting location }
ll , lll : 0 . . lig table size ; { registers used for lig/kern processing }
label loc : array [0 . . 256] of −1 . . lig table size ; { lig/kern starting addresses }
label char : array [1 . . 256] of eight bits ; { characters for label loc }
label ptr : 0 . . 256; { highest position occupied in label loc }

1097. 〈Set initial values of key variables 21 〉 +≡
for k ← 0 to 255 do

begin tfm width [k]← 0; tfm height [k]← 0; tfm depth [k]← 0; tfm ital corr [k]← 0;
char exists [k]← false ; char tag [k]← no tag ; char remainder [k]← 0; skip table [k]← undefined label ;
end;

for k ← 1 to header size do header byte [k]← −1;
bc ← 255; ec ← 0; nl ← 0; nk ← 0; ne ← 0; np ← 0;
internal [boundary char]← −unity ; bch label ← undefined label ;
label loc [0]← −1; label ptr ← 0;

§1098 METAFONT PART 45: FONT METRIC DATA 411

1098. 〈Declare the function called tfm check 1098 〉 ≡
function tfm check (m : small number): scaled ;

begin if abs (internal [m]) ≥ fraction half then
begin print err ("Enormous "); print (int name [m]); print (" has been reduced");
help1 ("Font metric dimensions must be less than 2048pt."); put get error ;
if internal [m] > 0 then tfm check ← fraction half − 1
else tfm check ← 1− fraction half ;
end

else tfm check ← internal [m];
end;

This code is used in section 1070.

1099. 〈Store the width information for character code c 1099 〉 ≡
if c < bc then bc ← c;
if c > ec then ec ← c;
char exists [c]← true ; gf dx [c]← internal [char dx]; gf dy [c]← internal [char dy];
tfm width [c]← tfm check (char wd); tfm height [c]← tfm check (char ht);
tfm depth [c]← tfm check (char dp); tfm ital corr [c]← tfm check (char ic)

This code is used in section 1070.

1100. Now let’s consider METAFONT’s special TFM-oriented commands.

〈Cases of do statement that invoke particular commands 1020 〉 +≡
tfm command : do tfm command ;

1101. define char list code = 0
define lig table code = 1
define extensible code = 2
define header byte code = 3
define font dimen code = 4

〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("charlist", tfm command , char list code);
primitive ("ligtable", tfm command , lig table code);
primitive ("extensible", tfm command , extensible code);
primitive ("headerbyte", tfm command , header byte code);
primitive ("fontdimen", tfm command , font dimen code);

1102. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
tfm command : case m of

char list code : print ("charlist");
lig table code : print ("ligtable");
extensible code : print ("extensible");
header byte code : print ("headerbyte");
othercases print ("fontdimen")
endcases;

412 PART 45: FONT METRIC DATA METAFONT §1103

1103. 〈Declare action procedures for use by do statement 995 〉 +≡
function get code : eight bits ; { scans a character code value }

label found ;
var c: integer ; { the code value found }
begin get x next ; scan expression ;
if cur type = known then

begin c← round unscaled (cur exp);
if c ≥ 0 then

if c < 256 then goto found ;
end

else if cur type = string type then
if length (cur exp) = 1 then

begin c← so(str pool [str start [cur exp]]); goto found ;
end;

exp err ("Invalid code has been replaced by 0");
help2 ("I was looking for a number between 0 and 255, or for a")
("string of length 1. Didn´t find it; will use 0 instead."); put get flush error (0); c← 0;

found : get code ← c;
end;

1104. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure set tag (c : halfword ; t : small number ; r : halfword);

begin if char tag [c] = no tag then
begin char tag [c]← t; char remainder [c]← r;
if t = lig tag then

begin incr (label ptr); label loc [label ptr]← r; label char [label ptr]← c;
end;

end
else 〈Complain about a character tag conflict 1105 〉;
end;

1105. 〈Complain about a character tag conflict 1105 〉 ≡
begin print err ("Character ");
if (c > " ") ∧ (c < 127) then print (c)
else if c = 256 then print ("||")

else begin print ("code "); print int (c);
end;

print (" is already ");
case char tag [c] of
lig tag : print ("in a ligtable");
list tag : print ("in a charlist");
ext tag : print ("extensible");
end; { there are no other cases }
help2 ("It´s not legal to label a character more than once.")
("So I´ll not change anything just now."); put get error ;
end

This code is used in section 1104.

§1106 METAFONT PART 45: FONT METRIC DATA 413

1106. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do tfm command ;

label continue , done ;
var c, cc : 0 . . 256; { character codes }
k: 0 . . max kerns ; { index into the kern array }
j: integer ; { index into header byte or param }

begin case cur mod of
char list code : begin c← get code ; {we will store a list of character successors }

while cur cmd = colon do
begin cc ← get code ; set tag (c, list tag , cc); c← cc ;
end;

end;
lig table code : 〈Store a list of ligature/kern steps 1107 〉;
extensible code : 〈Define an extensible recipe 1113 〉;
header byte code , font dimen code : begin c← cur mod ; get x next ; scan expression ;

if (cur type 6= known) ∨ (cur exp < half unit) then
begin exp err ("Improper location");
help2 ("I was looking for a known, positive number.")
("For safety´s sake I´ll ignore the present command."); put get error ;
end

else begin j ← round unscaled (cur exp);
if cur cmd 6= colon then

begin missing err (":");
help1 ("A colon should follow a headerbyte or fontdimen location."); back error ;
end;

if c = header byte code then 〈Store a list of header bytes 1114 〉
else 〈Store a list of font dimensions 1115 〉;
end;

end;
end; { there are no other cases }
end;

414 PART 45: FONT METRIC DATA METAFONT §1107

1107. 〈Store a list of ligature/kern steps 1107 〉 ≡
begin lk started ← false ;

continue : get x next ;
if (cur cmd = skip to) ∧ lk started then 〈Process a skip to command and goto done 1110 〉;
if cur cmd = bchar label then

begin c← 256; cur cmd ← colon ; end
else begin back input ; c← get code ; end;
if (cur cmd = colon) ∨ (cur cmd = double colon) then
〈Record a label in a lig/kern subprogram and goto continue 1111 〉;

if cur cmd = lig kern token then 〈Compile a ligature/kern command 1112 〉
else begin print err ("Illegal ligtable step");

help1 ("I was looking for `=:´ or `kern´ here."); back error ; next char (nl)← qi (0);
op byte (nl)← qi (0); rem byte (nl)← qi (0);
skip byte (nl)← stop flag + 1; { this specifies an unconditional stop }
end;

if nl = lig table size then overflow ("ligtable size", lig table size);
incr (nl);
if cur cmd = comma then goto continue ;
if skip byte (nl − 1) < stop flag then skip byte (nl − 1)← stop flag ;

done : end

This code is used in section 1106.

1108. 〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("=:", lig kern token , 0); primitive ("=:|", lig kern token , 1);
primitive ("=:|>", lig kern token , 5); primitive ("|=:", lig kern token , 2);
primitive ("|=:>", lig kern token , 6); primitive ("|=:|", lig kern token , 3);
primitive ("|=:|>", lig kern token , 7); primitive ("|=:|>>", lig kern token , 11);
primitive ("kern", lig kern token , 128);

1109. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
lig kern token : case m of

0: print ("=:");
1: print ("=:|");
2: print ("|=:");
3: print ("|=:|");
5: print ("=:|>");
6: print ("|=:>");
7: print ("|=:|>");
11: print ("|=:|>>");
othercases print ("kern")
endcases;

§1110 METAFONT PART 45: FONT METRIC DATA 415

1110. Local labels are implemented by maintaining the skip table array, where skip table [c] is either
undefined label or the address of the most recent lig/kern instruction that skips to local label c. In the
latter case, the skip byte in that instruction will (temporarily) be zero if there were no prior skips to this
label, or it will be the distance to the prior skip.

We may need to cancel skips that span more than 127 lig/kern steps.

define cancel skips (#) ≡ ll ← #;
repeat lll ← qo(skip byte (ll)); skip byte (ll)← stop flag ; ll ← ll − lll ;
until lll = 0

define skip error (#) ≡
begin print err ("Too far to skip");
help1 ("At most 127 lig/kern steps can separate skipto1 from 1::."); error ;
cancel skips (#);
end

〈Process a skip to command and goto done 1110 〉 ≡
begin c← get code ;
if nl − skip table [c] > 128 then

begin skip error (skip table [c]); skip table [c]← undefined label ;
end;

if skip table [c] = undefined label then skip byte (nl − 1)← qi (0)
else skip byte (nl − 1)← qi (nl − skip table [c]− 1);
skip table [c]← nl − 1; goto done ;
end

This code is used in section 1107.

1111. 〈Record a label in a lig/kern subprogram and goto continue 1111 〉 ≡
begin if cur cmd = colon then

if c = 256 then bch label ← nl
else set tag (c, lig tag ,nl)

else if skip table [c] < undefined label then
begin ll ← skip table [c]; skip table [c]← undefined label ;
repeat lll ← qo(skip byte (ll));

if nl − ll > 128 then
begin skip error (ll); goto continue ;
end;

skip byte (ll)← qi (nl − ll − 1); ll ← ll − lll ;
until lll = 0;
end;

goto continue ;
end

This code is used in section 1107.

416 PART 45: FONT METRIC DATA METAFONT §1112

1112. 〈Compile a ligature/kern command 1112 〉 ≡
begin next char (nl)← qi (c); skip byte (nl)← qi (0);
if cur mod < 128 then { ligature op }

begin op byte (nl)← qi (cur mod); rem byte (nl)← qi (get code);
end

else begin get x next ; scan expression ;
if cur type 6= known then

begin exp err ("Improper kern");
help2 ("The amount of kern should be a known numeric value.")
("I´m zeroing this one. Proceed, with fingers crossed."); put get flush error (0);
end;

kern [nk]← cur exp ; k ← 0; while kern [k] 6= cur exp do incr (k);
if k = nk then

begin if nk = max kerns then overflow ("kern",max kerns);
incr (nk);
end;

op byte (nl)← kern flag + (k div 256); rem byte (nl)← qi ((k mod 256));
end;

lk started ← true ;
end

This code is used in section 1107.

1113. define missing extensible punctuation (#) ≡
begin missing err (#); help1 ("I´m processing `extensible c: t,m,b,r´."); back error ;
end

〈Define an extensible recipe 1113 〉 ≡
begin if ne = 256 then overflow ("extensible", 256);
c← get code ; set tag (c, ext tag ,ne);
if cur cmd 6= colon then missing extensible punctuation (":");
ext top(ne)← qi (get code);
if cur cmd 6= comma then missing extensible punctuation (",");
ext mid (ne)← qi (get code);
if cur cmd 6= comma then missing extensible punctuation (",");
ext bot (ne)← qi (get code);
if cur cmd 6= comma then missing extensible punctuation (",");
ext rep(ne)← qi (get code); incr (ne);
end

This code is used in section 1106.

1114. 〈Store a list of header bytes 1114 〉 ≡
repeat if j > header size then overflow ("headerbyte", header size);

header byte [j]← get code ; incr (j);
until cur cmd 6= comma

This code is used in section 1106.

§1115 METAFONT PART 45: FONT METRIC DATA 417

1115. 〈Store a list of font dimensions 1115 〉 ≡
repeat if j > max font dimen then overflow ("fontdimen",max font dimen);

while j > np do
begin incr (np); param [np]← 0;
end;

get x next ; scan expression ;
if cur type 6= known then

begin exp err ("Improper font parameter");
help1 ("I´m zeroing this one. Proceed, with fingers crossed."); put get flush error (0);
end;

param [j]← cur exp ; incr (j);
until cur cmd 6= comma

This code is used in section 1106.

1116. OK: We’ve stored all the data that is needed for the TFM file. All that remains is to output it in the
correct format.

An interesting problem needs to be solved in this connection, because the TFM format allows at most
256 widths, 16 heights, 16 depths, and 64 italic corrections. If the data has more distinct values than this,
we want to meet the necessary restrictions by perturbing the given values as little as possible.

METAFONT solves this problem in two steps. First the values of a given kind (widths, heights, depths, or
italic corrections) are sorted; then the list of sorted values is perturbed, if necessary.

The sorting operation is facilitated by having a special node of essentially infinite value at the end of the
current list.

〈 Initialize table entries (done by INIMF only) 176 〉 +≡
value (inf val)← fraction four ;

1117. Straight linear insertion is good enough for sorting, since the lists are usually not terribly long. As
we work on the data, the current list will start at link (temp head) and end at inf val ; the nodes in this list
will be in increasing order of their value fields.

Given such a list, the sort in function takes a value and returns a pointer to where that value can be
found in the list. The value is inserted in the proper place, if necessary.

At the time we need to do these operations, most of METAFONT’s work has been completed, so we will
have plenty of memory to play with. The value nodes that are allocated for sorting will never be returned
to free storage.

define clear the list ≡ link (temp head)← inf val

function sort in (v : scaled): pointer ;
label found ;
var p, q, r: pointer ; { list manipulation registers }
begin p← temp head ;
loop begin q ← link (p);

if v ≤ value (q) then goto found ;
p← q;
end;

found : if v < value (q) then
begin r ← get node (value node size); value (r)← v; link (r)← q; link (p)← r;
end;

sort in ← link (p);
end;

418 PART 45: FONT METRIC DATA METAFONT §1118

1118. Now we come to the interesting part, where we reduce the list if necessary until it has the required
size. The min cover routine is basic to this process; it computes the minimum number m such that the
values of the current sorted list can be covered by m intervals of width d. It also sets the global value
perturbation to the smallest value d′ > d such that the covering found by this algorithm would be different.

In particular, min cover (0) returns the number of distinct values in the current list and sets perturbation
to the minimum distance between adjacent values.

function min cover (d : scaled): integer ;
var p: pointer ; { runs through the current list }
l: scaled ; { the least element covered by the current interval }
m: integer ; { lower bound on the size of the minimum cover }

begin m← 0; p← link (temp head); perturbation ← el gordo ;
while p 6= inf val do

begin incr (m); l← value (p);
repeat p← link (p);
until value (p) > l + d;
if value (p)− l < perturbation then perturbation ← value (p)− l;
end;

min cover ← m;
end;

1119. 〈Global variables 13 〉 +≡
perturbation : scaled ; { quantity related to TFM rounding }
excess : integer ; { the list is this much too long }

1120. The smallest d such that a given list can be covered with m intervals is determined by the threshold
routine, which is sort of an inverse to min cover . The idea is to increase the interval size rapidly until finding
the range, then to go sequentially until the exact borderline has been discovered.

function threshold (m : integer): scaled ;
var d: scaled ; { lower bound on the smallest interval size }
begin excess ← min cover (0)−m;
if excess ≤ 0 then threshold ← 0
else begin repeat d← perturbation ;

until min cover (d+ d) ≤ m;
while min cover (d) > m do d← perturbation ;
threshold ← d;
end;

end;

§1121 METAFONT PART 45: FONT METRIC DATA 419

1121. The skimp procedure reduces the current list to at most m entries, by changing values if necessary.
It also sets info(p)← k if value (p) is the kth distinct value on the resulting list, and it sets perturbation to
the maximum amount by which a value field has been changed. The size of the resulting list is returned as
the value of skimp .

function skimp(m : integer): integer ;
var d: scaled ; { the size of intervals being coalesced }
p, q, r: pointer ; { list manipulation registers }
l: scaled ; { the least value in the current interval }
v: scaled ; { a compromise value }

begin d← threshold (m); perturbation ← 0; q ← temp head ; m← 0; p← link (temp head);
while p 6= inf val do

begin incr (m); l← value (p); info(p)← m;
if value (link (p)) ≤ l + d then 〈Replace an interval of values by its midpoint 1122 〉;
q ← p; p← link (p);
end;

skimp ← m;
end;

1122. 〈Replace an interval of values by its midpoint 1122 〉 ≡
begin repeat p← link (p); info(p)← m; decr (excess); if excess = 0 then d← 0;
until value (link (p)) > l + d;
v ← l + half (value (p)− l);
if value (p)− v > perturbation then perturbation ← value (p)− v;
r ← q;
repeat r ← link (r); value (r)← v;
until r = p;
link (q)← p; { remove duplicate values from the current list }
end

This code is used in section 1121.

1123. A warning message is issued whenever something is perturbed by more than 1/16 pt.

procedure tfm warning (m : small number);
begin print nl ("(some "); print (int name [m]);
print (" values had to be adjusted by as much as "); print scaled (perturbation); print ("pt)");
end;

1124. Here’s an example of how we use these routines. The width data needs to be perturbed only if there
are 256 distinct widths, but METAFONT must check for this case even though it is highly unusual.

An integer variable k will be defined when we use this code. The dimen head array will contain pointers
to the sorted lists of dimensions.

〈Massage the TFM widths 1124 〉 ≡
clear the list ;
for k ← bc to ec do

if char exists [k] then tfm width [k]← sort in (tfm width [k]);
nw ← skimp(255) + 1; dimen head [1]← link (temp head);
if perturbation ≥ 1́0000 then tfm warning (char wd)

This code is used in section 1206.

1125. 〈Global variables 13 〉 +≡
dimen head : array [1 . . 4] of pointer ; { lists of TFM dimensions }

420 PART 45: FONT METRIC DATA METAFONT §1126

1126. Heights, depths, and italic corrections are different from widths not only because their list length is
more severely restricted, but also because zero values do not need to be put into the lists.

〈Massage the TFM heights, depths, and italic corrections 1126 〉 ≡
clear the list ;
for k ← bc to ec do

if char exists [k] then
if tfm height [k] = 0 then tfm height [k]← zero val
else tfm height [k]← sort in (tfm height [k]);

nh ← skimp(15) + 1; dimen head [2]← link (temp head);
if perturbation ≥ 1́0000 then tfm warning (char ht);
clear the list ;
for k ← bc to ec do

if char exists [k] then
if tfm depth [k] = 0 then tfm depth [k]← zero val
else tfm depth [k]← sort in (tfm depth [k]);

nd ← skimp(15) + 1; dimen head [3]← link (temp head);
if perturbation ≥ 1́0000 then tfm warning (char dp);
clear the list ;
for k ← bc to ec do

if char exists [k] then
if tfm ital corr [k] = 0 then tfm ital corr [k]← zero val
else tfm ital corr [k]← sort in (tfm ital corr [k]);

ni ← skimp(63) + 1; dimen head [4]← link (temp head);
if perturbation ≥ 1́0000 then tfm warning (char ic)

This code is used in section 1206.

1127. 〈 Initialize table entries (done by INIMF only) 176 〉 +≡
value (zero val)← 0; info(zero val)← 0;

§1128 METAFONT PART 45: FONT METRIC DATA 421

1128. Bytes 5–8 of the header are set to the design size, unless the user has some crazy reason for specifying
them differently.

Error messages are not allowed at the time this procedure is called, so a warning is printed instead.
The value of max tfm dimen is calculated so that

make scaled (16 ∗max tfm dimen , internal [design size]) < three bytes .

define three bytes ≡ 1́00000000 { 224 }
procedure fix design size ;

var d: scaled ; { the design size }
begin d← internal [design size];
if (d < unity) ∨ (d ≥ fraction half) then

begin if d 6= 0 then print nl ("(illegal design size has been changed to 128pt)");
d← 4́0000000 ; internal [design size]← d;
end;

if header byte [5] < 0 then
if header byte [6] < 0 then

if header byte [7] < 0 then
if header byte [8] < 0 then

begin header byte [5]← d div 4́000000 ; header byte [6]← (d div 4096) mod 256;
header byte [7]← (d div 16) mod 256; header byte [8]← (dmod 16) ∗ 16;
end;

max tfm dimen ← 16 ∗ internal [design size]− 1− internal [design size] div 1́0000000 ;
if max tfm dimen ≥ fraction half then max tfm dimen ← fraction half − 1;
end;

1129. The dimen out procedure computes a fix word relative to the design size. If the data was out of
range, it is corrected and the global variable tfm changed is increased by one.

function dimen out (x : scaled): integer ;
begin if abs (x) > max tfm dimen then

begin incr (tfm changed);
if x > 0 then x← max tfm dimen else x← −max tfm dimen ;
end;

x← make scaled (x ∗ 16, internal [design size]); dimen out ← x;
end;

1130. 〈Global variables 13 〉 +≡
max tfm dimen : scaled ; { bound on widths, heights, kerns, etc. }
tfm changed : integer ; { the number of data entries that were out of bounds }

422 PART 45: FONT METRIC DATA METAFONT §1131

1131. If the user has not specified any of the first four header bytes, the fix check sum procedure replaces
them by a “check sum” computed from the tfm width data relative to the design size.

procedure fix check sum ;
label exit ;
var k: eight bits ; { runs through character codes }

b1 , b2 , b3 , b4 : eight bits ; { bytes of the check sum }
x: integer ; { hash value used in check sum computation }

begin if header byte [1] < 0 then
if header byte [2] < 0 then

if header byte [3] < 0 then
if header byte [4] < 0 then

begin 〈Compute a check sum in (b1 , b2 , b3 , b4) 1132 〉;
header byte [1]← b1 ; header byte [2]← b2 ; header byte [3]← b3 ; header byte [4]← b4 ; return;
end;

for k ← 1 to 4 do
if header byte [k] < 0 then header byte [k]← 0;

exit : end;

1132. 〈Compute a check sum in (b1 , b2 , b3 , b4) 1132 〉 ≡
b1 ← bc ; b2 ← ec ; b3 ← bc ; b4 ← ec ; tfm changed ← 0;
for k ← bc to ec do

if char exists [k] then
begin x← dimen out (value (tfm width [k])) + (k + 4) ∗ 2́0000000 ; { this is positive }
b1 ← (b1 + b1 + x) mod 255; b2 ← (b2 + b2 + x) mod 253; b3 ← (b3 + b3 + x) mod 251;
b4 ← (b4 + b4 + x) mod 247;
end

This code is used in section 1131.

1133. Finally we’re ready to actually write the TFM information. Here are some utility routines for this
purpose.

define tfm out (#) ≡ write (tfm file , #) { output one byte to tfm file }
procedure tfm two(x : integer); { output two bytes to tfm file }

begin tfm out (x div 256); tfm out (xmod 256);
end;

procedure tfm four (x : integer); { output four bytes to tfm file }
begin if x ≥ 0 then tfm out (x div three bytes)
else begin x← x+ 1́0000000000 ; { use two’s complement for negative values }
x← x+ 1́0000000000 ; tfm out ((x div three bytes) + 128);
end;

x← xmod three bytes ; tfm out (x div unity); x← xmod unity ; tfm out (x div 4́00);
tfm out (xmod 4́00);
end;

procedure tfm qqqq (x : four quarters); { output four quarterwords to tfm file }
begin tfm out (qo(x.b0)); tfm out (qo(x.b1)); tfm out (qo(x.b2)); tfm out (qo(x.b3));
end;

§1134 METAFONT PART 45: FONT METRIC DATA 423

1134. 〈Finish the TFM file 1134 〉 ≡
if job name = 0 then open log file ;
pack job name (".tfm");
while ¬b open out (tfm file) do prompt file name ("file name for font metrics", ".tfm");
metric file name ← b make name string (tfm file); 〈Output the subfile sizes and header bytes 1135 〉;
〈Output the character information bytes, then output the dimensions themselves 1136 〉;
〈Output the ligature/kern program 1139 〉;
〈Output the extensible character recipes and the font metric parameters 1140 〉;
stat if internal [tracing stats] > 0 then 〈Log the subfile sizes of the TFM file 1141 〉; tats
print nl ("Font metrics written on "); slow print (metric file name); print char (".");
b close (tfm file)

This code is used in section 1206.

1135. Integer variables lh , k, and lk offset will be defined when we use this code.

〈Output the subfile sizes and header bytes 1135 〉 ≡
k ← header size ;
while header byte [k] < 0 do decr (k);
lh ← (k + 3) div 4; { this is the number of header words }
if bc > ec then bc ← 1; { if there are no characters, ec = 0 and bc = 1 }
〈Compute the ligature/kern program offset and implant the left boundary label 1137 〉;
tfm two(6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + lk offset + nk + ne + np);

{ this is the total number of file words that will be output }
tfm two(lh); tfm two(bc); tfm two(ec); tfm two(nw); tfm two(nh); tfm two(nd); tfm two(ni);
tfm two(nl + lk offset); tfm two(nk); tfm two(ne); tfm two(np);
for k ← 1 to 4 ∗ lh do

begin if header byte [k] < 0 then header byte [k]← 0;
tfm out (header byte [k]);
end

This code is used in section 1134.

1136. 〈Output the character information bytes, then output the dimensions themselves 1136 〉 ≡
for k ← bc to ec do

if ¬char exists [k] then tfm four (0)
else begin tfm out (info(tfm width [k])); { the width index }

tfm out ((info(tfm height [k])) ∗ 16 + info(tfm depth [k]));
tfm out ((info(tfm ital corr [k])) ∗ 4 + char tag [k]); tfm out (char remainder [k]);
end;

tfm changed ← 0;
for k ← 1 to 4 do

begin tfm four (0); p← dimen head [k];
while p 6= inf val do

begin tfm four (dimen out (value (p))); p← link (p);
end;

end

This code is used in section 1134.

424 PART 45: FONT METRIC DATA METAFONT §1137

1137. We need to output special instructions at the beginning of the lig kern array in order to specify the
right boundary character and/or to handle starting addresses that exceed 255. The label loc and label char
arrays have been set up to record all the starting addresses; we have −1 = label loc [0] < label loc [1] ≤ · · · ≤
label loc [label ptr].

〈Compute the ligature/kern program offset and implant the left boundary label 1137 〉 ≡
bchar ← round unscaled (internal [boundary char]);
if (bchar < 0) ∨ (bchar > 255) then

begin bchar ← −1; lk started ← false ; lk offset ← 0; end
else begin lk started ← true ; lk offset ← 1; end;
〈Find the minimum lk offset and adjust all remainders 1138 〉;
if bch label < undefined label then

begin skip byte (nl)← qi (255); next char (nl)← qi (0);
op byte (nl)← qi (((bch label + lk offset) div 256));
rem byte (nl)← qi (((bch label + lk offset) mod 256)); incr (nl); { possibly nl = lig table size + 1 }
end

This code is used in section 1135.

1138. 〈Find the minimum lk offset and adjust all remainders 1138 〉 ≡
k ← label ptr ; { pointer to the largest unallocated label }
if label loc [k] + lk offset > 255 then

begin lk offset ← 0; lk started ← false ; { location 0 can do double duty }
repeat char remainder [label char [k]]← lk offset ;

while label loc [k − 1] = label loc [k] do
begin decr (k); char remainder [label char [k]]← lk offset ;
end;

incr (lk offset); decr (k);
until lk offset + label loc [k] < 256; {N.B.: lk offset = 256 satisfies this when k = 0 }
end;

if lk offset > 0 then
while k > 0 do

begin char remainder [label char [k]]← char remainder [label char [k]] + lk offset ; decr (k);
end

This code is used in section 1137.

§1139 METAFONT PART 45: FONT METRIC DATA 425

1139. 〈Output the ligature/kern program 1139 〉 ≡
for k ← 0 to 255 do

if skip table [k] < undefined label then
begin print nl ("(local label "); print int (k); print (":: was missing)");
cancel skips (skip table [k]);
end;

if lk started then { lk offset = 1 for the special bchar }
begin tfm out (255); tfm out (bchar); tfm two(0);
end

else for k ← 1 to lk offset do { output the redirection specs }
begin ll ← label loc [label ptr];
if bchar < 0 then

begin tfm out (254); tfm out (0);
end

else begin tfm out (255); tfm out (bchar);
end;

tfm two(ll + lk offset);
repeat decr (label ptr);
until label loc [label ptr] < ll ;
end;

for k ← 0 to nl − 1 do tfm qqqq (lig kern [k]);
for k ← 0 to nk − 1 do tfm four (dimen out (kern [k]))

This code is used in section 1134.

1140. 〈Output the extensible character recipes and the font metric parameters 1140 〉 ≡
for k ← 0 to ne − 1 do tfm qqqq (exten [k]);
for k ← 1 to np do

if k = 1 then
if abs (param [1]) < fraction half then tfm four (param [1] ∗ 16)
else begin incr (tfm changed);

if param [1] > 0 then tfm four (el gordo)
else tfm four (−el gordo);
end

else tfm four (dimen out (param [k]));
if tfm changed > 0 then

begin if tfm changed = 1 then print nl ("(a font metric dimension")
else begin print nl ("("); print int (tfm changed); print (" font metric dimensions");

end;
print (" had to be decreased)");
end

This code is used in section 1134.

1141. 〈Log the subfile sizes of the TFM file 1141 〉 ≡
begin wlog ln (´ ´);
if bch label < undefined label then decr (nl);
wlog ln (´(You used ´,nw : 1, ´w,´,nh : 1, ´h,´,nd : 1, ´d,´,ni : 1, ´i,´,nl : 1, ´l,´,nk : 1, ´k,´,

ne : 1, ´e,´,np : 1, ´p metric file positions´); wlog ln (´ out of ´, ´256w,16h,16d,64i,´,
lig table size : 1, ´l,´,max kerns : 1, ´k,256e,´,max font dimen : 1, ´p)´);

end

This code is used in section 1134.

426 PART 46: GENERIC FONT FILE FORMAT METAFONT §1142

1142. Generic font file format. The most important output produced by a typical run of METAFONT

is the “generic font” (GF) file that specifies the bit patterns of the characters that have been drawn. The term
generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer; but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written by TEX and the GF files written by METAFONT; and,
in fact, the file formats have a lot in common.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the ‘boc ’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from −231 to 231 − 1. As in TFM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT

generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

1143. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m| or |n| to get extremely large, but the GF format tries to be more general.)

How do GF’s row and column numbers correspond to the conventions of TEX and METAFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0, 0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF

row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy m ≤ x ≤ m + 1
and n ≤ y ≤ n+ 1. Negative values of m and x correspond to columns of pixels left of the reference point;
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint switch , which is
always either black or white . Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint switch = black ; then the paint switch changes to the opposite state. GF’s
commands are designed so that m will never decrease within a row, and n will never increase within a
character; hence there is no way to whiten a pixel that has been blackened.

§1144 METAFONT PART 46: GENERIC FONT FILE FORMAT 427

1144. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.

paint 0 0. This is a paint command with d = 0; it does nothing but change the paint switch from black to
white or vice versa.

paint 1 through paint 63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined as follows:
If paint switch = black , blacken d pixels of the current row n, in columns m through m + d − 1
inclusive. Then, in any case, complement the paint switch and advance m by d.

paint1 64 d[1]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 ≤ d < 256.

paint2 65 d[2]. Same as paint1 , but d can be as high as 65535.

paint3 66 d[3]. Same as paint1 , but d can be as high as 224 − 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min m [4] max m [4] min n [4] max n [4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is −1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min m ≤ m ≤ max m and min n ≤ n ≤ max n . (The values of max m and min n need not be
the tightest bounds possible.) When a GF-reading program sees a boc , it can use min m , max m ,
min n , and max n to initialize the bounds of an array. Then it sets m ← min m , n ← max n , and
paint switch ← white .

boc1 68 c[1] del m [1] max m [1] del n [1] max n [1]. Same as boc , but p is assumed to be −1; also del m =
max m −min m and del n = max n −min n are given instead of min m and min n . The one-byte
parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes per character,
in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc .

skip0 70. Decrease n by 1 and set m ← min m , paint switch ← white . (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skip1 71 d[1]. Decrease n by d+ 1, set m← min m , and set paint switch ← white . This is a way to produce
d all-white rows.

skip2 72 d[2]. Same as skip1 , but d can be as large as 65535.

skip3 73 d[3]. Same as skip1 , but d can be as large as 224 − 1. METAFONT obviously never needs this
command.

new row 0 74. Decrease n by 1 and set m ← min m , paint switch ← black . (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new row 1 through new row 164 (opcodes 75 to 238). Same as new row 0 , but with m ← min m + 1
through min m + 164, respectively.

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special GF-reading programs are being used. METAFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear within characters, in GF files generated by other
processors. It is recommended that x be a string having the form of a keyword followed by possible
parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string whose
length exceeds 255.

428 PART 46: GENERIC FONT FILE FORMAT METAFONT §1144

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no op unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no op 244. No operation, do nothing. Any number of no op ’s may occur between GF commands, but a
no op cannot be inserted between a command and its parameters or between two parameters.

char loc 245 c[1] dx [4] dy [4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char loc0 246 c[1] dm [1] w[4] p[4]. Same as char loc , except that dy is assumed to be zero, and the value
of dx is taken to be 65536 ∗ dm , where 0 ≤ dm < 256.

pre 247 i[1] k[1] x[k]. Beginning of the preamble; this must come at the very beginning of the file. Parameter i
is an identifying number for GF format, currently 131. The other information is merely commentary; it
is not given special interpretation like xxx commands are. (Note that xxx commands may immediately
follow the preamble, before the first boc .)

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

define gf id byte = 131 { identifies the kind of GF files described here }

1145. METAFONT refers to the following opcodes explicitly.

define paint 0 = 0 { beginning of the paint commands }
define paint1 = 64 {move right a given number of columns, then black↔ white }
define boc = 67 { beginning of a character }
define boc1 = 68 { short form of boc }
define eoc = 69 { end of a character }
define skip0 = 70 { skip no blank rows }
define skip1 = 71 { skip over blank rows }
define new row 0 = 74 {move down one row and then right }
define max new row = 164 { the largest new row command is new row 164 }
define xxx1 = 239 { for special strings }
define xxx3 = 241 { for long special strings }
define yyy = 243 { for numspecial numbers }
define char loc = 245 { character locators in the postamble }
define pre = 247 { preamble }
define post = 248 { postamble beginning }
define post post = 249 {postamble ending }

§1146 METAFONT PART 46: GENERIC FONT FILE FORMAT 429

1146. The last character in a GF file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min m [4] max m [4] min n [4] max n [4]
〈 character locators 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters); it can be used to locate the beginning of xxx commands that might have preceded
the postamble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of the TFM file that METAFONT produces (or would produce) on this run.
Parameters hppp and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled
integers (i.e., multiplied by 216); they can be used to correlate the font with specific device resolutions,
magnifications, and “at sizes.” Then come min m , max m , min n , and max n , which bound the values that
registers m and n assume in all characters in this GF file. (These bounds need not be the best possible; max m
and min n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some
character may have min n = −100 in its boc , but it might turn out that n never gets lower than −50 in any
character; then min n can have any value ≤ −50. If there are no characters in the file, it’s possible to have
min m > max m and/or min n > max n .)

1147. Character locators are introduced by char loc commands, which specify a character residue c,
character escapements (dx , dy), a character width w, and a pointer p to the beginning of that character. (If
two or more characters have the same code c modulo 256, only the last will be indicated; the others can be
located by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share
the same font metric information, hence the TFM file contains only residues of character codes modulo 256.
This convention is intended for oriental languages, when there are many character shapes but few distinct
widths.)

The character escapements (dx , dy) are the values of METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 216, and dy is in vertical pixel units
times 216. This is the intended amount of displacement after typesetting the character; for DVI files, dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is a fix word value relative to the
design size, and it should be independent of magnification.

The backpointer p points to the character’s boc , or to the first of a sequence of consecutive xxx or yyy
or no op commands that immediately precede the boc , if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc .

Pointer p might be −1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing ≥ 0 in order to get a GF file.

430 PART 46: GENERIC FONT FILE FORMAT METAFONT §1148

1148. The last part of the postamble, following the post post byte that signifies the end of the character
locators, contains q, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in
octal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple
of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
GF format has been designed to work most efficiently with modern operating systems. But if GF files have to
be processed under the restrictions of standard Pascal, one can simply read them from front to back. This
will be adequate for most applications. However, the postamble-first approach would facilitate a program
that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

§1149 METAFONT PART 47: SHIPPING CHARACTERS OUT 431

1149. Shipping characters out. The ship out procedure, to be described below, is given a pointer
to an edge structure. Its mission is to describe the positive pixels in GF form, outputting a “character” to
gf file .

Several global variables hold information about the font file as a whole: gf min m , gf max m , gf min n ,
and gf max n are the minimum and maximum GF coordinates output so far; gf prev ptr is the byte number
following the preamble or the last eoc command in the output; total chars is the total number of characters
(i.e., boc . . eoc segments) shipped out. There’s also an array, char ptr , containing the starting positions
of each character in the file, as required for the postamble. If character code c has not yet been output,
char ptr [c] = −1.

〈Global variables 13 〉 +≡
gf min m , gf max m , gf min n , gf max n : integer ; { bounding rectangle }
gf prev ptr : integer ; {where the present/next character started/starts }
total chars : integer ; { the number of characters output so far }
char ptr : array [eight bits] of integer ; {where individual characters started }
gf dx , gf dy : array [eight bits] of integer ; { device escapements }

1150. 〈Set initial values of key variables 21 〉 +≡
gf prev ptr ← 0; total chars ← 0;

1151. The GF bytes are output to a buffer instead of being sent byte-by-byte to gf file , because this tends
to save a lot of subroutine-call overhead. METAFONT uses the same conventions for gf file as TEX uses for its
dvi file ; hence if system-dependent changes are needed, they should probably be the same for both programs.

The output buffer is divided into two parts of equal size; the bytes found in gf buf [0 . . half buf − 1]
constitute the first half, and those in gf buf [half buf . . gf buf size − 1] constitute the second. The global
variable gf ptr points to the position that will receive the next output byte. When gf ptr reaches gf limit ,
which is always equal to one of the two values half buf or gf buf size , the half buffer that is about to be
invaded next is sent to the output and gf limit is changed to its other value. Thus, there is always at least
a half buffer’s worth of information present, except at the very beginning of the job.

Bytes of the GF file are numbered sequentially starting with 0; the next byte to be generated will be
number gf offset + gf ptr .

〈Types in the outer block 18 〉 +≡
gf index = 0 . . gf buf size ; { an index into the output buffer }

1152. Some systems may find it more efficient to make gf buf a packed array, since output of four bytes
at once may be facilitated.

〈Global variables 13 〉 +≡
gf buf : array [gf index] of eight bits ; { buffer for GF output }
half buf : gf index ; { half of gf buf size }
gf limit : gf index ; { end of the current half buffer }
gf ptr : gf index ; { the next available buffer address }
gf offset : integer ; { gf buf size times the number of times the output buffer has been fully emptied }

1153. Initially the buffer is all in one piece; we will output half of it only after it first fills up.

〈Set initial values of key variables 21 〉 +≡
half buf ← gf buf size div 2; gf limit ← gf buf size ; gf ptr ← 0; gf offset ← 0;

432 PART 47: SHIPPING CHARACTERS OUT METAFONT §1154

1154. The actual output of gf buf [a . . b] to gf file is performed by calling write gf (a, b). It is safe to
assume that a and b + 1 will both be multiples of 4 when write gf (a, b) is called; therefore it is possible on
many machines to use efficient methods to pack four bytes per word and to output an array of words with
one system call.

〈Declare generic font output procedures 1154 〉 ≡
procedure write gf (a, b : gf index);

var k: gf index ;
begin for k ← a to b do write (gf file , gf buf [k]);
end;

See also sections 1155, 1157, 1158, 1159, 1160, 1161, 1163, and 1165.

This code is used in section 989.

1155. To put a byte in the buffer without paying the cost of invoking a procedure each time, we use the
macro gf out .

define gf out (#) ≡ begin gf buf [gf ptr]← #; incr (gf ptr);
if gf ptr = gf limit then gf swap ;
end

〈Declare generic font output procedures 1154 〉 +≡
procedure gf swap ; { outputs half of the buffer }

begin if gf limit = gf buf size then
begin write gf (0, half buf − 1); gf limit ← half buf ; gf offset ← gf offset + gf buf size ; gf ptr ← 0;
end

else begin write gf (half buf , gf buf size − 1); gf limit ← gf buf size ;
end;

end;

1156. Here is how we clean out the buffer when METAFONT is all through; gf ptr will be a multiple of 4.

〈Empty the last bytes out of gf buf 1156 〉 ≡
if gf limit = half buf then write gf (half buf , gf buf size − 1);
if gf ptr > 0 then write gf (0, gf ptr − 1)

This code is used in section 1182.

1157. The gf four procedure outputs four bytes in two’s complement notation, without risking arithmetic
overflow.

〈Declare generic font output procedures 1154 〉 +≡
procedure gf four (x : integer);

begin if x ≥ 0 then gf out (x div three bytes)
else begin x← x+ 1́0000000000 ; x← x+ 1́0000000000 ; gf out ((x div three bytes) + 128);

end;
x← xmod three bytes ; gf out (xdiv unity); x← xmod unity ; gf out (xdiv 4́00); gf out (xmod 4́00);
end;

1158. Of course, it’s even easier to output just two or three bytes.

〈Declare generic font output procedures 1154 〉 +≡
procedure gf two(x : integer);

begin gf out (x div 4́00); gf out (xmod 4́00);
end;

procedure gf three (x : integer);
begin gf out (x div unity); gf out ((xmod unity) div 4́00); gf out (xmod 4́00);
end;

§1159 METAFONT PART 47: SHIPPING CHARACTERS OUT 433

1159. We need a simple routine to generate a paint command of the appropriate type.

〈Declare generic font output procedures 1154 〉 +≡
procedure gf paint (d : integer); { here 0 ≤ d < 65536 }

begin if d < 64 then gf out (paint 0 + d)
else if d < 256 then

begin gf out (paint1); gf out (d);
end

else begin gf out (paint1 + 1); gf two(d);
end;

end;

1160. And gf string outputs one or two strings. If the first string number is nonzero, an xxx command is
generated.

〈Declare generic font output procedures 1154 〉 +≡
procedure gf string (s, t : str number);

var k: pool pointer ; l: integer ; { length of the strings to output }
begin if s 6= 0 then

begin l← length (s);
if t 6= 0 then l← l + length (t);
if l ≤ 255 then

begin gf out (xxx1); gf out (l);
end

else begin gf out (xxx3); gf three (l);
end;

for k ← str start [s] to str start [s+ 1]− 1 do gf out (so(str pool [k]));
end;

if t 6= 0 then
for k ← str start [t] to str start [t+ 1]− 1 do gf out (so(str pool [k]));

end;

1161. The choice between boc commands is handled by gf boc .

define one byte (#) ≡ # ≥ 0 then
if # < 256

〈Declare generic font output procedures 1154 〉 +≡
procedure gf boc(min m ,max m ,min n ,max n : integer);

label exit ;
begin if min m < gf min m then gf min m ← min m ;
if max n > gf max n then gf max n ← max n ;
if boc p = −1 then

if one byte (boc c) then
if one byte (max m −min m) then

if one byte (max m) then
if one byte (max n −min n) then

if one byte (max n) then
begin gf out (boc1); gf out (boc c);
gf out (max m −min m); gf out (max m); gf out (max n −min n); gf out (max n); return;
end;

gf out (boc); gf four (boc c); gf four (boc p);
gf four (min m); gf four (max m); gf four (min n); gf four (max n);

exit : end;

434 PART 47: SHIPPING CHARACTERS OUT METAFONT §1162

1162. Two of the parameters to gf boc are global.

〈Global variables 13 〉 +≡
boc c , boc p : integer ; { parameters of the next boc command }

1163. Here is a routine that gets a GF file off to a good start.

define check gf ≡ if output file name = 0 then init gf

〈Declare generic font output procedures 1154 〉 +≡
procedure init gf ;

var k: eight bits ; { runs through all possible character codes }
t: integer ; { the time of this run }

begin gf min m ← 4096; gf max m ← −4096; gf min n ← 4096; gf max n ← −4096;
for k ← 0 to 255 do char ptr [k]← −1;
〈Determine the file extension, gf ext 1164 〉;
set output file name ; gf out (pre); gf out (gf id byte); { begin to output the preamble }
old setting ← selector ; selector ← new string ; print (" METAFONT output ");
print int (round unscaled (internal [year])); print char ("."); print dd (round unscaled (internal [month]));
print char ("."); print dd (round unscaled (internal [day])); print char (":");
t← round unscaled (internal [time]); print dd (t div 60); print dd (tmod 60);
selector ← old setting ; gf out (cur length); gf string (0,make string); decr (str ptr);
pool ptr ← str start [str ptr]; { flush that string from memory }
gf prev ptr ← gf offset + gf ptr ;
end;

1164. 〈Determine the file extension, gf ext 1164 〉 ≡
if internal [hppp] ≤ 0 then gf ext ← ".gf"

else begin old setting ← selector ; selector ← new string ; print char (".");
print int (make scaled (internal [hppp], 59429463)); { 232/72.27 ≈ 59429463.07 }
print ("gf"); gf ext ← make string ; selector ← old setting ;
end

This code is used in section 1163.

§1165 METAFONT PART 47: SHIPPING CHARACTERS OUT 435

1165. With those preliminaries out of the way, ship out is not especially difficult.

〈Declare generic font output procedures 1154 〉 +≡
procedure ship out (c : eight bits);

label done ;
var f : integer ; { current character extension }

prev m ,m,mm : integer ; { previous and current pixel column numbers }
prev n , n: integer ; { previous and current pixel row numbers }
p, q: pointer ; { for list traversal }
prev w , w,ww : integer ; { old and new weights }
d: integer ; { data from edge-weight node }
delta : integer ; { number of rows to skip }
cur min m : integer ; { starting column, relative to the current offset }
x off , y off : integer ; { offsets, rounded to integers }

begin check gf ; f ← round unscaled (internal [char ext]);
x off ← round unscaled (internal [x offset]); y off ← round unscaled (internal [y offset]);
if term offset > max print line − 9 then print ln
else if (term offset > 0) ∨ (file offset > 0) then print char (" ");
print char ("["); print int (c);
if f 6= 0 then

begin print char ("."); print int (f);
end;

update terminal ; boc c ← 256 ∗ f + c; boc p ← char ptr [c]; char ptr [c]← gf prev ptr ;
if internal [proofing] > 0 then 〈Send nonzero offsets to the output file 1166 〉;
〈Output the character represented in cur edges 1167 〉;
gf out (eoc); gf prev ptr ← gf offset + gf ptr ; incr (total chars); print char ("]"); update terminal ;
{ progress report }

if internal [tracing output] > 0 then print edges (" (just shipped out)", true , x off , y off);
end;

1166. 〈Send nonzero offsets to the output file 1166 〉 ≡
begin if x off 6= 0 then

begin gf string ("xoffset", 0); gf out (yyy); gf four (x off ∗ unity);
end;

if y off 6= 0 then
begin gf string ("yoffset", 0); gf out (yyy); gf four (y off ∗ unity);
end;

end

This code is used in section 1165.

1167. 〈Output the character represented in cur edges 1167 〉 ≡
prev n ← 4096; p← knil (cur edges); n← n max (cur edges)− zero field ;
while p 6= cur edges do

begin 〈Output the pixels of edge row p to font row n 1169 〉;
p← knil (p); decr (n);
end;

if prev n = 4096 then 〈Finish off an entirely blank character 1168 〉
else if prev n + y off < gf min n then gf min n ← prev n + y off

This code is used in section 1165.

436 PART 47: SHIPPING CHARACTERS OUT METAFONT §1168

1168. 〈Finish off an entirely blank character 1168 〉 ≡
begin gf boc(0, 0, 0, 0);
if gf max m < 0 then gf max m ← 0;
if gf min n > 0 then gf min n ← 0;
end

This code is used in section 1167.

1169. In this loop, prev w represents the weight at column prev m , which is the most recent column
reflected in the output so far; w represents the weight at column m, which is the most recent column in the
edge data. Several edges might cancel at the same column position, so we need to look ahead to column mm
before actually outputting anything.

〈Output the pixels of edge row p to font row n 1169 〉 ≡
if unsorted (p) > void then sort edges (p);
q ← sorted (p); w ← 0; prev m ← −fraction one ; { fraction one ≈ ∞}
ww ← 0; prev w ← 0; m← prev m ;
repeat if q = sentinel then mm ← fraction one

else begin d← ho(info(q)); mm ← d div 8; ww ← ww + (dmod 8)− zero w ;
end;

if mm 6= m then
begin if prev w ≤ 0 then

begin if w > 0 then 〈Start black at (m,n) 1170 〉;
end

else if w ≤ 0 then 〈Stop black at (m,n) 1171 〉;
m← mm ;
end;

w ← ww ; q ← link (q);
until mm = fraction one ;
if w 6= 0 then { this should be impossible }

print nl ("(There´s unbounded black in character shipped out!)");
if prev m −m offset (cur edges) + x off > gf max m then

gf max m ← prev m −m offset (cur edges) + x off

This code is used in section 1167.

1170. 〈Start black at (m,n) 1170 〉 ≡
begin if prev m = −fraction one then 〈Start a new row at (m,n) 1172 〉
else gf paint (m− prev m);
prev m ← m; prev w ← w;
end

This code is used in section 1169.

1171. 〈Stop black at (m,n) 1171 〉 ≡
begin gf paint (m− prev m); prev m ← m; prev w ← w;
end

This code is used in section 1169.

§1172 METAFONT PART 47: SHIPPING CHARACTERS OUT 437

1172. 〈Start a new row at (m,n) 1172 〉 ≡
begin if prev n = 4096 then

begin gf boc(m min (cur edges) + x off − zero field ,m max (cur edges) + x off − zero field ,
n min (cur edges) + y off − zero field , n+ y off);

cur min m ← m min (cur edges)− zero field + m offset (cur edges);
end

else if prev n > n+ 1 then 〈Skip down prev n − n rows 1174 〉
else 〈Skip to column m in the next row and goto done , or skip zero rows 1173 〉;

gf paint (m− cur min m); { skip to column m, painting white }
done : prev n ← n;

end

This code is used in section 1170.

1173. 〈Skip to column m in the next row and goto done , or skip zero rows 1173 〉 ≡
begin delta ← m− cur min m ;
if delta > max new row then gf out (skip0)
else begin gf out (new row 0 + delta); goto done ;

end;
end

This code is used in section 1172.

1174. 〈Skip down prev n − n rows 1174 〉 ≡
begin delta ← prev n − n− 1;
if delta < 4́00 then

begin gf out (skip1); gf out (delta);
end

else begin gf out (skip1 + 1); gf two(delta);
end;

end

This code is used in section 1172.

1175. Now that we’ve finished ship out , let’s look at the other commands by which a user can send things
to the GF file.

〈Cases of do statement that invoke particular commands 1020 〉 +≡
special command : do special ;

1176. 〈Put each of METAFONT’s primitives into the hash table 192 〉 +≡
primitive ("special", special command , string type);
primitive ("numspecial", special command , known);

438 PART 47: SHIPPING CHARACTERS OUT METAFONT §1177

1177. 〈Declare action procedures for use by do statement 995 〉 +≡
procedure do special ;

var m: small number ; { either string type or known }
begin m← cur mod ; get x next ; scan expression ;
if internal [proofing] ≥ 0 then

if cur type 6= m then 〈Complain about improper special operation 1178 〉
else begin check gf ;

if m = string type then gf string (cur exp , 0)
else begin gf out (yyy); gf four (cur exp);

end;
end;

flush cur exp(0);
end;

1178. 〈Complain about improper special operation 1178 〉 ≡
begin exp err ("Unsuitable expression");
help1 ("The expression shown above has the wrong type to be output."); put get error ;
end

This code is used in section 1177.

1179. 〈Send the current expression as a title to the output file 1179 〉 ≡
begin check gf ; gf string ("title ", cur exp);
end

This code is used in section 994.

1180. 〈Cases of print cmd mod for symbolic printing of primitives 212 〉 +≡
special command : if m = known then print ("numspecial")

else print ("special");

1181. 〈Determine if a character has been shipped out 1181 〉 ≡
begin cur exp ← round unscaled (cur exp) mod 256;
if cur exp < 0 then cur exp ← cur exp + 256;
boolean reset (char exists [cur exp]); cur type ← boolean type ;
end

This code is used in section 906.

§1182 METAFONT PART 47: SHIPPING CHARACTERS OUT 439

1182. At the end of the program we must finish things off by writing the postamble. The TFM information
should have been computed first.

An integer variable k and a scaled variable x will be declared for use by this routine.

〈Finish the GF file 1182 〉 ≡
begin gf out (post); { beginning of the postamble }
gf four (gf prev ptr); gf prev ptr ← gf offset + gf ptr − 5; { post location }
gf four (internal [design size] ∗ 16);
for k ← 1 to 4 do gf out (header byte [k]); { the check sum }
gf four (internal [hppp]); gf four (internal [vppp]);
gf four (gf min m); gf four (gf max m); gf four (gf min n); gf four (gf max n);
for k ← 0 to 255 do

if char exists [k] then
begin x← gf dx [k] div unity ;
if (gf dy [k] = 0) ∧ (x ≥ 0) ∧ (x < 256) ∧ (gf dx [k] = x ∗ unity) then

begin gf out (char loc + 1); gf out (k); gf out (x);
end

else begin gf out (char loc); gf out (k); gf four (gf dx [k]); gf four (gf dy [k]);
end;

x← value (tfm width [k]);
if abs (x) > max tfm dimen then

if x > 0 then x← three bytes − 1 else x← 1− three bytes
else x← make scaled (x ∗ 16, internal [design size]);
gf four (x); gf four (char ptr [k]);
end;

gf out (post post); gf four (gf prev ptr); gf out (gf id byte);
k ← 4 + ((gf buf size − gf ptr) mod 4); { the number of 223’s }
while k > 0 do

begin gf out (223); decr (k);
end;
〈Empty the last bytes out of gf buf 1156 〉;
print nl ("Output written on "); slow print (output file name); print (" ("); print int (total chars);
print (" character");
if total chars 6= 1 then print char ("s");
print (", "); print int (gf offset + gf ptr); print (" bytes)."); b close (gf file);
end

This code is used in section 1206.

440 PART 48: DUMPING AND UNDUMPING THE TABLES METAFONT §1183

1183. Dumping and undumping the tables. After INIMF has seen a collection of macros, it can
write all the necessary information on an auxiliary file so that production versions of METAFONT are able
to initialize their memory at high speed. The present section of the program takes care of such output and
input. We shall consider simultaneously the processes of storing and restoring, so that the inverse relation
between them is clear.

The global variable base ident is a string that is printed right after the banner line when METAFONT is
ready to start. For INIMF this string says simply ‘(INIMF)’; for other versions of METAFONT it says, for
example, ‘(preloaded base=plain 1984.2.29)’, showing the year, month, and day that the base file was
created. We have base ident = 0 before METAFONT’s tables are loaded.

〈Global variables 13 〉 +≡
base ident : str number ;

1184. 〈Set initial values of key variables 21 〉 +≡
base ident ← 0;

1185. 〈 Initialize table entries (done by INIMF only) 176 〉 +≡
base ident ← " (INIMF)";

1186. 〈Declare action procedures for use by do statement 995 〉 +≡
init procedure store base file ;
var k: integer ; { all-purpose index }
p, q: pointer ; { all-purpose pointers }
x: integer ; { something to dump }
w: four quarters ; { four ASCII codes }

begin 〈Create the base ident , open the base file, and inform the user that dumping has begun 1200 〉;
〈Dump constants for consistency check 1190 〉;
〈Dump the string pool 1192 〉;
〈Dump the dynamic memory 1194 〉;
〈Dump the table of equivalents and the hash table 1196 〉;
〈Dump a few more things and the closing check word 1198 〉;
〈Close the base file 1201 〉;
end;
tini

§1187 METAFONT PART 48: DUMPING AND UNDUMPING THE TABLES 441

1187. Corresponding to the procedure that dumps a base file, we also have a function that reads one in.
The function returns false if the dumped base is incompatible with the present METAFONT table sizes, etc.

define off base = 6666 { go here if the base file is unacceptable }
define too small (#) ≡

begin wake up terminal ; wterm ln (´−−−! Must increase the ´, #); goto off base ;
end

〈Declare the function called open base file 779 〉
function load base file : boolean ;

label off base , exit ;
var k: integer ; { all-purpose index }
p, q: pointer ; { all-purpose pointers }
x: integer ; { something undumped }
w: four quarters ; { four ASCII codes }

begin 〈Undump constants for consistency check 1191 〉;
〈Undump the string pool 1193 〉;
〈Undump the dynamic memory 1195 〉;
〈Undump the table of equivalents and the hash table 1197 〉;
〈Undump a few more things and the closing check word 1199 〉;
load base file ← true ; return; { it worked! }

off base : wake up terminal ; wterm ln (´(Fatal base file error; I´´m stymied)´);
load base file ← false ;

exit : end;

1188. Base files consist of memory word items, and we use the following macros to dump words of different
types:

define dump wd (#) ≡
begin base file↑ ← #; put (base file); end

define dump int (#) ≡
begin base file↑.int ← #; put (base file); end

define dump hh (#) ≡
begin base file↑.hh ← #; put (base file); end

define dump qqqq (#) ≡
begin base file↑.qqqq ← #; put (base file); end

〈Global variables 13 〉 +≡
base file : word file ; { for input or output of base information }

442 PART 48: DUMPING AND UNDUMPING THE TABLES METAFONT §1189

1189. The inverse macros are slightly more complicated, since we need to check the range of the values
we are reading in. We say ‘undump(a)(b)(x)’ to read an integer value x that is supposed to be in the range
a ≤ x ≤ b. System error messages should be suppressed when undumping.

define undump wd (#) ≡
begin get (base file); #← base file↑; end

define undump int (#) ≡
begin get (base file); #← base file↑.int ; end

define undump hh (#) ≡
begin get (base file); #← base file↑.hh ; end

define undump qqqq (#) ≡
begin get (base file); #← base file↑.qqqq ; end

define undump end end (#) ≡ #← x; end
define undump end (#) ≡ (x > #) then goto off base else undump end end
define undump(#) ≡

begin undump int (x);
if (x < #) ∨ undump end

define undump size end end (#) ≡ too small (#) else undump end end
define undump size end (#) ≡

if x > # then undump size end end
define undump size (#) ≡

begin undump int (x);
if x < # then goto off base ;
undump size end

1190. The next few sections of the program should make it clear how we use the dump/undump macros.

〈Dump constants for consistency check 1190 〉 ≡
dump int (@$);
dump int (mem min);
dump int (mem top);
dump int (hash size);
dump int (hash prime);
dump int (max in open)

This code is used in section 1186.

1191. Sections of a WEB program that are “commented out” still contribute strings to the string pool;
therefore INIMF and METAFONT will have the same strings. (And it is, of course, a good thing that they
do.)

〈Undump constants for consistency check 1191 〉 ≡
x← base file↑.int ;
if x 6= @$ then goto off base ; { check that strings are the same }
undump int (x);
if x 6= mem min then goto off base ;
undump int (x);
if x 6= mem top then goto off base ;
undump int (x);
if x 6= hash size then goto off base ;
undump int (x);
if x 6= hash prime then goto off base ;
undump int (x);
if x 6= max in open then goto off base

This code is used in section 1187.

§1192 METAFONT PART 48: DUMPING AND UNDUMPING THE TABLES 443

1192. define dump four ASCII ≡ w.b0 ← qi (so(str pool [k])); w.b1 ← qi (so(str pool [k + 1]));
w.b2 ← qi (so(str pool [k + 2])); w.b3 ← qi (so(str pool [k + 3])); dump qqqq (w)

〈Dump the string pool 1192 〉 ≡
dump int (pool ptr); dump int (str ptr);
for k ← 0 to str ptr do dump int (str start [k]);
k ← 0;
while k + 4 < pool ptr do

begin dump four ASCII ; k ← k + 4;
end;

k ← pool ptr − 4; dump four ASCII ; print ln ; print int (str ptr);
print (" strings of total length "); print int (pool ptr)

This code is used in section 1186.

1193. define undump four ASCII ≡ undump qqqq (w); str pool [k]← si (qo(w.b0));
str pool [k + 1]← si (qo(w.b1)); str pool [k + 2]← si (qo(w.b2)); str pool [k + 3]← si (qo(w.b3))

〈Undump the string pool 1193 〉 ≡
undump size (0)(pool size)(´string pool size´)(pool ptr);
undump size (0)(max strings)(´max strings´)(str ptr);
for k ← 0 to str ptr do

begin undump(0)(pool ptr)(str start [k]); str ref [k]← max str ref ;
end;

k ← 0;
while k + 4 < pool ptr do

begin undump four ASCII ; k ← k + 4;
end;

k ← pool ptr − 4; undump four ASCII ; init str ptr ← str ptr ; init pool ptr ← pool ptr ;
max str ptr ← str ptr ; max pool ptr ← pool ptr

This code is used in section 1187.

1194. By sorting the list of available spaces in the variable-size portion of mem , we are usually able to get
by without having to dump very much of the dynamic memory.

We recompute var used and dyn used , so that INIMF dumps valid information even when it has not been
gathering statistics.

〈Dump the dynamic memory 1194 〉 ≡
sort avail ; var used ← 0; dump int (lo mem max); dump int (rover); p← mem min ; q ← rover ; x← 0;
repeat for k ← p to q + 1 do dump wd (mem [k]);
x← x+ q + 2− p; var used ← var used + q − p; p← q + node size (q); q ← rlink (q);

until q = rover ;
var used ← var used + lo mem max − p; dyn used ← mem end + 1− hi mem min ;
for k ← p to lo mem max do dump wd (mem [k]);
x← x+ lo mem max + 1− p; dump int (hi mem min); dump int (avail);
for k ← hi mem min to mem end do dump wd (mem [k]);
x← x+ mem end + 1− hi mem min ; p← avail ;
while p 6= null do

begin decr (dyn used); p← link (p);
end;

dump int (var used); dump int (dyn used); print ln ; print int (x);
print (" memory locations dumped; current usage is "); print int (var used); print char ("&");
print int (dyn used)

This code is used in section 1186.

444 PART 48: DUMPING AND UNDUMPING THE TABLES METAFONT §1195

1195. 〈Undump the dynamic memory 1195 〉 ≡
undump(lo mem stat max + 1000)(hi mem stat min − 1)(lo mem max);
undump(lo mem stat max + 1)(lo mem max)(rover); p← mem min ; q ← rover ;
repeat for k ← p to q + 1 do undump wd (mem [k]);
p← q + node size (q);
if (p > lo mem max) ∨ ((q ≥ rlink (q)) ∧ (rlink (q) 6= rover)) then goto off base ;
q ← rlink (q);

until q = rover ;
for k ← p to lo mem max do undump wd (mem [k]);
undump(lo mem max + 1)(hi mem stat min)(hi mem min); undump(null)(mem top)(avail);
mem end ← mem top ;
for k ← hi mem min to mem end do undump wd (mem [k]);
undump int (var used); undump int (dyn used)

This code is used in section 1187.

1196. A different scheme is used to compress the hash table, since its lower region is usually sparse. When
text (p) 6= 0 for p ≤ hash used , we output three words: p, hash [p], and eqtb [p]. The hash table is, of course,
densely packed for p ≥ hash used , so the remaining entries are output in a block.

〈Dump the table of equivalents and the hash table 1196 〉 ≡
dump int (hash used); st count ← frozen inaccessible − 1− hash used ;
for p← 1 to hash used do

if text (p) 6= 0 then
begin dump int (p); dump hh (hash [p]); dump hh (eqtb [p]); incr (st count);
end;

for p← hash used + 1 to hash end do
begin dump hh (hash [p]); dump hh (eqtb [p]);
end;

dump int (st count);
print ln ; print int (st count); print (" symbolic tokens")

This code is used in section 1186.

1197. 〈Undump the table of equivalents and the hash table 1197 〉 ≡
undump(1)(frozen inaccessible)(hash used); p← 0;
repeat undump(p+ 1)(hash used)(p); undump hh (hash [p]); undump hh (eqtb [p]);
until p = hash used ;
for p← hash used + 1 to hash end do

begin undump hh (hash [p]); undump hh (eqtb [p]);
end;

undump int (st count)

This code is used in section 1187.

1198. We have already printed a lot of statistics, so we set tracing stats ← 0 to prevent them from
appearing again.

〈Dump a few more things and the closing check word 1198 〉 ≡
dump int (int ptr);
for k ← 1 to int ptr do

begin dump int (internal [k]); dump int (int name [k]);
end;

dump int (start sym); dump int (interaction); dump int (base ident); dump int (bg loc);
dump int (eg loc); dump int (serial no); dump int (69069); internal [tracing stats]← 0

This code is used in section 1186.

§1199 METAFONT PART 48: DUMPING AND UNDUMPING THE TABLES 445

1199. 〈Undump a few more things and the closing check word 1199 〉 ≡
undump(max given internal)(max internal)(int ptr);
for k ← 1 to int ptr do

begin undump int (internal [k]); undump(0)(str ptr)(int name [k]);
end;

undump(0)(frozen inaccessible)(start sym); undump(batch mode)(error stop mode)(interaction);
undump(0)(str ptr)(base ident); undump(1)(hash end)(bg loc); undump(1)(hash end)(eg loc);
undump int (serial no);
undump int (x); if (x 6= 69069) ∨ eof (base file) then goto off base

This code is used in section 1187.

1200. 〈Create the base ident , open the base file, and inform the user that dumping has begun 1200 〉 ≡
selector ← new string ; print (" (preloaded base="); print (job name); print char (" ");
print int (round unscaled (internal [year])); print char ("."); print int (round unscaled (internal [month]));
print char ("."); print int (round unscaled (internal [day])); print char (")");
if interaction = batch mode then selector ← log only
else selector ← term and log ;
str room (1); base ident ← make string ; str ref [base ident]← max str ref ;
pack job name (base extension);
while ¬w open out (base file) do prompt file name ("base file name", base extension);
print nl ("Beginning to dump on file "); slow print (w make name string (base file));
flush string (str ptr − 1); print nl (""); slow print (base ident)

This code is used in section 1186.

1201. 〈Close the base file 1201 〉 ≡
w close (base file)

This code is used in section 1186.

446 PART 49: THE MAIN PROGRAM METAFONT §1202

1202. The main program. This is it: the part of METAFONT that executes all those procedures we
have written.

Well—almost. We haven’t put the parsing subroutines into the program yet; and we’d better leave space
for a few more routines that may have been forgotten.

〈Declare the basic parsing subroutines 823 〉
〈Declare miscellaneous procedures that were declared forward 224 〉
〈Last-minute procedures 1205 〉

1203. We’ve noted that there are two versions of METAFONT84. One, called INIMF, has to be run first; it
initializes everything from scratch, without reading a base file, and it has the capability of dumping a base
file. The other one is called ‘VIRMF’; it is a “virgin” program that needs to input a base file in order to get
started. VIRMF typically has a bit more memory capacity than INIMF, because it does not need the space
consumed by the dumping/undumping routines and the numerous calls on primitive , etc.

The VIRMF program cannot read a base file instantaneously, of course; the best implementations therefore
allow for production versions of METAFONT that not only avoid the loading routine for Pascal object code,
they also have a base file pre-loaded. This is impossible to do if we stick to standard Pascal; but there is a
simple way to fool many systems into avoiding the initialization, as follows: (1) We declare a global integer
variable called ready already . The probability is negligible that this variable holds any particular value like
314159 when VIRMF is first loaded. (2) After we have read in a base file and initialized everything, we set
ready already ← 314159. (3) Soon VIRMF will print ‘*’, waiting for more input; and at this point we interrupt
the program and save its core image in some form that the operating system can reload speedily. (4) When
that core image is activated, the program starts again at the beginning; but now ready already = 314159
and all the other global variables have their initial values too. The former chastity has vanished!

In other words, if we allow ourselves to test the condition ready already = 314159, before ready already
has been assigned a value, we can avoid the lengthy initialization. Dirty tricks rarely pay off so handsomely.

On systems that allow such preloading, the standard program called MF should be the one that has plain
base preloaded, since that agrees with The METAFONT book. Other versions, e.g., CMMF, should also be
provided for commonly used bases such as cmbase.

〈Global variables 13 〉 +≡
ready already : integer ; { a sacrifice of purity for economy }

§1204 METAFONT PART 49: THE MAIN PROGRAM 447

1204. Now this is really it: METAFONT starts and ends here.
The initial test involving ready already should be deleted if the Pascal runtime system is smart enough to

detect such a “mistake.”

begin { start here }
history ← fatal error stop ; { in case we quit during initialization }
t open out ; { open the terminal for output }
if ready already = 314159 then goto start of MF ;
〈Check the “constant” values for consistency 14 〉
if bad > 0 then

begin wterm ln (´Ouch−−−my internal constants have been clobbered!´, ´−−−case ´, bad : 1);
goto final end ;
end;

initialize ; { set global variables to their starting values }
init if ¬get strings started then goto final end ;
init tab ; { initialize the tables }
init prim ; { call primitive for each primitive }
init str ptr ← str ptr ; init pool ptr ← pool ptr ;
max str ptr ← str ptr ; max pool ptr ← pool ptr ; fix date and time ;
tini
ready already ← 314159;

start of MF : 〈 Initialize the output routines 55 〉;
〈Get the first line of input and prepare to start 1211 〉;
history ← spotless ; { ready to go! }
if start sym > 0 then { insert the ‘everyjob’ symbol }

begin cur sym ← start sym ; back input ;
end;

main control ; { come to life }
final cleanup ; { prepare for death }

end of MF : close files and terminate ;
final end : ready already ← 0;

end.

448 PART 49: THE MAIN PROGRAM METAFONT §1205

1205. Here we do whatever is needed to complete METAFONT’s job gracefully on the local operating
system. The code here might come into play after a fatal error; it must therefore consist entirely of “safe”
operations that cannot produce error messages. For example, it would be a mistake to call str room or
make string at this time, because a call on overflow might lead to an infinite loop.

If final cleanup is bypassed, this program doesn’t bother to close the input files that may still be open.

〈Last-minute procedures 1205 〉 ≡
procedure close files and terminate ;

var k: integer ; { all-purpose index }
lh : integer ; { the length of the TFM header, in words }
lk offset : 0 . . 256; { extra words inserted at beginning of lig kern array }
p: pointer ; { runs through a list of TFM dimensions }
x: scaled ; { a tfm width value being output to the GF file }

begin stat if internal [tracing stats] > 0 then 〈Output statistics about this job 1208 〉; tats
wake up terminal ; 〈Finish the TFM and GF files 1206 〉;
if log opened then

begin wlog cr ; a close (log file); selector ← selector − 2;
if selector = term only then

begin print nl ("Transcript written on "); slow print (log name); print char (".");
end;

end;
end;

See also sections 1209, 1210, and 1212.

This code is used in section 1202.

1206. We want to finish the GF file if and only if it has already been started; this will be true if and only if
gf prev ptr is positive. We want to produce a TFM file if and only if fontmaking is positive. The TFM widths
must be computed if there’s a GF file, even if there’s going to be no TFM file.

We reclaim all of the variable-size memory at this point, so that there is no chance of another memory
overflow after the memory capacity has already been exceeded.

〈Finish the TFM and GF files 1206 〉 ≡
if (gf prev ptr > 0) ∨ (internal [fontmaking] > 0) then

begin 〈Make the dynamic memory into one big available node 1207 〉;
〈Massage the TFM widths 1124 〉;
fix design size ; fix check sum ;
if internal [fontmaking] > 0 then

begin 〈Massage the TFM heights, depths, and italic corrections 1126 〉;
internal [fontmaking]← 0; { avoid loop in case of fatal error }
〈Finish the TFM file 1134 〉;
end;

if gf prev ptr > 0 then 〈Finish the GF file 1182 〉;
end

This code is used in section 1205.

1207. 〈Make the dynamic memory into one big available node 1207 〉 ≡
rover ← lo mem stat max + 1; link (rover)← empty flag ; lo mem max ← hi mem min − 1;
if lo mem max − rover > max halfword then lo mem max ← max halfword + rover ;
node size (rover)← lo mem max − rover ; llink (rover)← rover ; rlink (rover)← rover ;
link (lo mem max)← null ; info(lo mem max)← null

This code is used in section 1206.

§1208 METAFONT PART 49: THE MAIN PROGRAM 449

1208. The present section goes directly to the log file instead of using print commands, because there’s
no need for these strings to take up str pool memory when a non-stat version of METAFONT is being used.

〈Output statistics about this job 1208 〉 ≡
if log opened then

begin wlog ln (´ ´); wlog ln (´Here is how much of METAFONT´´s memory´, ´ you used:´);
wlog (´ ´,max str ptr − init str ptr : 1, ´ string´);
if max str ptr 6= init str ptr + 1 then wlog (´s´);
wlog ln (´ out of ´,max strings − init str ptr : 1);
wlog ln (´ ´,max pool ptr − init pool ptr : 1, ´ string characters out of ´,

pool size − init pool ptr : 1);
wlog ln (´ ´, lo mem max −mem min + mem end − hi mem min + 2 : 1,

´ words of memory out of ´,mem end + 1−mem min : 1);
wlog ln (´ ´, st count : 1, ´ symbolic tokens out of ´, hash size : 1);
wlog ln (´ ´,max in stack : 1, ´i,´, int ptr : 1, ´n,´,max rounding ptr : 1, ´r,´,

max param stack : 1, ´p,´,max buf stack + 1 : 1, ´b stack positions out of ´, stack size : 1,
´i,´,max internal : 1, ´n,´,max wiggle : 1, ´r,´, param size : 1, ´p,´, buf size : 1, ´b´);

end

This code is used in section 1205.

450 PART 49: THE MAIN PROGRAM METAFONT §1209

1209. We get to the final cleanup routine when end or dump has been scanned.

〈Last-minute procedures 1205 〉 +≡
procedure final cleanup ;

label exit ;
var c: small number ; { 0 for end, 1 for dump }
begin c← cur mod ;
if job name = 0 then open log file ;
while input ptr > 0 do

if token state then end token list else end file reading ;
while loop ptr 6= null do stop iteration ;
while open parens > 0 do

begin print (")"); decr (open parens);
end;

while cond ptr 6= null do
begin print nl ("(end occurred when ");
print cmd mod (fi or else , cur if); { ‘if’ or ‘elseif’ or ‘else’ }
if if line 6= 0 then

begin print (" on line "); print int (if line);
end;

print (" was incomplete)"); if line ← if line field (cond ptr); cur if ← name type (cond ptr);
loop ptr ← cond ptr ; cond ptr ← link (cond ptr); free node (loop ptr , if node size);
end;

if history 6= spotless then
if ((history = warning issued) ∨ (interaction < error stop mode)) then

if selector = term and log then
begin selector ← term only ;
print nl ("(see the transcript file for additional information)");
selector ← term and log ;
end;

if c = 1 then
begin init store base file ; return; tini
print nl ("(dump is performed only by INIMF)"); return;
end;

exit : end;

1210. 〈Last-minute procedures 1205 〉 +≡
init procedure init prim ; { initialize all the primitives }
begin 〈Put each of METAFONT’s primitives into the hash table 192 〉;
end;

procedure init tab ; { initialize other tables }
var k: integer ; { all-purpose index }
begin 〈 Initialize table entries (done by INIMF only) 176 〉
end;
tini

§1211 METAFONT PART 49: THE MAIN PROGRAM 451

1211. When we begin the following code, METAFONT’s tables may still contain garbage; the strings might
not even be present. Thus we must proceed cautiously to get bootstrapped in.

But when we finish this part of the program, METAFONT is ready to call on the main control routine to
do its work.

〈Get the first line of input and prepare to start 1211 〉 ≡
begin 〈 Initialize the input routines 657 〉;
if (base ident = 0) ∨ (buffer [loc] = "&") then

begin if base ident 6= 0 then initialize ; { erase preloaded base }
if ¬open base file then goto final end ;
if ¬load base file then

begin w close (base file); goto final end ;
end;

w close (base file);
while (loc < limit) ∧ (buffer [loc] = " ") do incr (loc);
end;

buffer [limit]← "%";
fix date and time ; init randoms (sys time + sys day ∗ unity);
〈 Initialize the print selector based on interaction 70 〉;
if loc < limit then

if buffer [loc] 6= "\" then start input ; { input assumed }
end

This code is used in section 1204.

452 PART 50: DEBUGGING METAFONT §1212

1212. Debugging. Once METAFONT is working, you should be able to diagnose most errors with the
show commands and other diagnostic features. But for the initial stages of debugging, and for the revelation
of really deep mysteries, you can compile METAFONT with a few more aids, including the Pascal runtime
checks and its debugger. An additional routine called debug help will also come into play when you type ‘D’
after an error message; debug help also occurs just before a fatal error causes METAFONT to succumb.

The interface to debug help is primitive, but it is good enough when used with a Pascal debugger that
allows you to set breakpoints and to read variables and change their values. After getting the prompt
‘debug #’, you type either a negative number (this exits debug help), or zero (this goes to a location where
you can set a breakpoint, thereby entering into dialog with the Pascal debugger), or a positive number m
followed by an argument n. The meaning of m and n will be clear from the program below. (If m = 13,
there is an additional argument, l.)

define breakpoint = 888 { place where a breakpoint is desirable }
〈Last-minute procedures 1205 〉 +≡

debug procedure debug help ; { routine to display various things }
label breakpoint , exit ;
var k, l,m, n: integer ;
begin clear terminal ;
loop

begin wake up terminal ; print nl ("debug # (−1 to exit):"); update terminal ; read (term in ,m);
if m < 0 then return
else if m = 0 then

begin goto breakpoint ;
{ go to every declared label at least once }

breakpoint : m← 0; @{´BREAKPOINT´@}

end
else begin read (term in , n);

case m of
〈Numbered cases for debug help 1213 〉
othercases print ("?")
endcases;
end;

end;
exit : end;

gubed

§1213 METAFONT PART 50: DEBUGGING 453

1213. 〈Numbered cases for debug help 1213 〉 ≡
1: print word (mem [n]); { display mem [n] in all forms }
2: print int (info(n));
3: print int (link (n));
4: begin print int (eq type (n)); print char (":"); print int (equiv (n));

end;
5: print variable name (n);
6: print int (internal [n]);
7: do show dependencies ;
9: show token list (n,null , 100000, 0);
10: slow print (n);
11: check mem (n > 0); { check wellformedness; print new busy locations if n > 0 }
12: search mem (n); { look for pointers to n }
13: begin read (term in , l); print cmd mod (n, l);

end;
14: for k ← 0 to n do print (buffer [k]);
15: panicking ← ¬panicking ;

This code is used in section 1212.

454 PART 51: SYSTEM-DEPENDENT CHANGES METAFONT §1214

1214. System-dependent changes. This section should be replaced, if necessary, by any special
modifications of the program that are necessary to make METAFONT work at a particular installation.
It is usually best to design your change file so that all changes to previous sections preserve the section
numbering; then everybody’s version will be consistent with the published program. More extensive changes,
which introduce new sections, can be inserted here; then only the index itself will get a new section number.

§1215 METAFONT PART 52: INDEX 455

1215. Index. Here is where you can find all uses of each identifier in the program, with underlined
entries pointing to where the identifier was defined. If the identifier is only one letter long, however, you get
to see only the underlined entries. All references are to section numbers instead of page numbers.

This index also lists error messages and other aspects of the program that you might want to look up some
day. For example, the entry for “system dependencies” lists all sections that should receive special attention
from people who are installing METAFONT in a new operating environment. A list of various things that
can’t happen appears under “this can’t happen”. Approximately 25 sections are listed under “inner loop”;
these account for more than 60% of METAFONT’s running time, exclusive of input and output.

& primitive: 893.
! : 68, 807.
* primitive: 893.
** : 36, 788.
* : 679.
+ primitive: 893.
++ primitive: 893.
+−+ primitive: 893.
, primitive: 211.
− primitive: 893.
−> : 227.
. token: 669.
.. primitive: 211.
/ primitive: 893.
: primitive: 211.
:: primitive: 211.
||: primitive: 211.
:= primitive: 211.
; primitive: 211.
< primitive: 893.
<= primitive: 893.
<> primitive: 893.
= primitive: 893.
=:|> primitive: 1108.
|=:> primitive: 1108.
|=:|>> primitive: 1108.
|=:|> primitive: 1108.
=:| primitive: 1108.
|=:| primitive: 1108.
|=: primitive: 1108.
=: primitive: 1108.
=> : 682.
> primitive: 893.
>= primitive: 893.
>> : 807, 1040.
> : 398, 1041.
?? : 261, 263.
??? : 59, 60, 257, 258.
? : 78, 638.
[primitive: 211.
] primitive: 211.
{ primitive: 211.
\ primitive: 211.
: 603.

: 817.
: 613.
#@ primitive: 688.
@# primitive: 688.
@ primitive: 688.
@ Octant... : 509.
@ retrograde line... : 510.
@ transition line... : 515, 521.
} primitive: 211.
a: 47, 102, 117, 124, 126, 321, 391, 429, 431, 433,

440, 568, 722, 773, 774, 778, 976, 977, 978, 1154.
a font metric dimension... : 1140.
A group...never ended : 832.
A primary expression... : 823.
A secondary expression... : 862.
A statement can’t begin with x : 990.
A tertiary expression... : 864.
a close : 27, 51, 655, 1205.
a make name string : 780, 788, 793.
a minus b : 865, 866.
a open in : 26, 51, 793.
a open out : 26, 788.
a plus b : 865, 866.
a tension : 296.
aa : 286, 288, 290, 291, 301, 321, 322, 440,

444, 445, 446.
aaa : 321, 322.
ab vs cd : 117, 152, 300, 306, 317, 375, 376, 479,

488, 502, 516, 522, 546, 548, 549, 943, 949.
abnegate : 390, 413, 421.
abort find : 242, 243.
abs : 65, 124, 126, 150, 151, 152, 260, 288, 289,

292, 294, 295, 299, 300, 302, 321, 326, 362, 378,
404, 408, 426, 433, 434, 437, 441, 445, 457, 459,
479, 496, 498, 502, 529, 533, 540, 543, 589, 591,
595, 596, 598, 599, 600, 603, 611, 612, 615, 616,
812, 814, 837, 866, 915, 943, 949, 965, 1008,
1056, 1098, 1129, 1140, 1182.

absorbing : 659, 664, 665, 730.
acc : 116, 286, 290.
add mac ref : 226, 720, 845, 862, 864, 868, 1035.
add mult dep : 971, 972.
add or subtract : 929, 930, 936, 939.
add pen ref : 487, 621, 855, 1063.

456 PART 52: INDEX METAFONT §1215

add str ref : 42, 621, 678, 855, 1083.
addto primitive: 211.
add to command : 186, 211, 212, 1058.
add to type : 1059, 1064.
after : 426, 427, 429, 436, 439, 440, 444, 446.
all safe : 426, 440, 446.
alpha : 296, 433, 436, 439, 440, 444, 527, 528,

529, 530, 533.
alpha file : 24, 26, 27, 30, 31, 50, 54, 631, 780.
already there : 577, 578, 583, 584.
also primitive: 1052.
also code : 403, 1052, 1059.
ampersand : 186, 868, 869, 874, 886, 887, 891,

893, 894.
An expression... : 868.
and primitive: 893.
and command : 186, 882, 884, 893, 894.
and op : 189, 893, 940.
angle : 106, 137, 139, 144, 145, 256, 279, 283,

527, 542, 865, 875.
angle(0,0)...zero : 140.
angle primitive: 893.
angle op : 189, 893, 907.
app lc hex : 48.
append char : 41, 48, 52, 58, 207, 671, 771, 780,

897, 912, 976, 977.
append to name : 774, 778.
appr t : 556, 557.
appr tt : 556, 557.
area delimiter : 768, 770, 771, 772.
arg list : 719, 720, 721, 724, 725, 726, 728, 734, 736.
arith error : 97, 98, 99, 100, 107, 109, 112, 114,

124, 135, 269, 270.
Arithmetic overflow : 99.
ASCII code: 17.
ASCII primitive: 893.
ASCII code : 18, 19, 20, 28, 29, 30, 37, 41, 54, 58,

77, 198, 667, 771, 774, 778, 913.
ASCII op : 189, 893, 912, 913.
assignment : 186, 211, 212, 693, 733, 755, 821,

841, 868, 993, 995, 996, 1021, 1035.
at primitive: 211.
at least : 186, 211, 212, 882.
atleast primitive: 211, 256.
at token : 186, 211, 212, 1073.
attr : 188, 229, 236, 239, 240, 245.
attr head : 228, 229, 239, 241, 242, 244, 245,

246, 247, 850, 1047.
attr loc : 229, 236, 239, 241, 244, 245, 246, 850.
attr loc loc : 229, 241.
attr node size : 229, 239, 241, 245, 247.
autorounding : 190, 192, 193, 402.

autorounding primitive: 192.
avail : 161, 163, 164, 165, 176, 177, 181, 1194, 1195.
AVAIL list clobbered... : 181.
axis : 393, 459, 507, 517, 519.
b: 124, 126, 321, 391, 429, 431, 433, 440, 568, 580,

723, 778, 913, 919, 976, 977, 978, 1072, 1154.
b close : 27, 1134, 1182.
b make name string : 780, 791, 1134.
b open out : 26, 791, 1134.
b tension : 296.
back error : 653, 693, 703, 713, 726, 727, 734,

735, 747, 755, 756, 765, 820, 832, 839, 859,
861, 875, 878, 881, 990, 991, 1021, 1032, 1034,
1035, 1106, 1107, 1113.

back expr : 847, 848.
back input : 652, 653, 715, 716, 733, 751, 824,

825, 837, 841, 847, 854, 862, 864, 868, 881,
1012, 1034, 1107, 1204.

back list : 649, 652, 662, 715, 848.
backed up : 632, 635, 636, 638, 649, 650.
backpointers: 1147.
Backwards path... : 1068.
BAD : 219.
bad : 13, 14, 154, 204, 214, 310, 553, 777, 1204.
Bad culling amounts : 1074.
Bad flag... : 183.
Bad PREVDEP... : 617.
Bad window number : 1071.
bad binary : 923, 929, 936, 940, 941, 948, 951,

952, 975, 983, 988.
bad char : 913, 914.
bad exp : 823, 824, 862, 864, 868.
bad for : 754, 765.
bad pool : 51, 52, 53.
bad subscript : 846, 849, 861.
bad unary : 898, 901, 903, 905, 906, 907, 909,

912, 915, 917, 921.
bad vardef : 175, 698, 701, 702.
balance : 685, 687, 730, 731, 732.
banner : 2, 61, 790, 1183.
base : 374, 375, 376, 697, 703, 704.
base area length : 775, 779.
base default length : 775, 777, 778, 779.
base ext length : 775, 778, 779.
base extension : 775, 784, 1200.
base file : 779, 1188, 1189, 1191, 1199, 1200,

1201, 1211.
base ident : 34, 61, 790, 1183, 1184, 1185, 1198,

1199, 1200, 1211.
batch mode : 68, 70, 81, 86, 87, 88, 789, 1024,

1025, 1199, 1200.
batchmode primitive: 1024.

§1215 METAFONT PART 52: INDEX 457

bb : 286, 287, 288, 291, 440, 444, 445, 446.
bc : 1088, 1089, 1091, 1093, 1096, 1097, 1099,

1124, 1126, 1132, 1135, 1136.
bch label : 1096, 1097, 1111, 1137, 1141.
bchar : 1096, 1137, 1139.
bchar label : 186, 211, 212, 1107.
be careful : 107, 108, 109, 112, 114, 115, 119.
before : 426, 427, 429, 436, 439, 444, 446.
before and after : 429, 434, 437, 441.
begin: 7, 8.
begin diagnostic : 71, 195, 197, 254, 603, 613,

626, 721, 728, 734, 750, 762, 817, 902, 924,
945, 997, 998.

begin edge tracing : 372, 465, 506.
begin file reading : 73, 82, 654, 717, 793, 897.
begin group : 186, 211, 212, 732, 823.
begingroup primitive: 211.
begin iteration : 706, 707, 755, 764.
begin name : 767, 770, 781, 787.
begin pseudoprint : 642, 644, 645.
begin token list : 649, 677, 736, 760.
Beginning to dump... : 1200.
Bernshtĕın, Sergĕı Natanovich: 303.
beta : 296, 440, 444, 527, 528, 529, 530, 533, 536.
Bézier, Pierre Etienne: 255.
bg loc : 211, 698, 699, 1198, 1199.
big : 124, 126.
big node size : 230, 231, 232, 803, 810, 857, 919,

928, 939, 966, 1005.
big trans : 952, 966.
BigEndian order: 1088.
bilin1 : 967, 968, 972.
bilin2 : 970, 972.
bilin3 : 973, 974.
binary mac : 862, 863, 864, 868.
bisect ptr : 309, 311, 312, 314, 553, 558, 559, 561.
bisect stack : 309, 553.
bistack size : 11, 309, 310, 553, 557.
black : 565, 568, 577, 579, 580, 583, 584, 1143,

1144.
blank line : 195.
blank rectangle : 564, 566, 567, 569, 571, 572,

574, 577.
boc : 1142, 1144, 1145, 1146, 1147, 1149, 1161,

1162.
boc c : 1161, 1162, 1165.
boc p : 1161, 1162, 1165.
boc1 : 1144, 1145, 1161.
boolean : 26, 30, 36, 45, 47, 71, 74, 91, 97, 107,

109, 112, 114, 124, 126, 178, 180, 195, 197, 238,
246, 249, 257, 332, 406, 426, 440, 453, 455, 473,
497, 527, 564, 569, 572, 577, 592, 599, 600, 621,

661, 680, 771, 779, 782, 801, 868, 899, 913, 943,
977, 978, 1006, 1054, 1072, 1084, 1096, 1187.

boolean primitive: 1013.
boolean reset : 906, 937, 1181.
boolean type : 187, 216, 248, 621, 798, 799, 802,

809, 855, 892, 895, 905, 906, 918, 919, 920,
936, 937, 940, 1003, 1013, 1181.

bot : 1094.
bot row : 567, 572, 574, 577.
boundary char : 190, 192, 193, 1097, 1137.
boundarychar primitive: 192.
break : 33.
break in : 33.
breakpoint : 1212.
Brocot, Achille: 526.
buf size : 11, 29, 30, 34, 66, 154, 641, 654, 667,

682, 707, 717, 779, 786, 788, 1208.
buffer : 29, 30, 35, 36, 45, 66, 78, 82, 83, 205, 206,

207, 208, 210, 629, 630, 641, 644, 667, 669, 671,
673, 674, 679, 681, 682, 717, 778, 779, 781,
786, 787, 788, 794, 897, 1211, 1213.

Buffer size exceeded : 34.
bypass eoln : 30.
byte file : 24, 26, 27, 780, 791, 1087.
b0 : 153, 156, 157, 214, 255, 1093, 1094, 1133,

1192, 1193.
b1 : 153, 156, 157, 214, 255, 1093, 1094, 1131,

1132, 1133, 1192, 1193.
b2 : 153, 156, 157, 1093, 1094, 1131, 1132, 1133,

1192, 1193.
b3 : 153, 156, 157, 1093, 1094, 1131, 1132, 1133,

1192, 1193.
b4 : 1131, 1132.
c: 47, 77, 189, 210, 217, 391, 440, 491, 527, 567,

568, 625, 626, 667, 697, 771, 774, 778, 823, 862,
863, 864, 868, 895, 898, 901, 910, 913, 919, 922,
923, 930, 953, 960, 962, 963, 966, 985, 1070,
1072, 1103, 1104, 1106, 1165, 1209.

cancel skips : 1110, 1139.
CAPSULE : 237.
capsule : 188, 214, 219, 233, 237, 238, 619, 799,

806, 830, 856, 857, 911, 931, 982.
capsule token : 186, 651, 676, 678, 823, 1042.
cat : 975, 976.
cc : 286, 288, 289, 290, 294, 295, 440, 444, 445,

446, 1106.
cf : 116, 297, 298, 299, 300, 301.
change if limit : 746, 748.
char : 19, 25, 775, 788.
char primitive: 893.
char class : 22, 198, 199, 217, 223, 669, 673, 674.
char code : 190, 192, 193, 1070.

458 PART 52: INDEX METAFONT §1215

charcode primitive: 192.
char dp : 190, 192, 193, 1099, 1126.
chardp primitive: 192.
char dx : 190, 192, 193, 1099.
chardx primitive: 192.
char dy : 190, 192, 193, 1099.
chardy primitive: 192.
char exists : 1096, 1097, 1099, 1124, 1126, 1132,

1136, 1181, 1182.
charexists primitive: 893.
char exists op : 189, 893, 906.
char ext : 190, 192, 193, 1165.
charext primitive: 192.
char ht : 190, 192, 193, 1099, 1126.
charht primitive: 192.
char ic : 190, 192, 193, 1099, 1126.
charic primitive: 192.
char info : 1091.
char info word : 1089, 1091, 1092.
charlist primitive: 1101.
char list code : 1101, 1102, 1106.
char loc : 1144, 1145, 1147, 1182.
char loc0 : 1144.
char op : 189, 893, 912.
char ptr : 1149, 1163, 1165, 1182.
char remainder : 1096, 1097, 1104, 1136, 1138.
char tag : 1096, 1097, 1104, 1105, 1136.
char wd : 190, 192, 193, 1099, 1124.
charwd primitive: 192.
Character c is already... : 1105.
character set dependencies: 22, 49.
check sum: 53, 1090, 1131, 1146.
check arith : 99, 269, 815, 823, 837, 895, 898,

922, 1001.
check colon : 747, 748.
check delimiter : 703, 826, 830, 1032.
check equals : 693, 694, 697.
check gf : 1163, 1165, 1177, 1179.
check interrupt : 91, 650, 669, 825.
check mem : 178, 180, 617, 825, 1213.
check outer validity : 661, 668, 681.
Chinese characters: 1147.
chop path : 975, 978.
chop string : 975, 977.
chopped : 402, 404.
chr : 19, 20, 23.
class : 217, 220, 221, 223, 667, 669.
clear arith : 99.
clear for error prompt : 73, 78, 656, 670, 672.
clear symbol : 249, 252, 254, 692, 1011, 1035.
clear terminal : 33, 656, 786, 1212.
clear the list : 1117, 1124, 1126.

clobbered : 180, 181, 182.
CLOBBERED : 218.
clockwise : 452, 453, 454, 458.
close : 27.
close files and terminate : 73, 76, 1204, 1205.
cmbase : 1203.
coef bound : 592, 595, 596, 598, 599, 600, 932,

943, 949.
collective subscript : 229, 239, 241, 244, 246,

850, 1012.
colon : 186, 211, 212, 747, 756, 764, 1106, 1107,

1111, 1113.
comma : 186, 211, 212, 704, 725, 726, 727, 764,

826, 859, 878, 1015, 1016, 1029, 1033, 1036,
1040, 1044, 1049, 1107, 1113, 1114, 1115.

command code : 186, 685, 694, 1072.
common ending : 15, 865, 1071.
compromise : 432, 435, 438, 443.
concatenate : 189, 893, 975.
cond ptr : 738, 739, 744, 745, 746, 748, 749, 1209.
conditional : 706, 707, 748.
confusion : 90, 107, 114, 216, 236, 239, 311, 362,

378, 517, 523, 589, 655, 746, 802, 809, 855.
const dependency : 607, 608, 969, 972, 1007.
constant x : 406, 407, 413, 417.
continue : 15, 77, 78, 79, 83, 84, 311, 314, 402,

406, 417, 447, 556, 755, 764, 862, 864, 868,
1106, 1107, 1111.

continue path : 868, 869.
contour primitive: 1052.
contour code : 403, 917, 1052, 1053.
control? : 258.
controls : 186, 211, 212, 881.
controls primitive: 211.
coord node size : 175, 472, 476, 481, 487.
coordinates, explained: 576.
copied : 1006, 1009.
copy dep list : 609, 855, 858, 947.
copy edges : 334, 621, 855.
copy knot : 264, 870, 885, 980, 981.
copy path : 265, 621, 855.
cosd primitive: 893.
cos d op : 189, 893, 906.
cosine : 280, 281.
crossing point : 391, 392, 407, 411, 413, 415, 420,

424, 497, 499, 503, 545, 547, 549.
cs : 1146.
ct : 116, 297, 298, 299, 300, 301.
cubic intersection : 555, 556, 557, 562.
cull primitive: 211.
cull command : 186, 211, 212, 1069.
cull edges : 348, 1074.

§1215 METAFONT PART 52: INDEX 459

cull op : 186, 1052, 1053, 1074.
cur area : 767, 772, 784, 786, 793, 795.
cur cmd : 83, 186, 624, 626, 651, 652, 658, 667,

668, 671, 675, 676, 678, 685, 686, 691, 693, 697,
700, 703, 704, 705, 706, 707, 713, 715, 718,
725, 726, 727, 731, 732, 733, 734, 735, 742,
743, 747, 755, 756, 764, 765, 796, 823, 824,
826, 832, 837, 839, 841, 844, 846, 847, 851,
852, 859, 860, 861, 862, 864, 868, 869, 874,
875, 878, 881, 882, 884, 989, 990, 991, 992,
993, 995, 996, 1011, 1012, 1015, 1016, 1017,
1021, 1029, 1032, 1033, 1034, 1035, 1036, 1040,
1041, 1042, 1044, 1049, 1051, 1062, 1072, 1074,
1106, 1107, 1111, 1113, 1114, 1115.

cur edges : 327, 328, 329, 330, 331, 332, 333, 336,
337, 340, 341, 342, 343, 348, 352, 353, 354,
355, 356, 364, 365, 366, 367, 373, 374, 375,
376, 377, 378, 381, 382, 383, 384, 465, 577,
581, 804, 929, 963, 964, 965, 1057, 1061, 1064,
1070, 1071, 1074, 1167, 1169, 1172.

cur exp : 603, 615, 651, 713, 716, 717, 718, 726,
728, 730, 748, 750, 760, 761, 764, 765, 796, 797,
798, 799, 800, 801, 808, 816, 819, 823, 827, 829,
830, 833, 837, 840, 841, 846, 852, 855, 856, 857,
860, 861, 863, 865, 870, 872, 875, 876, 877, 878,
879, 880, 882, 883, 885, 891, 895, 896, 897, 898,
901, 903, 905, 906, 907, 908, 910, 912, 913, 915,
916, 917, 919, 920, 921, 923, 927, 929, 930, 931,
935, 936, 937, 938, 939, 940, 941, 942, 943, 944,
946, 948, 949, 951, 953, 955, 956, 962, 963, 964,
967, 968, 970, 972, 973, 976, 977, 978, 979, 984,
985, 988, 992, 994, 995, 996, 999, 1003, 1004,
1005, 1006, 1009, 1022, 1056, 1059, 1061, 1062,
1063, 1070, 1071, 1072, 1073, 1074, 1082, 1083,
1086, 1103, 1106, 1112, 1115, 1177, 1179, 1181.

cur ext : 767, 772, 784, 786, 793, 795.
cur file : 631, 655, 681, 793, 794.
cur gran : 430, 431, 432, 433, 442.
cur if : 738, 739, 744, 745, 748, 1209.
cur input : 34, 35, 82, 628, 629, 635, 647, 648, 788.
cur length : 40, 1163.
cur min m : 1165, 1172, 1173.
cur mod : 83, 624, 626, 651, 652, 658, 667, 668,

671, 675, 676, 678, 687, 690, 691, 694, 697, 700,
703, 705, 707, 711, 718, 726, 727, 731, 735, 742,
743, 748, 749, 751, 755, 796, 823, 824, 826, 833,
834, 835, 837, 839, 841, 846, 847, 851, 860, 861,
862, 864, 868, 990, 992, 1011, 1015, 1023, 1029,
1032, 1034, 1035, 1040, 1041, 1042, 1049, 1051,
1054, 1059, 1074, 1082, 1106, 1112, 1177, 1209.

cur name : 767, 772, 784, 786, 793, 795.
cur path type : 403, 435, 438, 442, 917, 1064, 1068.

cur pen : 402, 403, 435, 438, 442, 506, 917, 1062,
1063, 1064, 1068.

cur rounding ptr : 426, 427, 429, 433, 436, 439,
440, 444, 446.

cur spec : 394, 399, 400, 402, 403, 404, 406, 407,
417, 419, 421, 433, 440, 447, 450, 452.

cur sym : 83, 210, 211, 624, 651, 652, 658, 661,
662, 663, 664, 667, 668, 669, 676, 677, 683, 685,
686, 690, 691, 692, 694, 700, 703, 704, 705, 707,
718, 726, 735, 740, 751, 755, 796, 823, 824,
826, 837, 846, 847, 851, 860, 862, 864, 868,
893, 1011, 1012, 1029, 1031, 1032, 1033, 1034,
1035, 1036, 1041, 1049, 1076, 1204.

cur t : 555, 556, 558, 559, 560, 561, 562, 988.
cur tok : 651, 652, 685, 715, 730, 844.
cur tt : 555, 556, 558, 559, 560, 561, 562, 988.
cur type : 603, 615, 651, 716, 718, 726, 728, 730,

760, 764, 765, 796, 798, 799, 800, 801, 808, 816,
819, 823, 826, 827, 830, 832, 833, 837, 840, 841,
846, 852, 855, 856, 857, 860, 861, 864, 865, 870,
872, 876, 877, 878, 883, 885, 891, 892, 895, 896,
897, 898, 901, 903, 905, 906, 907, 908, 909, 910,
912, 915, 917, 918, 919, 920, 921, 923, 927, 929,
930, 931, 934, 935, 936, 937, 939, 940, 941, 942,
944, 946, 948, 951, 953, 955, 960, 962, 967, 970,
973, 975, 982, 983, 988, 989, 992, 993, 995, 996,
999, 1000, 1002, 1003, 1004, 1006, 1009, 1021,
1054, 1059, 1061, 1062, 1070, 1071, 1072, 1073,
1074, 1082, 1103, 1106, 1112, 1115, 1177, 1181.

cur wt : 327, 372, 373, 374, 375, 376, 378, 381,
382, 383, 384, 465, 1064, 1068.

cur x : 387, 388, 389, 390, 394, 413, 421, 445, 447,
451, 454, 457, 481, 485, 488, 489, 510, 871, 872,
873, 877, 878, 884, 984, 1072, 1073, 1074, 1075.

cur y : 387, 388, 389, 390, 394, 413, 421, 445, 447,
451, 454, 457, 481, 485, 488, 489, 510, 871, 872,
873, 877, 878, 884, 984, 1072, 1073, 1074, 1075.

curl : 256, 258, 259, 263, 271, 282, 284, 285, 290,
875, 876, 888, 889, 890, 891.

curl primitive: 211.
curl command : 186, 211, 212, 875.
curl ratio : 294, 295, 296.
curvature: 275.
Curve out of range : 404.
cycle : 186, 823, 869, 893, 894.
cycle spec: 393.
Cycle spec at line... : 394.
cycle primitive: 893.
cycle hit : 868, 869, 886, 891.
cycle op : 189, 893, 920.
c0 : 574, 575, 576, 1073.
c1 : 574, 575, 1073.

460 PART 52: INDEX METAFONT §1215

d: 333, 348, 373, 391, 440, 527, 580, 862, 864, 868,
944, 1118, 1120, 1121, 1128, 1159, 1165.

day : 190, 192, 193, 194, 1163, 1200.

day primitive: 192.

dd : 286, 288, 289, 440, 444, 445, 446.

dead cubics: 402.

debug: 7, 9, 73, 79, 88, 157, 178, 179, 180,
185, 1212.

debug # : 1212.

debug help : 73, 79, 88, 1212.

debugging: 7, 79, 91, 157, 178, 1212.

decimal : 189, 893, 912.

decimal primitive: 893.

Declared variable conflicts... : 1015.

decr : 16, 43, 46, 63, 66, 81, 83, 84, 86, 87, 102,
121, 123, 149, 163, 164, 177, 195, 207, 226, 291,
315, 322, 330, 331, 332, 333, 352, 364, 375, 376,
377, 382, 383, 384, 436, 439, 458, 459, 483, 487,
488, 497, 515, 516, 521, 522, 556, 560, 577, 635,
648, 650, 655, 681, 687, 731, 732, 742, 854,
862, 864, 868, 1051, 1122, 1135, 1138, 1139,
1141, 1163, 1167, 1182, 1194, 1209.

def primitive: 683.

def delims : 1030, 1031.

def ref : 720, 721, 736.

defined macro : 186, 249, 700, 706, 707, 718,
1035, 1041, 1043.

del : 406, 407, 408, 413, 419, 420, 453, 454.

del m : 1144.

del n : 1144.

delete mac ref : 226, 249, 650, 809.

delete pen ref : 487, 808, 809, 1062, 1063.

delete str ref : 43, 216, 691, 743, 808, 809, 976,
977, 1042, 1083.

deletions allowed : 71, 72, 79, 80, 93, 661, 670,
672, 675.

delimiters : 186, 211, 212, 1030.

delimiters primitive: 211.

delta : 103, 279, 281, 288, 328, 329, 330, 331, 342,
343, 366, 367, 378, 381, 382, 383, 384, 527, 530,
531, 533, 534, 535, 968, 974, 1165, 1173, 1174.

delta a : 426.

delta b : 426.

delta x : 279, 281, 292, 293, 299, 301, 302.

delta y : 279, 281, 292, 293, 299, 301, 302.

delx : 280, 282, 374, 375, 376, 511, 516, 522, 552,
553, 556, 557, 558, 559, 560, 561.

dely : 280, 282, 374, 375, 376, 511, 516, 522, 552,
553, 556, 557, 558, 559, 560, 561.

del1 : 406, 407, 408, 409, 413, 414, 419, 420,
421, 423.

del2 : 406, 407, 408, 409, 411, 413, 414, 415, 419,
420, 421, 423, 424.

del3 : 406, 407, 408, 409, 411, 413, 414, 415, 419,
420, 421, 423, 424.

denom : 116, 296, 836, 837.
dep div : 948, 949.
dep final : 592, 594, 597, 601, 606, 607, 608, 609,

615, 818, 819, 829, 855, 856, 858, 971, 972, 1007.
dep finish : 934, 935, 943, 949.
dep head : 175, 587, 588, 604, 606, 614, 617,

812, 1050.
dep list : 585, 587, 604, 605, 606, 614, 617, 798,

799, 801, 803, 811, 812, 816, 818, 819, 827, 855,
858, 903, 930, 931, 932, 935, 943, 947, 949, 959,
968, 969, 971, 972, 1007, 1009, 1050.

dep mult : 942, 943, 944, 946, 968.
dep node size : 587, 595, 596, 597, 598, 599, 600,

601, 603, 605, 607, 608, 609, 612, 615, 616,
818, 819, 829, 855, 858, 1008.

dependent : 187, 216, 248, 585, 587, 588, 589, 590,
594, 595, 596, 597, 599, 600, 601, 603, 610, 612,
613, 615, 798, 799, 800, 801, 802, 808, 809, 812,
813, 815, 816, 817, 818, 819, 829, 855, 857,
858, 900, 903, 930, 932, 943, 949, 969, 1003,
1006, 1007, 1009, 1010, 1050.

depth index : 1091.
design size: 1090, 1095, 1128, 1146.
design size : 190, 192, 193, 1128, 1129, 1182.
designsize primitive: 192.
dest x : 406, 407, 409, 411, 412, 413, 415, 416,

419, 421, 423, 424, 425.
dest y : 406, 407, 411, 412, 413, 414, 415, 416,

419, 421, 423, 424, 425.
diag offset : 442, 443.
diag round : 402, 440.
diagonal : 393, 459, 507, 508, 509, 519, 523.
dig : 54, 63, 64, 102, 674.
digit class : 198, 199, 220, 669, 673, 674.
dimen head : 1124, 1125, 1126, 1136.
dimen out : 1129, 1132, 1136, 1139, 1140.
directiontime primitive: 893.
direction time of : 189, 893, 983.
dirty Pascal: 3, 157, 185, 1203.
discard suffixes : 246.
disp edges : 577, 1071.
disp err : 716, 754, 807, 873, 923, 937, 955, 1002.
disp token : 1041, 1043, 1044, 1049.
disp var : 1046, 1047, 1049.
display primitive: 211.
display command : 186, 211, 212, 1069.
div: 95.
Division by zero : 838, 950.

§1215 METAFONT PART 52: INDEX 461

dm : 1144.

dmax : 404, 406, 408, 419, 453, 457.

do add to : 1058, 1059.

do assignment : 993, 995, 996.

do binary : 834, 837, 839, 859, 862, 864, 868,
893, 922, 966.

do cull : 1069, 1074.

do display : 1069, 1071.

do equation : 993, 995, 996.

do interim : 1033, 1034.

do let : 1033, 1035.

do message : 1081, 1082.

do new internal : 1033, 1036.

do nothing : 16, 33, 57, 58, 79, 146, 216, 223, 249,
669, 707, 794, 808, 809, 919, 957, 1003, 1035.

do nullary : 834, 893, 895.

do open window : 1069, 1073.

do protection : 1026, 1029.

do random seed : 1020, 1021.

do ship out : 1069, 1070.

do show : 1040, 1051.

do show dependencies : 1050, 1051, 1213.

do show stats : 1045, 1051.

do show token : 1044, 1051.

do show var : 1046, 1049, 1051.

do show whatever : 1039, 1051.

do special : 1175, 1177.

do statement : 832, 989, 992, 1017, 1020, 1034.

do tfm command : 1100, 1106.

do type declaration : 992, 1015.

do unary : 834, 835, 893, 898.

done : 15, 47, 53, 124, 125, 126, 127, 177, 257, 269,
272, 311, 317, 344, 345, 346, 347, 348, 349, 354,
358, 366, 368, 374, 375, 378, 381, 382, 383, 384,
394, 402, 452, 458, 477, 479, 488, 491, 502, 506,
512, 518, 527, 531, 532, 539, 546, 547, 548, 577,
578, 584, 594, 597, 604, 605, 609, 635, 650, 667,
673, 685, 687, 730, 731, 732, 742, 748, 749, 755,
764, 765, 781, 786, 787, 793, 809, 812, 823, 835,
837, 839, 840, 841, 852, 860, 868, 881, 919, 922,
930, 932, 936, 953, 955, 957, 958, 959, 1001,
1003, 1004, 1005, 1006, 1007, 1011, 1012, 1049,
1059, 1068, 1106, 1107, 1110, 1165, 1172, 1173.

done1 : 15, 180, 181, 257, 258, 261, 374, 376,
477, 481, 506, 516, 518, 522, 527, 536, 823,
844, 922, 939, 1006, 1009.

done2 : 15, 180, 182, 823, 850.

done3 : 15.

done4 : 15.

done5 : 15.

done6 : 15.

double : 16, 108, 115, 123, 132, 142, 143, 392, 408,
457, 496, 543, 556, 559.

Double−AVAIL list clobbered... : 182.
double colon : 186, 211, 212, 1107.
double dot : 189.
doublepath primitive: 1052.
double path code : 403, 435, 438, 442, 1052, 1053,

1059, 1064, 1068.
Doubly free location... : 182.
drop code : 1052, 1053, 1074, 1075.
dropping primitive: 1052.
dry rot: 90.
ds : 1146.
du : 495, 497, 498.
dual moves : 512, 518.
dump...only by INIMF : 1209.
dump primitive: 1018.
dump four ASCII : 1192.
dump hh : 1188, 1196.
dump int : 1188, 1190, 1192, 1194, 1196, 1198.
dump qqqq : 1188, 1192.
dump wd : 1188, 1194.
dup offset : 476, 483.
dv : 495, 497, 498.
dw : 357, 358.
dx : 378, 380, 381, 382, 383, 384, 477, 479, 480,

494, 495, 501, 502, 1144, 1147.
dx1 : 453, 454, 457.
dx2 : 453, 454, 457.
dy : 477, 479, 480, 495, 501, 502, 1144, 1147.
dyn used : 160, 163, 164, 165, 176, 177, 1045,

1194, 1195.
dy1 : 453, 454, 457.
dy2 : 453, 454, 457.
d0 : 464, 467, 468, 508, 517, 523.
d1 : 463, 464, 467, 468, 508, 517, 523.
e: 773, 774, 786, 1071, 1074.
east edge : 435.
ec : 1088, 1089, 1091, 1093, 1096, 1097, 1099,

1124, 1126, 1132, 1135, 1136.
edge and weight : 378, 381, 382, 383, 384.
edge header size : 326, 334, 385, 895, 964.
edge prep : 329, 366, 375, 376, 380.
edges trans : 952, 963.
ee : 286, 288, 289.
eg loc : 211, 698, 699, 1198, 1199.
eight bits : 24, 63, 624, 1096, 1103, 1131, 1149,

1152, 1163, 1165.
eighth octant : 139, 141, 380, 387, 388, 390, 396,

426, 443, 449, 461, 462.
el gordo : 95, 100, 107, 109, 112, 114, 124, 135,

235, 244, 585, 917, 1118, 1140.

462 PART 52: INDEX METAFONT §1215

else: 10.
else primitive: 740.
else code : 738, 740, 741.
elseif primitive: 740.
else if code : 738, 740, 748.
Emergency stop : 88.
empty edges : 326, 329, 963.
empty flag : 166, 168, 172, 176, 1207.
encapsulate : 855, 856.
end: 7, 8, 10.
end occurred... : 1209.
End of file on the terminal : 36, 66.
end primitive: 1018.
end attr : 175, 229, 239, 247, 1047.
end cycle : 272, 281, 282, 284, 287.
end def : 683, 992.
enddef primitive: 683.
end diagnostic : 195, 254, 257, 332, 372, 394, 473,

603, 613, 626, 721, 728, 734, 750, 762, 817,
902, 924, 945, 997, 998.

end edge tracing : 372, 465, 506.
end file reading : 655, 656, 679, 681, 714, 793,

897, 1209.
end for : 683, 707.
endfor primitive: 683.
end group : 186, 211, 212, 732, 832, 991, 992,

993, 1017.
endinput primitive: 709.
end name : 767, 772, 781, 787.
end of MF : 6, 76, 1204.
end of statement : 186, 732, 991, 1015, 1016.
end round : 463, 464, 467, 508.
end token list : 650, 652, 676, 712, 714, 736,

795, 1209.
endcases: 10.
endgroup primitive: 211.
endpoint : 255, 256, 257, 258, 266, 273, 393, 394,

398, 399, 400, 401, 402, 451, 452, 457, 465,
466, 491, 506, 512, 518, 539, 562, 563, 865,
868, 870, 871, 885, 891, 916, 917, 920, 921,
962, 978, 979, 985, 987, 1064.

Enormous chardp... : 1098.
Enormous charht... : 1098.
Enormous charic... : 1098.
Enormous charwd... : 1098.
Enormous designsize... : 1098.
Enormous number... : 675.
entering the nth octant : 394.
env move : 507, 513, 514, 515, 516, 517, 519,

520, 521, 522, 523.
eoc : 1142, 1144, 1145, 1146, 1149, 1165.
eof : 25, 30, 52, 1199.

eoln : 30, 52.
eq type : 200, 202, 203, 210, 211, 213, 229, 242,

249, 254, 668, 694, 700, 702, 759, 850, 1011,
1029, 1031, 1035, 1036, 1041, 1213.

eqtb : 158, 200, 201, 202, 210, 211, 212, 213,
249, 250, 252, 254, 625, 632, 683, 740, 893,
1196, 1197.

equal to : 189, 893, 936, 937.
equals : 186, 693, 733, 755, 868, 893, 894, 993,

995, 996, 1035.
Equation cannot be performed : 1002.
equiv : 200, 202, 209, 210, 211, 213, 229, 234, 239,

242, 249, 254, 664, 668, 694, 700, 702, 850,
1011, 1015, 1030, 1031, 1035, 1036, 1213.

err help : 74, 75, 85, 1083, 1086.
errhelp primitive: 1079.
err help code : 1079, 1082.
errmessage primitive: 1079.
err message code : 1079, 1080, 1082.
error : 67, 70, 71, 73, 74, 77, 83, 88, 93, 99, 122,

128, 134, 140, 602, 653, 670, 672, 675, 701,
708, 712, 713, 725, 751, 778, 789, 795, 820,
838, 996, 1032, 1051, 1110.

error count : 71, 72, 77, 81, 989, 1051.
error line : 11, 14, 54, 58, 635, 641, 642, 643, 665.
error message issued : 71, 77, 90.
error stop mode : 67, 68, 69, 77, 78, 88, 93, 398,

807, 1024, 1051, 1086, 1199, 1209.
errorstopmode primitive: 1024.
erstat : 26.
eta corr : 306, 311, 313, 314, 317.
ETC : 217, 227.
everyjob primitive: 211.
every job command : 186, 211, 212, 1076.
excess : 1119, 1120, 1122.
exit : 15, 16, 36, 46, 47, 77, 117, 167, 217, 227,

235, 242, 246, 265, 266, 284, 311, 391, 406,
488, 497, 539, 556, 562, 589, 622, 667, 746,
748, 760, 779, 868, 899, 904, 922, 928, 930,
943, 949, 953, 962, 963, 966, 1032, 1070, 1071,
1073, 1074, 1131, 1161, 1187, 1209, 1212.

exitif primitive: 211.
exit test : 186, 211, 212, 706, 707.
exp err : 807, 830, 849, 872, 876, 878, 883, 892,

901, 914, 923, 937, 950, 960, 993, 996, 999,
1002, 1021, 1055, 1060, 1061, 1062, 1071, 1082,
1103, 1106, 1112, 1115, 1178.

expand : 707, 715, 718.
expand after : 186, 211, 212, 706, 707.
expandafter primitive: 211.
explicit : 256, 258, 261, 262, 266, 271, 273, 280,

282, 299, 302, 393, 407, 486, 563, 874, 880,

§1215 METAFONT PART 52: INDEX 463

884, 1066.
EXPR : 222.
expr primitive: 695.
expr base : 214, 218, 222, 676, 683, 684, 694, 695,

696, 697, 703, 705, 725, 727, 755, 764.
expr macro : 226, 227, 705, 733.
expression binary : 186, 893, 894.
expression tertiary macro : 186, 249, 683, 868,

1035, 1043.
ext bot : 1094, 1113.
ext delimiter : 768, 770, 771, 772.
ext mid : 1094, 1113.
ext rep : 1094, 1113.
ext tag : 1092, 1096, 1105, 1113.
ext top : 1094, 1113.
exten : 1092, 1094, 1096, 1140.
extensible primitive: 1101.
extensible code : 1101, 1102, 1106.
extensible recipe : 1089, 1094.
extensions to METAFONT: 2.
Extra ‘endfor’ : 708.
Extra ‘endgroup’ : 1017.
Extra else : 751.
Extra elseif : 751.
Extra fi : 751.
Extra tokens will be flushed : 991.
extra space : 1095.
extra space code : 1095.
extras : 362, 363.
f : 26, 27, 30, 107, 109, 112, 114, 398, 594,

667, 780, 1165.
false : 26, 30, 36, 45, 47, 51, 71, 75, 83, 84, 93, 98,

99, 107, 110, 114, 124, 126, 179, 180, 181, 182,
254, 269, 270, 407, 426, 446, 452, 454, 455,
456, 474, 497, 503, 505, 530, 564, 570, 573,
577, 592, 593, 600, 603, 604, 613, 626, 653,
657, 661, 670, 672, 675, 680, 681, 692, 721,
728, 734, 750, 762, 767, 771, 779, 783, 794,
801, 804, 817, 825, 869, 899, 902, 913, 924,
944, 945, 977, 978, 997, 998, 1003, 1009, 1010,
1011, 1015, 1035, 1045, 1054, 1064, 1072, 1085,
1086, 1097, 1107, 1137, 1138, 1187.

false primitive: 893.
false code : 189, 798, 892, 893, 895, 905, 906,

918, 919, 920, 937, 940.
fast case down : 378, 380.
fast case up : 378, 380.
fast get avail : 165, 381, 382, 383, 384, 651, 844.
Fatal base file error : 1187.
fatal error : 66, 88, 679, 714, 786, 789, 897.
fatal error stop : 71, 72, 77, 88, 1204.
ff : 286, 287, 289, 290, 295, 296, 302.

fi primitive: 740.
fi code : 738, 740, 741, 742, 748, 749, 751.
fi or else : 186, 706, 707, 738, 740, 741, 742,

751, 1209.
fifth octant : 139, 141, 380, 387, 388, 390, 396,

426, 443, 449, 461, 462.
File ended while scanning... : 663.
File names can’t... : 795.
file name size : 11, 25, 774, 777, 778, 780.
file offset : 54, 55, 57, 58, 62, 333, 372, 793,

1048, 1165.
file ptr : 79, 80, 634, 635, 636, 637.
file state : 632, 635, 636, 656, 667, 714, 795.
fill envelope : 481, 506, 518, 1064.
fill spec : 465, 506, 511, 1064.
fillin : 190, 192, 193, 525, 533.
fillin primitive: 192.
fin numeric token : 667, 669, 673.
fin offset prep : 497, 503, 504, 505.
final cleanup : 1204, 1205, 1209.
final end : 6, 34, 657, 1204, 1211.
final node : 610, 612, 615.
final value : 752, 761, 765.
find direction time : 539, 540, 984.
find edges var : 1057, 1061, 1064, 1070, 1071, 1074.
find offset : 488, 984.
find point : 983, 985.
find variable : 242, 700, 852, 1000, 1015, 1057.
finish path : 868, 869, 874.
firm up the line : 666, 681, 682, 794.
first : 29, 30, 34, 35, 36, 66, 78, 82, 83, 654, 655,

657, 679, 681, 682, 717, 787, 794.
first count : 54, 641, 642, 643.
first octant : 139, 141, 378, 379, 380, 387, 388, 390,

395, 396, 406, 407, 409, 411, 426, 435, 443, 448,
449, 461, 462, 473, 480, 484, 488, 489.

first text char : 19, 23.
first x : 406, 407, 440, 444, 445.
first y : 406, 407, 440, 444, 445.
fix check sum : 1131, 1206.
fix date and time : 194, 1204, 1211.
fix dependencies : 604, 610, 815, 935, 968, 971.
fix design size : 1128, 1206.
fix needed : 592, 593, 595, 596, 598, 599, 600, 604,

610, 815, 932, 935, 968, 971.
fix offset : 328, 329, 965.
fix word : 1089, 1090, 1095, 1129, 1147.
floor primitive: 893.
floor op : 189, 893, 906.
floor scaled : 119, 516, 522, 906.
floor unscaled : 119, 306, 463, 513, 515, 516, 519,

521, 522, 1074.

464 PART 52: INDEX METAFONT §1215

flush below variable : 246, 247, 249.
flush cur exp : 717, 808, 820, 872, 907, 913, 915,

917, 918, 919, 920, 921, 935, 936, 938, 956,
962, 982, 984, 993, 1040, 1061, 1063, 1070,
1072, 1082, 1177.

flush error : 820, 849, 1017.
flush list : 177, 385, 700, 736, 1015.
flush node list : 177, 685, 811, 815, 852, 996,

1009, 1057.
flush p : 621.
flush string : 43, 210, 793, 1200.
flush token list : 216, 224, 226, 235, 650, 698, 763,

840, 1062, 1071, 1074.
flush variable : 246, 700, 1015.
flushing : 659, 664, 665, 991, 1016.
font metric dimensions... : 1140.
font metric files: 1087.
Font metrics written... : 1134.
fontdimen primitive: 1101.
font dimen code : 1101, 1106.
fontmaking : 190, 192, 193, 1206.
fontmaking primitive: 192.
for primitive: 683.
forsuffixes primitive: 683.
Forbidden token found... : 663.
force eof : 657, 680, 681, 711.
forever primitive: 683.
forever text : 632, 638, 714, 760.
forty five deg : 106, 145.
forward : 73, 216, 217, 224, 225, 666, 706, 820,

995, 1034.
found : 15, 167, 170, 171, 205, 206, 207, 235, 236,

284, 291, 292, 295, 477, 527, 532, 539, 541, 543,
544, 547, 548, 577, 582, 667, 669, 685, 686,
720, 726, 748, 755, 779, 1103, 1117.

found1 : 15.
found2 : 15.
four quarters : 156, 1096, 1133, 1186, 1187.
fourth octant : 139, 141, 380, 387, 388, 390, 393,

396, 426, 435, 443, 449, 461, 462, 472.
frac mult : 837, 944.
fraction : 105, 107, 109, 114, 116, 119, 124, 126,

144, 145, 148, 149, 150, 187, 259, 280, 283,
286, 296, 298, 299, 391, 406, 410, 419, 433,
440, 493, 495, 497, 542, 585, 587, 591, 592,
594, 599, 612, 932, 944.

fraction four : 105, 111, 113, 116, 121, 123, 125,
126, 127, 132, 133, 296, 1116.

fraction half : 105, 111, 152, 288, 408, 496, 543,
1098, 1128, 1140.

fraction one : 105, 107, 108, 109, 142, 145, 148,
149, 150, 285, 288, 290, 291, 295, 300, 311, 391,

392, 402, 407, 411, 413, 415, 420, 424, 436, 439,
444, 457, 477, 478, 497, 499, 503, 530, 540, 547,
549, 599, 603, 612, 615, 816, 917, 1169, 1170.

fraction three : 105, 116, 288, 296.
fraction threshold : 594, 597.
fraction two : 105, 116, 121, 124, 142.
free : 178, 180, 181, 182, 183, 184.
free avail : 164, 177, 216, 254, 349, 360, 604,

760, 763, 852, 860.
free node : 172, 177, 216, 246, 247, 249, 254, 268,

352, 353, 354, 358, 385, 405, 452, 487, 532,
536, 537, 595, 598, 599, 600, 601, 603, 605,
612, 615, 616, 650, 745, 763, 800, 808, 810,
818, 819, 827, 829, 837, 855, 858, 866, 890,
903, 910, 922, 925, 942, 944, 947, 955, 970,
980, 1001, 1006, 1008, 1065, 1209.

from primitive: 211.
from token : 186, 211, 212, 1073.
frozen bad vardef : 201, 203, 702.
frozen colon : 201, 203, 211, 751.
frozen end def : 201, 203, 664, 683.
frozen end for : 201, 203, 664, 683.
frozen end group : 201, 203, 211, 664, 698.
frozen fi : 201, 203, 661, 740.
frozen inaccessible : 201, 203, 691, 1196, 1197,

1199.
frozen left bracket : 201, 203, 211, 847.
frozen repeat loop : 201, 757, 758, 759.
frozen right delimiter : 201, 203, 664.
frozen semicolon : 201, 203, 211, 664.
frozen slash : 201, 203, 837, 893.
frozen undefined : 201, 249.
Fuchs, David Raymond: 2, 1148.
future pen : 187, 216, 248, 798, 802, 804, 808, 809,

855, 864, 865, 896, 918, 919, 921, 952, 962, 983.
g: 47.
g pointer : 216, 219, 224, 225, 1042.
gamma : 296, 527, 528, 529, 530.
general macro : 226, 227, 694, 697, 725.
get : 25, 28, 30, 32, 794, 1189.
get avail : 163, 165, 235, 236, 250, 335, 350, 362,

375, 376, 605, 662, 694, 697, 698, 704, 728, 734,
758, 764, 841, 845, 853, 854, 860, 863, 1011.

get boolean : 706, 713, 748, 892.
get clear symbol : 692, 694, 700, 1031, 1036.
get code : 1103, 1106, 1107, 1110, 1112, 1113, 1114.
get next : 71, 73, 83, 624, 658, 659, 666, 667,

676, 679, 685, 690, 691, 694, 700, 703, 704,
705, 706, 715, 718, 720, 730, 742, 781, 991,
1016, 1044, 1049.

get node : 167, 173, 215, 232, 233, 234, 239, 240,
241, 244, 245, 252, 253, 264, 265, 266, 330, 331,

§1215 METAFONT PART 52: INDEX 465

334, 341, 355, 364, 410, 451, 476, 477, 481, 486,
528, 535, 536, 537, 596, 597, 607, 608, 609, 619,
651, 694, 704, 705, 744, 755, 765, 799, 830, 856,
857, 871, 895, 896, 931, 964, 982, 1117.

get pair : 1072, 1073, 1074.
get strings started : 47, 51, 1204.
get symbol : 691, 692, 694, 704, 705, 755, 757,

1011, 1029, 1033, 1035, 1076.
get x next : 694, 697, 706, 707, 716, 718, 726, 729,

733, 734, 735, 748, 751, 752, 755, 764, 765, 799,
800, 820, 823, 824, 825, 826, 830, 835, 837, 839,
840, 841, 844, 846, 850, 851, 853, 854, 859, 860,
861, 862, 864, 868, 874, 875, 876, 878, 881,
882, 884, 886, 892, 989, 990, 995, 996, 1011,
1012, 1021, 1023, 1029, 1031, 1033, 1034, 1035,
1036, 1040, 1044, 1045, 1049, 1050, 1054, 1059,
1070, 1071, 1072, 1073, 1074, 1076, 1082, 1103,
1106, 1107, 1112, 1115, 1177.

gf boc : 1161, 1162, 1168, 1172.
gf buf : 1151, 1152, 1154, 1155.
gf buf size : 11, 14, 1151, 1152, 1153, 1155,

1156, 1182.
gf dx : 1099, 1149, 1182.
gf dy : 1099, 1149, 1182.
gf ext : 785, 791, 1164.
gf file : 791, 1149, 1151, 1154, 1182.
gf four : 1157, 1161, 1166, 1177, 1182.
gf id byte : 1144, 1163, 1182.
gf index : 1151, 1152, 1154.
gf limit : 1151, 1152, 1153, 1155, 1156.
gf max m : 1149, 1163, 1168, 1169, 1182.
gf max n : 1149, 1161, 1163, 1182.
gf min m : 1149, 1161, 1163, 1182.
gf min n : 1149, 1163, 1167, 1168, 1182.
gf offset : 1151, 1152, 1153, 1155, 1163, 1165, 1182.
gf out : 1155, 1157, 1158, 1159, 1160, 1161, 1163,

1165, 1166, 1173, 1174, 1177, 1182.
gf paint : 1159, 1170, 1171, 1172.
gf prev ptr : 1149, 1150, 1163, 1165, 1182, 1206.
gf ptr : 1151, 1152, 1153, 1155, 1156, 1163,

1165, 1182.
gf string : 1160, 1163, 1166, 1177, 1179.
gf swap : 1155.
gf three : 1158, 1160.
gf two : 1158, 1159, 1174.
given : 256, 258, 259, 273, 282, 284, 285, 875,

877, 888, 889.
good val : 431, 432, 435, 438, 442.
goto: 34, 76.
granularity : 190, 192, 193, 430, 433.
granularity primitive: 192.
greater or equal : 189, 893, 936, 937.

greater than : 189, 893, 936, 937.
group line : 831, 832.
gubed: 7.
Guibas, Leonidas Ioannis: 2, 469.
h: 205, 257, 269, 326, 334, 344, 346, 366, 369,

385, 402, 465, 473, 477, 484, 488, 491, 506,
518, 527, 539, 562, 860, 1011.

half : 96, 102, 111, 113, 121, 126, 133, 142, 150,
232, 313, 314, 317, 392, 404, 432, 442, 445,
556, 559, 561, 596, 866, 939, 1122.

half buf : 1151, 1152, 1153, 1155, 1156.
half error line : 11, 14, 635, 641, 642, 643.
half fraction threshold : 594, 599, 600, 612, 616.
half scaled threshold : 594, 599, 600.
half unit : 101, 113, 119, 374, 402, 462, 463,

468, 477, 478, 512, 515, 518, 521, 528, 530,
533, 917, 1106.

halfword : 153, 156, 158, 172, 210, 246, 253, 284,
329, 346, 366, 491, 497, 624, 627, 697, 755,
862, 864, 868, 1029, 1077, 1104.

hard times : 941, 946.
hash : 200, 201, 202, 205, 207, 625, 658, 1196, 1197.
hash base : 200, 201, 205.
hash end : 201, 202, 204, 209, 214, 229, 250,

253, 254, 699, 841, 996, 998, 999, 1049,
1196, 1197, 1199.

hash is full : 200, 207.
hash prime : 12, 14, 205, 208, 1190, 1191.
hash size : 12, 14, 201, 207, 208, 1190, 1191, 1208.
hash top : 201.
hash used : 200, 203, 207, 1196, 1197.
header : 1090.
header byte : 1096, 1097, 1106, 1114, 1128, 1131,

1135, 1182.
headerbyte primitive: 1101.
header byte code : 1101, 1102, 1106.
header size : 11, 14, 1096, 1097, 1114, 1135.
Hedrick, Charles Locke: 3.
height index : 1091.
help line : 74, 84, 86, 661, 664, 691, 852, 1016,

1055.
help ptr : 74, 75, 84, 86.
help0 : 74, 1051.
help1 : 74, 88, 90, 703, 713, 734, 751, 838, 839,

876, 881, 883, 914, 937, 1021, 1034, 1051,
1056, 1071, 1074, 1082, 1086, 1098, 1106, 1107,
1110, 1113, 1115, 1178.

help2 : 67, 74, 83, 84, 89, 90, 122, 128, 134, 140,
270, 478, 623, 670, 675, 701, 708, 712, 713,
716, 727, 735, 747, 765, 832, 865, 878, 892,
937, 950, 996, 999, 1002, 1004, 1008, 1015,
1017, 1021, 1032, 1055, 1057, 1061, 1062, 1067,

466 PART 52: INDEX METAFONT §1215

1073, 1103, 1105, 1106, 1112.
help3 : 67, 74, 93, 340, 342, 478, 661, 672, 691,

725, 726, 727, 755, 756, 795, 849, 859, 861,
875, 887, 901, 923, 955, 960, 963, 965, 993,
1032, 1035, 1068.

help4 : 74, 84, 99, 404, 602, 663, 754, 824, 830,
1060, 1086.

help5 : 74, 693, 851, 872, 873, 878, 990, 1016.
help6 : 74, 991.
Here is how much... : 1208.
hex primitive: 893.
hex op : 189, 893, 912.
hh : 153, 156, 157, 161, 214, 250, 255, 334, 477,

479, 562, 563, 1188, 1189.
hi mem min : 159, 161, 163, 167, 168, 176, 177,

178, 180, 181, 184, 185, 216, 218, 242, 676,
850, 1045, 1194, 1195, 1207, 1208.

hi mem stat min : 175, 176, 1195.
history : 71, 72, 77, 88, 90, 195, 1204, 1209.
hlp1 : 74.
hlp2 : 74.
hlp3 : 74.
hlp4 : 74.
hlp5 : 74.
hlp6 : 74.
ho : 155, 324, 333, 343, 344, 349, 352, 358, 359,

360, 370, 373, 582, 1169.
Hobby, John Douglas: 274, 354, 432, 524.
hold head : 175, 665, 685, 697, 730.
hppp : 190, 192, 193, 785, 1146, 1164, 1182.
hppp primitive: 192.
htap ypoc : 266, 921, 978, 1064, 1065.
i: 19, 150, 641.
I can’t find file x : 786.
I can’t find PLAIN... : 779.
I can’t go on... : 90.
I can’t read MF.POOL : 51.
I can’t write on file x : 786.
id lookup : 205, 210, 669.
id transform : 233, 955.
if primitive: 740.
if code : 738, 740, 741, 744, 751.
if limit : 738, 739, 744, 745, 746, 748, 751.
if line : 738, 739, 744, 745, 748, 1209.
if line field : 738, 744, 745, 1209.
if node size : 738, 744, 745, 1209.
if test : 186, 706, 707, 740, 741, 742, 748.
illegal design size... : 1128.
Illegal ligtable step : 1107.
Illegal suffix...flushed : 1016.
IMPOSSIBLE : 218.
Improper ‘:=’ : 996.

Improper ‘addto’ : 1061, 1062.
Improper ‘openwindow’ : 1073.
Improper curl : 876.
Improper font parameter : 1115.
Improper kern : 1112.
Improper location : 1106.
Improper subscript... : 849.
Improper tension : 883.
Improper transformation argument : 955.
Improper type : 1055.
Improper...replaced by 0 : 754.
in open : 631, 654, 655, 657.
in state record : 627, 628.
in window : 186, 211, 212, 1071.
inwindow primitive: 211.
Incomplete if... : 661.
Incomplete string token... : 672.
Inconsistent equation : 1004, 1008.
incr : 16, 30, 36, 41, 42, 44, 45, 46, 53, 58, 59, 60,

64, 66, 77, 85, 86, 93, 108, 115, 123, 136, 143,
147, 163, 165, 183, 207, 226, 281, 284, 297, 314,
315, 317, 319, 320, 321, 322, 333, 348, 352, 362,
364, 366, 375, 376, 377, 381, 382, 383, 384, 404,
429, 458, 459, 481, 483, 487, 497, 502, 514, 515,
516, 520, 521, 522, 560, 568, 574, 577, 583, 584,
647, 654, 669, 671, 673, 674, 681, 687, 704, 705,
717, 721, 724, 728, 731, 732, 734, 736, 737, 742,
772, 774, 779, 781, 787, 793, 1036, 1104, 1107,
1112, 1113, 1114, 1115, 1118, 1121, 1129, 1137,
1138, 1140, 1155, 1165, 1196, 1211.

independent : 187, 216, 219, 232, 248, 585, 589,
592, 604, 615, 798, 799, 800, 801, 802, 803, 808,
809, 816, 827, 828, 855, 857, 858, 903, 918, 925,
926, 927, 928, 944, 1003, 1006, 1007, 1009.

independent being fixed : 605.
independent needing fix : 592, 595, 596, 598,

599, 600.
index : 627, 629, 630, 631, 632, 654, 655, 657.
index field : 627, 629.
inf val : 175, 617, 1116, 1117, 1118, 1121, 1136.
info : 161, 166, 168, 176, 185, 214, 218, 221, 226,

227, 228, 229, 235, 236, 242, 245, 246, 250, 252,
253, 254, 324, 325, 326, 328, 333, 335, 337, 338,
339, 342, 343, 344, 345, 346, 347, 349, 350, 351,
358, 359, 360, 362, 366, 367, 368, 370, 373, 375,
376, 378, 381, 382, 383, 384, 472, 473, 475, 481,
484, 488, 491, 509, 512, 519, 580, 582, 587, 589,
591, 594, 595, 596, 597, 598, 599, 600, 601, 604,
605, 607, 608, 609, 610, 611, 612, 614, 615, 616,
617, 651, 662, 676, 685, 686, 694, 697, 698, 700,
704, 705, 714, 719, 721, 722, 725, 726, 727, 728,
729, 733, 734, 736, 752, 755, 758, 760, 763, 764,

§1215 METAFONT PART 52: INDEX 467

805, 811, 812, 816, 818, 819, 841, 850, 853, 854,
860, 863, 904, 931, 933, 935, 968, 996, 998,
999, 1006, 1007, 1010, 1011, 1015, 1050, 1121,
1122, 1127, 1136, 1169, 1207, 1213.

INIMF : 8, 11, 12, 47, 50, 159, 1183, 1203.
init: 8, 47, 50, 173, 210, 564, 567, 568, 1186,

1204, 1209, 1210.
init big node : 232, 233, 830, 857, 982.
init edges : 326, 353, 364, 895, 964.
init gf : 1163.
init pool ptr : 38, 41, 1045, 1193, 1204, 1208.
init prim : 1204, 1210.
init randoms : 150, 1022, 1211.
init screen : 564, 567, 568, 569, 570, 571.
init str ptr : 38, 44, 772, 1045, 1193, 1204, 1208.
init tab : 1204, 1210.
init terminal : 36, 657.
initialize : 4, 1204, 1211.
inner loop: 30, 107, 108, 109, 111, 112, 113, 163,

165, 167, 169, 172, 177, 242, 244, 408, 650,
651, 667, 668, 669, 676, 718, 850.

inner primitive: 1027.
input : 186, 706, 707, 709, 710.
input primitive: 709.
input file : 631.
input ln : 29, 30, 36, 58, 66, 681, 794.
input ptr : 628, 635, 636, 647, 648, 656, 657,

679, 788, 1209.
input stack : 79, 80, 628, 635, 647, 648, 788.
ins error : 653, 661, 663, 691, 751, 824.
insert> : 82.
inserted : 632, 638, 650, 653.
install : 857, 858, 957, 959.
int : 153, 156, 157, 214, 326, 738, 1188, 1189, 1191.
int increment : 553, 559, 561.
int name : 190, 193, 254, 998, 999, 1036, 1043,

1098, 1123, 1198, 1199.
int packets : 553, 558, 560.
int ptr : 190, 191, 1036, 1198, 1199, 1208.
integer : 13, 19, 45, 46, 47, 54, 59, 60, 64, 65, 77,

89, 91, 100, 101, 102, 105, 106, 107, 109, 112,
114, 116, 117, 119, 121, 124, 126, 129, 130, 132,
135, 139, 145, 152, 153, 156, 160, 167, 185, 196,
200, 205, 217, 227, 242, 299, 308, 309, 311, 321,
327, 328, 329, 332, 333, 337, 340, 342, 348, 354,
357, 363, 366, 369, 371, 373, 374, 378, 391, 398,
402, 403, 453, 464, 473, 477, 484, 488, 495, 497,
507, 511, 527, 555, 557, 562, 572, 574, 577, 580,
585, 589, 594, 597, 599, 600, 601, 608, 610, 621,
624, 625, 626, 631, 633, 641, 651, 659, 667,
685, 707, 720, 723, 730, 738, 742, 773, 774,
778, 788, 796, 801, 809, 813, 831, 895, 898,

899, 900, 913, 922, 930, 943, 977, 1001, 1059,
1070, 1073, 1074, 1096, 1103, 1106, 1118, 1119,
1120, 1121, 1129, 1130, 1131, 1133, 1149, 1152,
1157, 1158, 1159, 1160, 1161, 1162, 1163, 1165,
1186, 1187, 1203, 1205, 1210, 1212.

interaction : 66, 67, 68, 69, 70, 77, 78, 79, 81, 86,
87, 88, 93, 398, 679, 682, 786, 807, 897, 1023,
1051, 1086, 1198, 1199, 1200, 1209.

interesting : 238, 603, 613, 817, 1050.
interim primitive: 211.
interim command : 186, 211, 212, 1033.
internal : 190, 191, 194, 195, 238, 253, 254, 269,

375, 376, 381, 382, 383, 384, 402, 430, 433,
465, 468, 477, 506, 508, 510, 515, 517, 521,
523, 533, 602, 603, 610, 682, 707, 713, 720,
728, 734, 748, 760, 804, 816, 832, 841, 895,
898, 922, 944, 992, 994, 995, 996, 999, 1036,
1051, 1064, 1068, 1070, 1097, 1098, 1099, 1128,
1129, 1134, 1137, 1163, 1164, 1165, 1177, 1182,
1198, 1199, 1200, 1205, 1206, 1213.

Internal quantity... : 999.
internal quantity : 186, 192, 823, 844, 860, 1011,

1034, 1036, 1043.
interrupt : 91, 92, 93, 825.
Interruption : 93.
intersect : 189, 893, 988.
intersectiontimes primitive: 893.
Invalid code... : 1103.
invalid class : 198, 199, 669.
is empty : 166, 169, 182, 183.
Isolated expression : 993.
isolated classes : 198, 223, 669.
italic index : 1091.
iteration : 186, 683, 684, 685, 706, 707, 758.
j: 45, 46, 59, 60, 77, 150, 205, 210, 357, 378,

707, 774, 778, 779, 1106.
j random : 148, 149, 151, 152.
Japanese characters: 1147.
Jensen, Kathleen: 10.
jj : 150, 357, 364.
job aborted : 679.
job aborted, file error... : 786.
job name : 87, 782, 783, 784, 788, 791, 793, 895,

1134, 1200, 1209.
jobname primitive: 893.
job name op : 189, 893, 895.
jump out : 76, 77, 79, 88.
k: 45, 46, 47, 63, 64, 66, 102, 121, 130, 132, 135,

139, 145, 149, 150, 205, 210, 264, 280, 284, 299,
321, 346, 363, 366, 378, 402, 426, 440, 473, 477,
484, 487, 491, 497, 511, 568, 574, 577, 667, 682,
697, 707, 774, 778, 780, 786, 788, 895, 913,

468 PART 52: INDEX METAFONT §1215

976, 977, 978, 1073, 1106, 1131, 1154, 1160,
1163, 1186, 1187, 1205, 1210, 1212.

keep code : 1052, 1074.
keeping : 1074, 1075.
keeping primitive: 1052.
kern : 1093, 1096, 1106, 1112, 1139.
kern primitive: 1108.
kern flag : 1093, 1112.
knil : 325, 326, 330, 331, 332, 334, 336, 341, 352,

354, 355, 364, 376, 377, 382, 384, 442, 472, 473,
475, 476, 482, 483, 484, 497, 503, 505, 508, 509,
513, 515, 517, 519, 521, 523, 1167.

knot node size : 255, 264, 265, 266, 268, 405, 410,
451, 452, 486, 528, 532, 535, 536, 537, 866,
871, 890, 896, 980, 1065.

knots : 269, 271, 272.
known : 187, 214, 215, 216, 219, 233, 248, 585,

594, 603, 615, 651, 678, 726, 760, 765, 798, 799,
802, 803, 808, 809, 823, 826, 827, 829, 830, 837,
841, 846, 855, 857, 858, 861, 873, 876, 878, 883,
895, 899, 903, 906, 912, 915, 918, 919, 930, 931,
932, 935, 937, 939, 941, 942, 943, 944, 948, 949,
951, 953, 956, 957, 959, 960, 966, 968, 969, 970,
971, 972, 974, 982, 983, 999, 1003, 1006, 1007,
1009, 1021, 1052, 1054, 1062, 1071, 1073, 1074,
1103, 1106, 1112, 1115, 1176, 1177, 1180.

known primitive: 893.
known op : 189, 893, 918, 919.
known pair : 871, 872, 877, 884.
Knuth, Donald Ervin: 2, 81.
l: 46, 47, 152, 205, 210, 217, 227, 311, 641, 742,

746, 788, 977, 978, 1006, 1011, 1035, 1118,
1121, 1160, 1212.

l delim : 697, 703, 720, 726, 727, 729, 730, 731,
735, 823, 826, 830, 1031, 1032.

l packets : 553, 559, 560.
label char : 1096, 1104, 1137, 1138.
label loc : 1096, 1097, 1104, 1137, 1138, 1139.
label ptr : 1096, 1097, 1104, 1137, 1138, 1139.
Lane, Jeffrey Michael: 303.
last : 29, 30, 34, 35, 36, 66, 78, 82, 83, 657, 679,

682, 779, 787, 897.
last nonblank : 30.
last text char : 19, 23.
last window : 326, 334, 577.
last window time : 326, 334, 336, 337, 340, 342,

344, 348, 364, 577, 965.
left brace : 186, 211, 212, 874.
left bracket : 186, 211, 212, 823, 844, 847, 860,

1011, 1012.
left bracket class : 198, 199, 220, 221.
left col : 567, 572, 574, 577, 581.

left curl : 256, 259, 271, 282, 295, 879, 890, 891.
left delimiter : 186, 697, 703, 726, 731, 735, 823,

1030, 1031, 1043.
left given : 256, 259, 282, 292, 301, 879, 880, 888.
left length : 528, 531, 532, 534, 535.
left octant : 393, 394, 398, 401, 451, 452, 458,

459, 465, 506.
left tension : 256, 258, 260, 288, 289, 294, 295,

299, 300, 302, 880.
left transition : 393, 459, 508.
left type : 255, 256, 257, 258, 259, 261, 262, 263,

265, 266, 269, 271, 272, 273, 281, 282, 284, 285,
287, 299, 302, 393, 394, 397, 398, 399, 400, 401,
402, 404, 410, 451, 452, 465, 486, 506, 528, 865,
870, 871, 879, 885, 887, 888, 890, 891, 896, 916,
917, 920, 962, 978, 979, 985, 987, 1064, 1066.

left v : 528, 531, 534, 535.
left x : 255, 256, 261, 265, 266, 271, 282, 299,

302, 393, 397, 404, 407, 409, 410, 411, 412,
415, 416, 418, 419, 421, 423, 424, 425, 434,
436, 441, 444, 447, 451, 457, 468, 486, 492,
496, 512, 518, 528, 543, 558, 563, 866, 880,
887, 896, 962, 987, 1066.

left y : 255, 256, 261, 265, 266, 271, 282, 299, 302,
393, 397, 404, 409, 410, 413, 414, 415, 416, 419,
423, 424, 425, 437, 439, 444, 447, 451, 457, 468,
486, 492, 496, 512, 518, 528, 543, 558, 563,
866, 880, 887, 896, 962, 987, 1066.

length : 39, 46, 205, 671, 716, 717, 793, 912, 913,
915, 976, 977, 1083, 1103, 1160.

length primitive: 893.
length op : 189, 893, 915.
less or equal : 189, 893, 936, 937.
less than : 189, 893, 936, 937.
let primitive: 211.
let command : 186, 211, 212, 1033.
letter class : 198, 199, 218, 223.
lf : 1088.
lh : 153, 156, 157, 161, 200, 491, 502, 505, 1088,

1089, 1135, 1205.
lhs : 995, 996, 997, 998, 999, 1000, 1001, 1002,

1003, 1059, 1061, 1062, 1064.
lig kern : 1092, 1093, 1096, 1137, 1139, 1205.
lig kern command : 1089, 1093.
lig kern token : 186, 1107, 1108, 1109.
ligtable primitive: 1101.
lig table code : 1101, 1102, 1106.
lig table size : 11, 14, 1096, 1107, 1137, 1141.
lig tag : 1092, 1104, 1105, 1111.
limit : 627, 629, 630, 632, 644, 654, 656, 657, 669,

671, 672, 679, 681, 682, 717, 793, 794, 1211.
limit field : 34, 82, 627, 629, 788.

§1215 METAFONT PART 52: INDEX 469

line : 79, 197, 631, 637, 654, 655, 657, 681, 742,
744, 748, 794, 832.

line edges : 374, 378, 507, 510.
line stack : 631, 654, 655.
linear eq : 610, 1006.
linearform : 801, 805.
link : 161, 163, 164, 165, 166, 167, 168, 172, 176,

177, 181, 185, 216, 217, 227, 228, 229, 230, 232,
234, 235, 236, 237, 238, 239, 240, 241, 242, 244,
245, 246, 247, 250, 252, 253, 254, 255, 257, 265,
266, 268, 271, 272, 273, 281, 284, 297, 324, 325,
326, 328, 330, 331, 332, 334, 335, 336, 337, 338,
339, 341, 343, 344, 345, 346, 347, 348, 349, 350,
351, 352, 353, 354, 355, 359, 360, 362, 364, 366,
367, 368, 369, 370, 375, 376, 377, 381, 382, 383,
384, 385, 394, 398, 399, 400, 401, 402, 404, 405,
406, 410, 411, 412, 413, 415, 416, 418, 419, 424,
425, 433, 435, 436, 439, 440, 442, 444, 447, 450,
451, 452, 458, 459, 465, 466, 468, 472, 473, 475,
476, 477, 479, 481, 482, 483, 484, 485, 487, 488,
491, 492, 493, 497, 499, 502, 503, 504, 506, 508,
509, 512, 513, 515, 517, 518, 519, 521, 523, 528,
532, 535, 536, 537, 539, 556, 558, 562, 577, 582,
587, 589, 591, 594, 595, 596, 597, 598, 599, 600,
601, 603, 604, 605, 606, 608, 609, 611, 612, 614,
616, 617, 639, 640, 650, 651, 665, 676, 678, 685,
686, 694, 697, 698, 700, 702, 704, 705, 719, 720,
721, 722, 723, 724, 725, 727, 728, 730, 734, 736,
738, 744, 745, 746, 752, 758, 760, 762, 763, 764,
799, 805, 811, 812, 814, 815, 816, 818, 819, 827,
844, 845, 848, 850, 851, 852, 853, 854, 860, 863,
867, 870, 871, 885, 887, 890, 891, 896, 904, 910,
916, 921, 931, 933, 947, 962, 968, 978, 980, 981,
985, 986, 1007, 1010, 1011, 1015, 1043, 1047,
1050, 1065, 1068, 1117, 1118, 1121, 1122, 1124,
1126, 1136, 1169, 1194, 1207, 1209, 1213.

list tag : 1092, 1105, 1106.
lk offset : 1135, 1137, 1138, 1139, 1205.
lk started : 1096, 1107, 1112, 1137, 1138, 1139.
ll : 1096, 1110, 1111, 1139.
llink : 166, 168, 169, 171, 172, 173, 176, 182, 1207.
lll : 1096, 1110, 1111.
lo mem max : 159, 163, 167, 168, 176, 178, 180,

182, 183, 184, 185, 1045, 1194, 1195, 1207, 1208.
lo mem stat max : 175, 176, 1195, 1207.
load base file : 1187, 1211.
loc : 35, 36, 82, 627, 629, 630, 632, 636, 638, 644,

645, 649, 652, 654, 656, 657, 669, 671, 672,
673, 674, 676, 678, 679, 681, 712, 717, 736,
779, 781, 793, 794, 795, 1211.

loc field : 34, 35, 627, 629.
local label l:: was missing : 1139.

log file : 54, 56, 70, 788, 1205.
log name : 782, 788, 1205.
log only : 54, 57, 58, 62, 70, 93, 679, 788, 1022,

1200.
log opened : 87, 88, 782, 783, 788, 789, 1023,

1205, 1208.
Logarithm...replaced by 0 : 134.
long help seen : 1084, 1085, 1086.
loop: 15, 16.
loop confusion : 714.
loop value=n : 762.
loop defining : 659, 664, 665, 758.
loop list : 752, 760, 763, 764.
loop list loc : 752, 764.
loop node size : 752, 755, 763.
loop ptr : 712, 713, 714, 752, 753, 758, 760,

763, 1209.
loop text : 632, 638, 714, 760.
loop type : 752, 755, 760, 763, 764, 765.
Lost loop : 712.
ls : 46.
lt : 46, 286, 289, 294, 295, 299, 302.
m: 47, 64, 311, 333, 337, 348, 357, 369, 373, 473,

484, 511, 574, 580, 608, 625, 626, 641, 694, 697,
755, 788, 913, 1029, 1082, 1098, 1118, 1120,
1121, 1123, 1165, 1177, 1212.

m adjustment : 580, 581, 582.
m exp : 135, 906.
mexp primitive: 893.
m exp op : 189, 893, 906.
m log : 132, 134, 152, 906.
mlog primitive: 893.
m log op : 189, 893, 906.
m magic : 354, 361, 362, 365.
m max : 326, 329, 334, 337, 342, 348, 352, 354,

356, 357, 364, 366, 965, 1172.
m min : 326, 329, 334, 337, 342, 348, 352, 354,

356, 357, 364, 365, 366, 965, 1172.
m offset : 326, 328, 329, 333, 334, 337, 342, 348,

352, 364, 365, 366, 367, 373, 375, 376, 381,
382, 383, 384, 581, 965, 1169, 1172.

m spread : 356, 357, 364.
m window : 572, 576, 581.
mac name : 862, 864, 868.
macro : 632, 638, 645, 649, 736.
macro at : 688, 689.
macro call : 707, 718, 719, 720, 853, 854, 863.
macro def : 186, 683, 684, 685, 694, 698, 992, 1043.
macro name : 720, 721, 725, 726, 734, 736.
macro prefix : 688, 689.
macro ref : 843, 845, 854.
macro special : 186, 685, 688, 689, 700.

470 PART 52: INDEX METAFONT §1215

macro suffix : 688, 689, 700.
main control : 1017, 1204, 1211.
major axis : 527, 530, 533, 865, 866.
make choices : 269, 274, 277, 278, 891.
make ellipse : 527, 528, 866.
make eq : 995, 1000, 1001.
make exp copy : 651, 823, 852, 855, 859, 903, 910,

926, 927, 944, 967, 970, 973, 1000.
make fraction : 107, 109, 116, 125, 127, 145, 152,

281, 288, 289, 290, 291, 294, 295, 296, 300, 302,
375, 376, 436, 439, 444, 454, 498, 516, 522, 530,
533, 540, 548, 549, 612, 818, 944.

make known : 603, 604, 614, 818, 819.
make moves : 309, 311, 321, 468, 512, 514,

518, 550.
make name string : 780.
make op def : 694, 992.
make path : 484, 921, 962.
makepath primitive: 893.
make path op : 189, 893, 921.
make pen : 477, 865.
makepen primitive: 893.
make pen op : 189, 893, 921.
make safe : 426, 427, 436, 439, 440, 446.
make scaled : 114, 116, 600, 612, 819, 837, 948,

949, 980, 1128, 1129, 1164, 1182.
make spec : 402, 403, 409, 448, 460, 493, 917, 1064.
make string : 44, 48, 52, 207, 671, 772, 780, 840,

897, 912, 976, 977, 1163, 1164, 1200, 1205.
Marple, Jane: 1086.
materialize pen : 864, 865, 921, 983.
max : 539, 543.
max allowed : 402, 403, 404, 434, 437.
max buf stack : 29, 30, 657, 717, 1208.
max c : 812, 813, 814, 815, 816, 817.
max class : 198.
max coef : 495, 496, 591, 932, 943, 949.
max command code : 186, 821, 823, 824, 868.
max d : 348, 351, 352.
max expression command : 186, 868.
max font dimen : 11, 1096, 1115, 1141.
max given internal : 190, 191, 1199.
max halfword : 11, 12, 14, 153, 154, 156, 166, 167,

168, 173, 174, 204, 214, 324, 348, 351, 358, 1207.
max in open : 12, 631, 632, 654, 1190, 1191.
max in stack : 628, 647, 657, 1208.
max internal : 11, 190, 204, 1036, 1199, 1208.
max kerns : 11, 1096, 1106, 1112, 1141.
max link : 812, 813, 814, 815, 818, 819.
max m : 1144, 1146, 1161.
max n : 348, 351, 352, 1144, 1146, 1161.
max new row : 1145, 1173.

max offset : 472, 475, 477, 962, 1064.
max param stack : 633, 657, 736, 737, 1208.
max patience : 555, 556.
max pool ptr : 38, 41, 47, 1045, 1193, 1204, 1208.
max primary command : 186, 823, 836, 862, 864,

868, 989, 990.
max print line : 11, 14, 54, 58, 67, 333, 372, 793,

1046, 1048, 1165.
max ptr : 813, 814, 815, 816.
max quarterword : 153, 154, 156, 399, 404, 481.
max rounding ptr : 427, 428, 429, 1208.
max secondary command : 186, 862.
max selector : 54, 196, 635, 788.
max statement command : 186, 989.
max str ptr : 38, 44, 47, 772, 1045, 1193, 1204,

1208.
max str ref : 42, 43, 48, 52, 207, 793, 1193, 1200.
max strings : 11, 37, 44, 154, 772, 780, 1045,

1193, 1208.
max suffix token : 186, 844.
max t : 555, 556.
max tertiary command : 186, 864.
max tfm dimen : 1128, 1129, 1130, 1182.
max wiggle : 11, 426, 427, 429, 440, 1208.
mc : 477, 478, 479.
Meggitt, John E.: 143.
mem : 11, 12, 158, 159, 161, 166, 168, 173, 175,

176, 178, 180, 185, 214, 216, 229, 241, 242, 244,
250, 255, 264, 326, 334, 472, 475, 587, 594, 738,
752, 827, 947, 961, 1194, 1195, 1213.

mem end : 159, 161, 163, 176, 178, 180, 181, 184,
185, 218, 1194, 1195, 1208.

mem max : 11, 12, 14, 153, 154, 159, 163, 166,
167, 178, 179.

mem min : 12, 14, 154, 158, 159, 163, 167, 168,
175, 176, 178, 179, 180, 182, 183, 184, 185,
218, 1190, 1191, 1194, 1195, 1208.

mem top : 11, 12, 14, 154, 159, 175, 176, 1190,
1191, 1195.

Memory usage... : 1045.
memory word : 153, 156, 157, 159, 242, 1188.
merge edges : 366, 929, 1061.
message primitive: 1079.
message code : 1079, 1082.
message command : 186, 1079, 1080, 1081.
METAFONT capacity exceeded ... : 89.

buffer size: 34, 654, 717.
extensible: 1113.
fontdimen: 1115.
hash size: 207.
headerbyte: 1114.
independent variables: 585.

§1215 METAFONT PART 52: INDEX 471

input stack size: 647.
kern: 1112.
ligtable size: 1107.
main memory size: 163, 167.
move table size: 356, 468, 508.
number of internals: 1036.
number of strings: 44, 772.
parameter stack size: 704, 736, 737.
path size: 281.
pen polygon size: 481.
pool size: 41.
rounding table size: 429.
text input levels: 654.

The METAFONT book: 1, 199, 574, 824, 872, 873,
878, 990, 991, 1068, 1203.

METAFONT84: 1.
metric file name : 1087, 1134.
MF : 4.
MF.POOL check sum... : 53.
MF.POOL doesn’t match : 53.
MF.POOL has no check sum : 52.
MF.POOL line doesn’t... : 52.
MF area : 769, 793.
MF base default : 775, 776, 778.
MFbases : 11, 776.
MFinputs : 769.
mfput : 34, 788.
mid : 1094.
min col : 580, 581, 582, 583.
min command : 186, 706, 715, 718.
min cover : 1118, 1120.
min d : 348, 351, 352.
min expression command : 186, 868, 869.
min halfword : 12, 153, 154, 155, 156, 324, 326,

337, 342, 348, 350, 365, 375, 376, 381, 382,
383, 384, 580.

min m : 1144, 1146, 1161.
min n : 348, 351, 352, 1144, 1146, 1161.
min of : 189, 923.
min primary command : 186, 823, 837, 862,

864, 868, 989.
min quarterword : 153, 154, 155, 156, 1093.
min secondary command : 186, 862.
min suffix token : 186, 844.
min tension : 883.
min tertiary command : 186, 864.
minor axis : 527, 530, 533, 865, 866.
minus : 189, 859, 893, 898, 903, 922, 929, 930,

936, 939.
Missing ‘)’ : 727, 735, 1032.
Missing ‘)’... : 725.
Missing ‘,’ : 727, 878.

Missing ‘..’ : 881.
Missing ‘:’ : 747, 751, 756, 1106.
Missing ‘:=’ : 1021.
Missing ‘;’ : 713.
Missing ‘=’ : 693, 755, 1035.
Missing ‘#’ : 1113.
Missing ‘}’ : 875.
Missing ‘]’ : 859, 861.
Missing ‘of’ : 734, 839.
Missing ‘until’ : 765.
Missing argument... : 726.
Missing parameter type : 703.
Missing symbolic token... : 691.
Missing...inserted : 94.
missing err : 94, 693, 713, 727, 734, 735, 747, 751,

755, 756, 765, 839, 859, 861, 875, 878, 881,
1021, 1032, 1035, 1106, 1113.

missing extensible punctuation : 1113.
ml : 329.
mm : 348, 349, 357, 358, 362, 364, 580, 582,

1165, 1169.
mm0 : 511, 513, 517, 519, 523.
mm1 : 511, 513, 517, 519, 523.
mock curvature: 275.
mode command : 186, 1023, 1024, 1025.
Moler, Cleve Barry: 124.
month : 190, 192, 193, 194, 1163, 1200.
month primitive: 192.
months : 788, 790.
more name : 767, 771, 781, 787.
Morrison, Donald Ross: 124.
move : 308, 311, 315, 316, 319, 320, 321, 322, 354,

356, 357, 362, 364, 378, 379, 381, 382, 383, 384,
468, 507, 512, 514, 517, 518, 520, 523.

move increment : 309, 310, 312, 314.
move ptr : 308, 311, 315, 316, 319, 320, 468,

511, 512, 513, 514, 515, 516, 517, 518, 519,
520, 521, 522, 523.

move size : 11, 308, 311, 321, 356, 357, 362, 378,
468, 507, 508, 511.

move to edges : 378, 465, 517, 523.
mr : 329.
mtype: 4.
Must increase the x : 1187.
my var flag : 823, 841, 852, 868.
m0 : 374, 375, 376, 378, 380, 381, 382, 383, 384,

464, 465, 467, 508, 511, 517, 523.
m1 : 374, 375, 376, 378, 380, 463, 464, 465, 467,

508, 511, 517, 523.
n: 47, 64, 65, 89, 107, 109, 112, 114, 242, 246,

280, 284, 311, 332, 348, 366, 369, 373, 374,
378, 473, 477, 484, 488, 491, 497, 511, 539,

472 PART 52: INDEX METAFONT §1215

562, 568, 574, 580, 610, 641, 667, 697, 720,
722, 723, 755, 773, 774, 778, 863, 913, 916,
944, 985, 1046, 1165, 1212.

n arg : 139, 140, 141, 147, 256, 281, 282, 292, 293,
301, 387, 541, 544, 866, 877, 907.

n cos : 144, 145, 259, 263, 297, 301, 530, 533,
906, 958.

n magic : 354, 361, 362, 365.
n max : 326, 329, 331, 332, 334, 336, 340, 348,

352, 364, 365, 366, 965, 1167.
n min : 326, 329, 330, 334, 336, 340, 348, 352,

364, 366, 577, 965, 1172.
n pos : 326, 330, 331, 334, 336, 352, 364, 374,

377, 378, 965.
n rover : 326, 330, 331, 334, 352, 364, 374,

377, 378.
n sin : 144, 145, 259, 263, 297, 301, 530, 533,

906, 958.
n sin cos : 144, 145, 147, 259, 263, 297, 301,

530, 906, 958.
n window : 572, 576, 577.
name : 627, 629, 630, 631, 632, 635, 637, 638, 649,

654, 655, 657, 679, 717, 736, 793, 897.
name field : 79, 80, 627, 629.
name length : 25, 51, 774, 778, 780.
name of file : 25, 26, 51, 774, 778, 780, 786.
name type : 188, 214, 215, 219, 228, 229, 230,

232, 233, 234, 235, 236, 237, 238, 239, 240,
244, 245, 246, 247, 249, 254, 619, 651, 678,
702, 738, 744, 745, 799, 806, 830, 856, 857,
911, 931, 982, 1047, 1209.

nd : 1088, 1089, 1096, 1126, 1135, 1141.
ne : 1088, 1089, 1096, 1097, 1113, 1135, 1140, 1141.
negate : 16, 64, 103, 107, 110, 114, 118, 139, 146,

380, 409, 411, 412, 414, 415, 416, 418, 423, 424,
425, 480, 882, 903, 904, 930, 959, 1007, 1068.

negate dep list : 903, 904, 930, 959.
negate edges : 344, 345, 903, 929.
negate x : 139, 390, 406, 409, 411, 418, 480, 489.
negate y : 139, 390, 406, 414, 415, 418, 437, 438,

439, 480, 489.
negative : 107, 109, 110, 112, 114.
New busy locs : 184.
new boundary : 451, 452, 458.
new dep : 606, 615, 829, 856, 858, 947, 969, 972.
new if limit : 748.
new indep : 585, 586, 816, 855.
new internal : 186, 211, 212, 1033.
newinternal primitive: 211.
new knot : 870, 871, 885, 908.
new num tok : 215, 236, 860.
new randoms : 148, 149, 150.

new ring entry : 619, 855.
new root : 234, 242, 1011.
new row 0 : 1144, 1145, 1173.
new row 1 : 1144.
new row 164 : 1144, 1145.
new string : 54, 57, 58, 840, 912, 1163, 1164, 1200.
new structure : 239, 243.
next : 200, 202, 205, 207.
next a : 426, 440, 446.
next char : 1093, 1107, 1112, 1137.
next random : 149, 151, 152.
nh : 1088, 1089, 1096, 1126, 1135, 1141.
ni : 1088, 1089, 1096, 1126, 1135, 1141.
nice pair : 899, 900, 907, 915, 941, 975, 983, 1072.
nil: 16.
ninety deg : 106, 141, 530.
nk : 1088, 1089, 1096, 1097, 1112, 1135, 1139, 1141.
nl : 329, 330, 1088, 1089, 1093, 1096, 1097, 1107,

1110, 1111, 1112, 1135, 1137, 1139, 1141.
nn : 562.
No loop is in progress : 713.
No new edges added : 372.
no crossing : 391, 392.
no op : 1144, 1147.
no print : 54, 57, 58, 70, 93.
no tag : 1092, 1096, 1097, 1104.
node size : 166, 168, 169, 170, 172, 176, 182,

1194, 1195, 1207.
node to round : 426, 427, 429, 436, 439, 444,

445, 446.
NONEXISTENT : 218.
nonlinear eq : 621, 1003.
Nonnumeric...replaced by 0 : 830.
nonstop mode : 68, 81, 679, 682, 897, 1024, 1025.
nonstopmode primitive: 1024.
norm rand : 152, 895.
normal : 659, 660, 661, 694, 697, 730, 738, 739,

742, 758, 991, 1016.
normal deviate : 189, 893, 895.
normaldeviate primitive: 893.
normalize selector : 73, 87, 88, 89, 90.
north edge : 435, 438.
Not a cycle : 1067.
Not a string : 716, 1082.
Not a suitable variable : 1060.
Not implemented... : 901, 923.
not primitive: 893.
not found : 15, 45, 394, 477, 479, 491, 494, 496,

539, 541, 556, 560, 561, 760, 1001, 1004, 1059,
1064, 1067, 1071, 1073, 1074, 1075.

not op : 189, 893, 905.
nothing printed : 473, 474.

§1215 METAFONT PART 52: INDEX 473

np : 1088, 1089, 1096, 1097, 1115, 1135, 1140, 1141.
nr : 329, 331.
nuline : 197, 257, 332, 473.
null : 158, 159, 161, 163, 165, 167, 168, 176, 177,

181, 182, 202, 214, 216, 217, 226, 227, 229, 232,
233, 234, 235, 237, 242, 246, 249, 251, 252, 253,
254, 257, 258, 324, 346, 355, 364, 368, 398, 472,
475, 477, 479, 487, 528, 532, 536, 537, 587, 589,
591, 594, 597, 599, 600, 604, 605, 607, 609, 611,
612, 614, 615, 616, 617, 618, 619, 620, 632, 636,
638, 639, 640, 650, 651, 652, 665, 676, 685, 686,
694, 697, 698, 700, 707, 712, 713, 714, 716, 718,
719, 720, 721, 722, 723, 724, 726, 728, 730, 734,
735, 736, 738, 739, 746, 752, 753, 754, 755, 760,
762, 763, 764, 795, 801, 802, 805, 806, 807, 810,
811, 812, 816, 818, 819, 840, 844, 845, 848, 850,
851, 852, 853, 854, 857, 902, 904, 924, 925, 926,
927, 928, 929, 930, 931, 933, 934, 935, 936,
942, 943, 944, 945, 948, 949, 968, 970, 972,
997, 998, 1000, 1003, 1006, 1007, 1008, 1009,
1010, 1011, 1015, 1035, 1040, 1041, 1043, 1048,
1049, 1050, 1057, 1061, 1064, 1068, 1070, 1071,
1074, 1194, 1195, 1207, 1209, 1213.

null coords : 175, 214, 475.
null pen : 175, 435, 438, 442, 475, 477, 487, 865,

895, 917, 962, 1062.
nullpen primitive: 893.
null pen code : 189, 893, 895.
nullpicture primitive: 893.
null picture code : 189, 893, 895.
null tally : 217.
nullary : 186, 713, 823, 893, 894, 895.
num : 116, 296, 836, 837.
numspecial primitive: 1176.
Number too large : 914.
numeric primitive: 1013.
numeric token : 186, 651, 675, 678, 823, 824, 836,

837, 844, 846, 860, 861, 1016, 1042.
numeric type : 187, 189, 229, 242, 248, 585, 798,

802, 809, 855, 918, 1013.
nw : 1088, 1089, 1096, 1124, 1135, 1141.
n0 : 373, 374, 375, 376, 377, 378, 380, 382, 383,

384, 464, 465, 467, 468, 508, 513, 515, 517,
519, 521, 523.

n1 : 373, 374, 375, 376, 378, 380, 463, 464, 465,
467, 468, 508, 513, 517, 519, 523.

o: 210, 431, 477.
obliterated : 851, 852, 1000, 1057.
oct primitive: 893.
oct op : 189, 893, 912, 913, 914.
octant : 139, 141, 379, 380, 387, 388, 394, 434,

437, 451, 463, 465, 468, 473, 479, 480, 481,

484, 485, 488, 489, 506, 508, 509, 510, 512,
513, 515, 516, 518, 519, 521, 522.

octant after : 390.
octant before : 390.
octant code : 448, 449, 458, 473, 481, 484.
octant dir : 394, 395, 396, 398, 401, 509.
octant number : 448, 449, 452, 459, 479, 488,

508, 512.
octant subdivide : 402, 419.
odd : 62, 111, 113, 145, 390, 417, 434, 435, 436,

442, 445, 459, 473, 482, 483, 484, 488, 508,
512, 530, 560, 906.

odd primitive: 893.
odd op : 189, 893, 906.
of primitive: 211.
of macro : 226, 227, 705, 733.
of token : 186, 211, 212, 705, 734, 839.
off base : 1187, 1189, 1191, 1195, 1199.
offset prep : 491, 494, 500, 506.
OK : 1051.
OK to interrupt : 83, 91, 92, 93, 653, 825.
old exp : 922, 925, 927, 944.
old p : 922, 925, 926.
old rover : 173.
old setting : 195, 196, 635, 636, 788, 840, 912,

1022, 1163, 1164.
one byte : 1161.
one crossing : 391.
one eighty deg : 106, 139, 141, 292, 544.
oo : 477, 479.
op byte : 1093, 1107, 1112, 1137.
op defining : 659, 664, 665, 694, 700.
open : 256, 258, 262, 263, 271, 272, 273, 280, 282,

284, 285, 865, 868, 870, 874, 875, 877, 879,
885, 887, 888, 889, 890, 891, 896.

open? : 258, 262.
open a window : 574, 1073.
open base file : 779, 1211.
open log file : 73, 87, 679, 788, 789, 791, 793,

895, 1134, 1209.
open parens : 631, 657, 681, 793, 1209.
open window : 186, 211, 212, 1069.
openwindow primitive: 211.
or primitive: 893.
or op : 189, 893, 940.
ord : 20.
oriental characters: 1147.
othercases: 10.
others : 10.
Ouch...clobbered : 1204.
Out of order... : 617.
outer primitive: 1027.

474 PART 52: INDEX METAFONT §1215

outer tag : 186, 242, 249, 254, 668, 759, 850,
1011, 1029, 1041.

output : 4.
Output written... : 1182.
output file name : 791, 792, 1163, 1182.
over : 189, 837, 893, 948.
overflow : 34, 41, 44, 89, 163, 167, 207, 281, 356,

429, 468, 481, 508, 585, 647, 654, 704, 705,
717, 736, 737, 772, 1036, 1107, 1112, 1113,
1114, 1115, 1205.

overflow in arithmetic: 9, 97, 558, 930.
o1 : 452, 453, 458, 459.
o2 : 452, 453, 458, 459.
p: 107, 109, 112, 114, 163, 167, 172, 173, 177, 180,

185, 205, 215, 216, 217, 226, 227, 232, 233, 234,
235, 238, 239, 242, 246, 247, 248, 249, 252, 253,
254, 257, 264, 265, 266, 268, 269, 284, 299, 328,
329, 332, 334, 336, 337, 340, 342, 344, 346, 348,
354, 366, 369, 374, 378, 385, 394, 398, 402, 405,
406, 410, 419, 429, 433, 440, 451, 465, 473, 477,
484, 486, 487, 488, 491, 493, 497, 506, 510, 518,
527, 539, 556, 562, 577, 589, 591, 594, 597, 599,
600, 601, 603, 604, 606, 608, 609, 610, 619, 620,
621, 622, 641, 649, 650, 651, 652, 661, 685, 694,
697, 707, 720, 722, 730, 737, 746, 748, 755,
760, 763, 799, 800, 801, 805, 807, 809, 823,
827, 848, 855, 856, 858, 860, 862, 863, 864,
865, 868, 872, 898, 899, 904, 910, 916, 919,
922, 923, 928, 930, 935, 943, 944, 946, 949,
953, 961, 962, 963, 966, 968, 971, 972, 974,
976, 977, 978, 982, 984, 985, 995, 996, 1001,
1006, 1015, 1046, 1050, 1057, 1059, 1072, 1117,
1118, 1121, 1165, 1186, 1187, 1205.

p over v : 600, 819, 932, 949.
p plus fq : 592, 594, 597, 601, 818, 819, 932,

968, 971, 1010.
p plus q : 597, 932, 1010.
p times v : 599, 943, 969.
p with x becoming q : 601, 614.
pack buffered name : 778, 779.
pack cur name : 784, 786, 793.
pack file name : 774, 784, 793.
pack job name : 784, 788, 791, 1134, 1200.
packed ASCII code : 37, 38.
page : 631.
page stack : 631.
paint row : 3, 564, 566, 568, 569, 571, 578, 579.
paint switch : 1143, 1144.
paint 0 : 1144, 1145, 1159.
paint1 : 1144, 1145, 1159.
paint2 : 1144.
paint3 : 1144.

pair primitive: 1013.
pair node size : 230, 231.
pair to path : 908, 921, 975, 983, 988, 1003, 1062.
pair type : 187, 216, 230, 231, 232, 248, 798, 799,

800, 802, 808, 809, 830, 837, 855, 868, 870,
872, 877, 898, 899, 900, 903, 909, 917, 918,
919, 921, 926, 927, 929, 936, 941, 942, 944,
946, 948, 952, 957, 975, 982, 983, 988, 995,
1001, 1002, 1003, 1013, 1062.

pair value : 982, 984, 987, 988.
panicking : 178, 179, 825, 1213.
param : 1090, 1095, 1096, 1106, 1115, 1140.
param ptr : 633, 649, 650, 657, 736, 737.
param size : 12, 214, 633, 677, 697, 704, 705,

736, 737, 1208.
param stack : 632, 633, 639, 640, 650, 676, 677,

720, 736, 737.
param start : 632, 639, 640, 649, 650, 676, 677.
param type : 186, 227, 695, 696, 697, 703.
parameter : 632, 638, 677.
parent : 229, 236, 239, 240, 241, 245.
Pascal-H: 3, 4, 9, 10, 26, 27, 32, 33.
Pascal: 1, 10.
pass text : 706, 742, 749, 751.
Path at line... : 257.
path primitive: 1013.
path intersection : 562, 988.
path join : 186, 211, 212, 874, 881, 886, 887.
path length : 915, 916, 978.
path size : 11, 279, 280, 281, 283, 284.
path tail : 266, 267, 1065.
path trans : 952, 962.
path type : 187, 216, 248, 621, 798, 802, 804,

808, 809, 855, 868, 870, 885, 891, 908, 915,
917, 918, 919, 920, 921, 952, 975, 983, 988,
1003, 1013, 1062.

Paths don’t touch : 887.
pause for instructions : 91, 93.
pausing : 190, 192, 193, 682.
pausing primitive: 192.
pd : 357, 358, 360.
Pen cycle must be convex : 478.
Pen path must be a cycle : 865.
Pen too large : 478.
pen primitive: 1013.
pen circle : 189, 893, 895.
pencircle primitive: 893.
pen edge : 433, 435, 438, 440, 442, 443.
pen head : 484.
pen node size : 175, 472, 477, 487.
penoffset primitive: 893.
pen offset of : 189, 893, 983.

§1215 METAFONT PART 52: INDEX 475

pen type : 187, 216, 248, 621, 798, 802, 804, 808,
809, 855, 865, 895, 918, 919, 921, 952, 962, 983,
1003, 1013, 1052, 1053, 1054, 1055.

percent class : 198, 199, 217, 669.
period class : 198, 199, 669.
perturbation : 1118, 1119, 1120, 1121, 1122, 1123,

1124, 1126.
phi : 541, 542, 544.
picture primitive: 1013.
picture type : 187, 216, 248, 621, 798, 802, 804,

808, 809, 855, 895, 898, 903, 918, 919, 921, 929,
952, 1003, 1013, 1057, 1061, 1070.

pixel color : 565, 566, 568, 580.
plain : 776, 779, 1203.
Please type... : 679, 786.
plus : 189, 859, 893, 898, 922, 930.
plus or minus : 186, 823, 836, 837, 893, 894.
pm : 357, 358, 360.
point primitive: 893.
point of : 189, 893, 983, 987.
pointer : 158, 159, 161, 163, 166, 167, 172, 173,

177, 178, 180, 185, 200, 205, 215, 216, 225, 226,
227, 232, 233, 234, 235, 238, 239, 242, 246, 247,
248, 249, 250, 252, 253, 254, 257, 264, 265, 266,
267, 268, 269, 280, 284, 299, 326, 327, 328, 329,
332, 333, 334, 336, 337, 340, 342, 344, 346, 348,
354, 366, 369, 373, 374, 378, 385, 394, 398, 402,
403, 405, 406, 410, 419, 427, 429, 433, 440, 451,
465, 473, 476, 477, 484, 486, 487, 488, 491, 493,
497, 506, 510, 511, 518, 527, 539, 556, 562, 577,
589, 591, 592, 594, 597, 599, 600, 601, 603, 604,
606, 607, 608, 609, 610, 619, 620, 621, 622, 633,
649, 650, 651, 652, 661, 685, 694, 697, 707, 718,
720, 722, 723, 730, 737, 738, 746, 748, 752, 755,
760, 763, 799, 800, 801, 805, 807, 809, 813, 823,
827, 843, 848, 851, 855, 856, 858, 860, 862, 863,
864, 865, 868, 871, 872, 898, 904, 910, 916, 919,
922, 923, 928, 930, 935, 943, 944, 946, 949,
953, 961, 962, 963, 966, 968, 971, 972, 974,
976, 977, 978, 982, 984, 985, 995, 996, 1001,
1006, 1011, 1015, 1031, 1032, 1035, 1046, 1050,
1057, 1059, 1071, 1072, 1074, 1117, 1118, 1121,
1125, 1165, 1186, 1187, 1205.

pool file : 47, 50, 51, 52, 53.
pool name : 11, 51.
pool pointer : 37, 38, 45, 46, 59, 60, 77, 210, 707,

768, 774, 913, 976, 1160.
pool ptr : 37, 38, 40, 41, 43, 44, 47, 52, 58, 771,

780, 1045, 1163, 1192, 1193, 1204.
pool size : 11, 37, 41, 52, 58, 780, 1045, 1193, 1208.
pop input : 648, 650, 655.
post : 1142, 1144, 1145, 1146, 1148, 1182.

post head : 842, 843, 844, 845, 851, 852, 854.
post post : 1144, 1145, 1146, 1148, 1182.
postcontrol primitive: 893.
postcontrol of : 189, 893, 983, 987.
pp : 242, 243, 244, 245, 265, 266, 334, 335, 340,

341, 366, 367, 368, 406, 413, 414, 415, 416,
417, 418, 440, 444, 445, 446, 556, 558, 562,
589, 590, 594, 595, 597, 598, 755, 765, 809,
816, 868, 885, 886, 887, 889, 890, 966, 970,
978, 980, 981, 1006, 1009, 1010.

pre : 1142, 1144, 1145, 1163.
pre head : 842, 843, 844, 850, 851, 852, 853, 854.
precontrol primitive: 893.
precontrol of : 189, 893, 983, 987.
prev dep : 587, 603, 606, 617, 799, 811, 816, 827,

931, 947, 1007.
prev m : 1165, 1169, 1170, 1171.
prev n : 1165, 1167, 1172, 1174.
prev r : 610, 614.
prev w : 348, 349, 350, 1165, 1169, 1170, 1171.
primary primitive: 695.
primary binary : 186, 189, 823, 839, 893, 894.
primarydef primitive: 683.
primary macro : 226, 227, 695, 733.
primitive : 192, 210, 211, 212, 625, 683, 688, 695,

709, 740, 893, 1013, 1018, 1024, 1027, 1037,
1052, 1079, 1101, 1108, 1176, 1203, 1204.

print : 54, 59, 60, 62, 66, 68, 79, 80, 81, 84, 85, 89,
90, 94, 122, 128, 134, 187, 189, 197, 212, 217,
218, 219, 221, 222, 227, 235, 237, 257, 258, 259,
260, 261, 262, 263, 332, 372, 394, 397, 398, 401,
509, 510, 515, 521, 589, 613, 625, 638, 639, 643,
644, 663, 664, 665, 682, 684, 689, 696, 710, 721,
723, 725, 734, 741, 750, 754, 786, 788, 790, 802,
804, 805, 807, 817, 824, 832, 839, 851, 900, 902,
923, 924, 945, 997, 998, 999, 1002, 1008, 1019,
1025, 1028, 1032, 1034, 1038, 1041, 1043, 1045,
1048, 1050, 1053, 1057, 1080, 1098, 1102, 1105,
1109, 1123, 1139, 1140, 1163, 1164, 1180, 1182,
1192, 1194, 1196, 1200, 1208, 1209, 1212, 1213.

print arg : 721, 723, 728, 734.
print capsule : 217, 219, 224, 1042.
print char : 58, 59, 60, 63, 64, 65, 77, 85, 89, 90,

103, 104, 157, 184, 185, 189, 197, 209, 212, 219,
220, 221, 222, 223, 224, 227, 237, 254, 259, 263,
332, 333, 372, 373, 394, 398, 401, 509, 589, 590,
602, 603, 613, 626, 637, 643, 681, 689, 725,
762, 790, 793, 802, 803, 806, 817, 824, 900,
902, 914, 924, 945, 990, 998, 1002, 1008, 1022,
1041, 1042, 1045, 1046, 1050, 1057, 1134, 1163,
1164, 1165, 1182, 1194, 1200, 1205, 1213.

print cmd mod : 212, 227, 625, 626, 751, 824, 839,

476 PART 52: INDEX METAFONT §1215

990, 1041, 1043, 1209, 1213.
print dd : 65, 790, 1163.
print dependency : 589, 613, 805, 817, 1050.
print diagnostic : 197, 257, 332, 372, 394, 473.
print dp : 802, 803, 805.
print edges : 332, 804, 1165.
print err : 67, 68, 88, 89, 90, 93, 94, 99, 122, 128,

134, 140, 270, 340, 342, 398, 404, 478, 602,
623, 661, 663, 670, 672, 675, 691, 701, 703,
708, 712, 713, 725, 726, 751, 786, 795, 807,
824, 832, 838, 851, 865, 887, 914, 963, 965,
990, 991, 1004, 1008, 1015, 1016, 1017, 1032,
1034, 1051, 1056, 1057, 1067, 1073, 1074, 1086,
1098, 1105, 1107, 1110.

print exp : 224, 639, 723, 762, 801, 807, 902, 924,
945, 997, 998, 1040, 1046.

print file name : 773, 786.
print int : 64, 79, 89, 103, 157, 181, 182, 183, 184,

185, 197, 209, 222, 237, 332, 333, 372, 397, 398,
509, 515, 521, 617, 637, 661, 723, 790, 832, 914,
1045, 1105, 1139, 1140, 1163, 1164, 1165, 1182,
1192, 1194, 1196, 1200, 1209, 1213.

print known or unknown type : 900, 901, 923.
print ln : 57, 58, 61, 62, 66, 81, 84, 85, 86, 157,

195, 257, 394, 473, 638, 643, 656, 665, 679,
682, 721, 788, 793, 1023, 1041, 1043, 1045,
1165, 1192, 1194, 1196.

print locs : 180.
print macro name : 721, 722, 725, 726, 734.
print nl : 62, 68, 77, 79, 80, 86, 181, 182, 183, 184,

185, 195, 197, 209, 254, 257, 259, 332, 333, 372,
373, 394, 397, 398, 473, 474, 509, 510, 515, 521,
603, 613, 617, 626, 637, 638, 639, 665, 679, 723,
725, 762, 786, 788, 807, 817, 902, 924, 945,
994, 997, 998, 1022, 1040, 1041, 1045, 1046,
1048, 1050, 1082, 1123, 1128, 1134, 1139, 1140,
1169, 1182, 1200, 1205, 1209, 1212.

print op : 189, 894, 901, 902, 923, 924.
print path : 257, 269, 402, 804.
print pen : 473, 477, 484, 804.
print scaled : 103, 104, 122, 128, 134, 157, 220,

254, 259, 260, 263, 589, 590, 602, 603, 802, 803,
817, 912, 945, 1008, 1022, 1042, 1123.

print spec : 394, 402.
print strange : 398, 399, 1068.
print the digs : 63, 64.
print two : 104, 258, 261, 394, 473, 510.
print two true : 394, 397, 474, 509, 515, 521.
print type : 187, 189, 802, 804, 806, 900, 1002,

1014, 1057.
print variable name : 235, 589, 603, 613, 664, 802,

803, 806, 817, 1046, 1048, 1050, 1213.

print weight : 332, 333.
print word : 157, 1213.
procrustes : 404.
progression node size : 752, 763, 765.
prompt file name : 786, 789, 791, 793, 1134, 1200.
prompt input : 66, 78, 82, 679, 682, 786, 897.
proofing : 190, 192, 193, 994, 1070, 1147, 1165,

1177.
proofing primitive: 192.
protection command : 186, 1026, 1027, 1028.
proto dependent : 187, 216, 248, 588, 589, 594, 597,

599, 601, 603, 610, 612, 798, 799, 800, 802, 808,
809, 812, 813, 815, 817, 818, 819, 855, 857, 903,
932, 943, 949, 968, 969, 971, 972, 1003, 1010.

pseudo : 54, 57, 58, 59, 60, 642.
psi : 279, 281, 290, 294, 297.
push input : 647, 649, 654.
put : 25, 28, 1188.
put get error : 270, 340, 342, 404, 478, 623, 820,

865, 873, 887, 901, 914, 923, 950, 955, 963,
965, 993, 999, 1000, 1002, 1004, 1008, 1015,
1016, 1051, 1057, 1067, 1068, 1073, 1074, 1082,
1086, 1098, 1105, 1106, 1178.

put get flush error : 716, 754, 820, 830, 852, 872,
876, 878, 883, 892, 937, 960, 1021, 1055, 1056,
1060, 1061, 1062, 1071, 1103, 1112, 1115.

pyth add : 124, 145, 281, 454, 530, 533, 866,
915, 951.

pyth sub : 126, 951.
pythag add : 189, 893, 951.
pythag sub : 189, 893, 951.
Pythagorean... : 128.
q: 107, 109, 112, 114, 117, 121, 145, 167, 172, 173,

177, 180, 185, 216, 217, 227, 232, 233, 235, 239,
242, 246, 247, 249, 252, 253, 254, 257, 264, 265,
266, 268, 269, 284, 299, 311, 328, 329, 332, 333,
336, 337, 340, 342, 344, 346, 348, 354, 366, 369,
385, 394, 398, 402, 405, 406, 410, 419, 433, 440,
451, 465, 477, 491, 493, 506, 518, 527, 539, 556,
577, 589, 594, 597, 601, 603, 604, 606, 608, 609,
610, 619, 620, 621, 622, 641, 685, 694, 697, 720,
722, 723, 746, 755, 760, 763, 801, 805, 809, 823,
827, 851, 855, 858, 863, 865, 868, 871, 898, 919,
922, 928, 930, 935, 943, 946, 949, 953, 961, 962,
966, 968, 972, 978, 985, 996, 1001, 1006, 1015,
1046, 1059, 1117, 1121, 1165, 1186, 1187.

qi : 155, 1107, 1110, 1111, 1112, 1113, 1137, 1192.
qo : 155, 1110, 1111, 1133, 1193.
qq : 229, 242, 245, 265, 266, 334, 366, 367, 368,

406, 413, 414, 415, 416, 417, 418, 556, 558,
594, 595, 596, 597, 598, 868, 885, 886, 887,
890, 966, 970, 978, 980, 981.

§1215 METAFONT PART 52: INDEX 477

qqq : 229.
qqqq : 153, 156, 157, 1188, 1189.
qqq1 : 229.
qqq2 : 229.
qq1 : 229.
qq2 : 229.
quad : 1095.
quad code : 1095.
quadrant subdivide : 402, 406, 426.
quarter unit : 101.
quarterword : 153, 156, 189, 627, 649, 823, 895,

898, 899, 901, 910, 913, 919, 922, 923, 930,
953, 960, 962, 963, 966, 985.

quote : 688, 690.
quote primitive: 688.
q1 : 229.
q2 : 229.
r: 117, 124, 126, 145, 167, 173, 177, 180, 217, 227,

233, 235, 239, 242, 246, 247, 268, 284, 311, 332,
334, 336, 337, 340, 344, 346, 348, 354, 366, 373,
374, 378, 402, 406, 410, 419, 451, 465, 476, 477,
491, 493, 506, 518, 527, 567, 568, 577, 594, 597,
599, 600, 601, 604, 606, 610, 621, 622, 694, 697,
720, 809, 823, 855, 858, 863, 868, 922, 928, 930,
946, 953, 966, 968, 971, 1006, 1104, 1117, 1121.

r delim : 697, 703, 720, 725, 726, 727, 729, 730,
731, 735, 823, 826, 830, 1031, 1032.

r packets : 553, 558, 560.
Ramshaw, Lyle Harold: 2, 469, 1087.
random seed : 186, 211, 212, 1020.
randomseed primitive: 211.
randoms : 148, 149, 150, 151, 152.
rd : 357, 358, 359.
read : 52, 53, 1212, 1213.
read ln : 52.
readstring primitive: 893.
read string op : 189, 893, 895.
ready already : 1203, 1204.
real : 3, 120.
recursion: 71, 73, 217, 224, 246, 706, 719, 748,

796, 995, 1041.
recycle value : 224, 246, 247, 650, 763, 808, 809,

810, 829, 873, 903, 910, 922, 925, 935, 944,
955, 968, 970, 972, 1000, 1001.

reduce angle : 292, 293.
Redundant equation : 623.
Redundant or inconsistent equation : 1004.
ref count : 226, 475, 477, 487, 694, 697, 854,

862, 864, 868.
reference counts: 42, 226, 472, 475, 632.
relax : 186, 211, 212, 686, 706, 707.
rem byte : 1093, 1107, 1112, 1137.

remainder : 1091, 1092, 1093, 1096.
remove cubic : 405, 417, 447, 492.
rep : 1094.
repeat loop : 186, 706, 707, 759, 1043.
reset : 25, 26, 32.
reset OK : 26.
restart : 15, 167, 168, 667, 668, 670, 672, 676,

677, 679, 681, 691, 823, 853, 854, 855, 862,
864, 868, 1001, 1003.

restore cur exp : 801.
result : 45, 1054, 1056.
resume iteration : 706, 712, 755, 760, 763.
reswitch : 15, 748.
retrograde line... : 510.
return: 15, 16.
return sign : 117, 118.
rev turns : 452, 454, 455, 456, 1064.
reverse : 189, 893, 921.
reverse primitive: 893.
reversed : 977, 978.
rewrite : 25, 26, 32.
rewrite OK : 26.
rh : 153, 156, 157, 161, 200.
rhs : 1059, 1062, 1064, 1065, 1066, 1067.
Riesenfeld, Richard Franklin: 303.
right brace : 186, 211, 212, 875.
right bracket : 186, 211, 212, 846, 859, 861, 1012.
right bracket class : 198, 199, 220, 221.
right class : 528, 531, 532, 534, 535.
right col : 567, 572, 574, 577, 581, 583, 584.
right curl : 256, 263, 271, 282, 294, 890, 891.
right delimiter : 186, 203, 726, 727, 731, 735,

1030, 1031, 1032, 1043.
right edge : 580, 581, 582.
right given : 256, 263, 282, 293, 301, 879, 888, 889.
right octant : 393, 451, 452, 458, 459.
right paren class : 198, 199, 219, 222.
right tension : 256, 258, 260, 288, 289, 294, 295,

299, 300, 302, 881, 882, 886, 887.
right transition : 393, 459, 509, 517, 523.
right type : 255, 256, 258, 263, 265, 266, 269, 271,

272, 273, 282, 285, 290, 299, 302, 393, 394, 405,
407, 409, 410, 411, 412, 413, 414, 415, 416, 417,
418, 421, 423, 424, 425, 426, 434, 435, 436, 437,
438, 439, 441, 442, 443, 445, 447, 450, 451, 452,
454, 457, 466, 479, 481, 486, 491, 494, 497, 499,
512, 515, 518, 521, 528, 539, 562, 563, 870, 871,
874, 879, 880, 884, 885, 888, 889, 890, 891,
896, 921, 962, 978, 987, 1065, 1066.

right u : 528, 531, 532, 534, 535, 537.
right x : 255, 256, 261, 265, 266, 271, 282, 299,

302, 393, 397, 404, 405, 407, 409, 410, 411,

478 PART 52: INDEX METAFONT §1215

412, 415, 416, 418, 419, 421, 423, 424, 425,
434, 436, 441, 444, 447, 457, 468, 486, 492,
496, 512, 518, 528, 543, 558, 563, 866, 884,
890, 896, 962, 987, 1065, 1066.

right y : 255, 256, 261, 265, 266, 271, 282, 299,
302, 393, 397, 404, 405, 410, 413, 414, 415, 416,
419, 423, 424, 425, 437, 439, 444, 447, 457, 468,
486, 492, 496, 512, 518, 528, 543, 558, 563, 866,
884, 890, 896, 962, 987, 1065, 1066.

ring delete : 620, 809.
ring merge : 622, 1003.
rising : 497.
rlink : 166, 167, 168, 169, 171, 172, 173, 174, 176,

182, 1194, 1195, 1207.
rm : 357, 358, 359.
root : 188, 229, 230, 234, 239, 254, 702.
rotated primitive: 893.
rotated by : 189, 893, 952, 957.
round decimals : 102, 103, 674.
round fraction : 119, 590, 600, 817, 819, 906,

958, 1010.
round unscaled : 119, 374, 375, 376, 575, 576, 906,

912, 965, 977, 1056, 1070, 1071, 1073, 1103,
1106, 1137, 1163, 1165, 1181, 1200.

rover : 166, 167, 168, 169, 170, 171, 172, 173, 174,
176, 182, 1194, 1195, 1207.

row node size : 325, 330, 331, 334, 341, 352, 353,
354, 355, 358, 364, 385.

row transition : 578, 579, 580, 582, 583, 584.
rr : 242, 245, 266, 299, 300, 334, 335, 340, 366,

368, 922, 939, 978, 980.
rt : 286, 289, 294, 295, 299, 302.
runaway : 163, 663, 665.
r0 : 574, 575, 576, 1073.
r1 : 229, 574, 575, 1073.
s: 43, 45, 46, 58, 59, 60, 62, 88, 89, 90, 94, 103,

167, 172, 197, 210, 232, 242, 257, 280, 284,
311, 332, 337, 340, 342, 344, 346, 348, 354,
394, 398, 402, 406, 419, 465, 473, 477, 488,
495, 497, 506, 518, 527, 594, 597, 599, 600,
601, 604, 610, 754, 755, 784, 786, 807, 809,
824, 930, 943, 949, 966, 977, 1160.

s scale : 585, 589, 608, 610, 817.
safety margin : 402.
save primitive: 211.
save boundary item : 250, 832.
save command : 186, 211, 212, 1033.
save cond ptr : 748, 749.
save exp : 651, 718.
save flag : 824.
save internal : 253, 1034.
save node size : 250, 252, 253, 254.

save ptr : 250, 251, 252, 253, 254.
save type : 651.
save variable : 252, 1033.
save word : 242, 244.
SAVED : 235.
saved equiv : 250, 252, 254.
saved root : 188, 230, 235, 247, 249.
saving : 249.
sc : 153, 156, 157, 229, 255, 472, 752, 961.
scaled : 101, 102, 103, 104, 105, 112, 114, 116, 119,

121, 132, 135, 150, 151, 152, 153, 156, 187, 190,
194, 214, 215, 228, 229, 250, 259, 279, 280, 286,
296, 299, 304, 306, 311, 369, 374, 387, 388, 389,
390, 402, 403, 406, 410, 419, 426, 427, 429, 430,
431, 432, 433, 434, 440, 463, 477, 486, 488, 497,
510, 511, 527, 539, 542, 555, 574, 585, 587, 588,
594, 599, 600, 602, 607, 612, 798, 808, 820, 836,
865, 868, 875, 916, 917, 935, 944, 946, 949, 954,
961, 968, 971, 972, 974, 978, 982, 985, 1073,
1096, 1098, 1117, 1118, 1119, 1120, 1121, 1128,
1129, 1130, 1144, 1146, 1147, 1182, 1205.

Scaled picture...big : 340, 342.
scaled primitive: 893.
scaled by : 189, 893, 952, 957.
scaled threshold : 594, 597.
scaling down : 599, 600.
scan declared variable : 700, 1011, 1015.
scan def : 697, 992.
scan direction : 875, 879, 880.
scan expression : 706, 729, 733, 734, 764, 765,

796, 798, 821, 826, 830, 839, 846, 859, 861,
868, 876, 877, 878, 892, 993, 995, 996, 1021,
1040, 1054, 1059, 1070, 1071, 1072, 1073, 1082,
1103, 1106, 1112, 1115, 1177.

scan file name : 781, 795.
scan primary : 706, 716, 733, 734, 796, 798, 821,

823, 835, 837, 839, 842, 862, 882, 884, 893,
1059, 1071, 1074.

scan secondary : 706, 733, 796, 798, 821, 862, 864.
scan suffix : 706, 729, 735, 764, 840, 860.
scan tertiary : 706, 733, 796, 798, 821, 864,

868, 869.
scan text arg : 729, 730, 733.
scan tokens : 186, 211, 212, 706, 707.
scantokens primitive: 211.
scan toks : 685, 694, 698, 758.
scan with : 1054, 1062, 1074.
scanner status : 659, 660, 661, 663, 664, 665, 694,

697, 700, 730, 742, 758, 991, 1016.
screen col : 565, 566, 567, 568, 572, 580.
screen depth : 11, 565, 567, 568, 575.
screen OK : 569, 570, 574, 577.

§1215 METAFONT PART 52: INDEX 479

screen pixel : 566, 567, 568.
screen row : 565, 566, 567, 568, 572.
screen started : 569, 570.
screen width : 11, 565, 567, 568, 575.
scroll mode : 66, 68, 79, 81, 88, 786, 1024,

1025, 1084.
scrollmode primitive: 1024.
search mem : 178, 185, 1213.
second octant : 139, 141, 380, 387, 388, 396, 435,

443, 449, 461, 462.
secondary primitive: 695.
secondary binary : 186, 893, 894.
secondarydef primitive: 683.
secondary macro : 226, 227, 695, 696, 733.
secondary primary macro : 186, 249, 683, 684,

862, 1035, 1043.
see the transcript file... : 1209.
seed : 150.
selector : 54, 55, 57, 58, 59, 60, 62, 66, 70, 81,

86, 87, 93, 195, 635, 636, 642, 679, 788,
789, 804, 840, 912, 1022, 1023, 1163, 1164,
1200, 1205, 1209.

semicolon : 186, 211, 212, 713, 732, 832, 989, 990,
991, 1017, 1051, 1070.

sentinel : 175, 177, 324, 328, 330, 331, 332, 335,
339, 343, 344, 345, 346, 347, 348, 349, 355, 356,
358, 364, 367, 368, 369, 582, 1169.

serial no : 585, 587, 1198, 1199.
set controls : 297, 298, 299, 301.
set min max : 554, 558, 559.
set output file name : 791, 1163.
set tag : 1104, 1106, 1111, 1113.
set trick count : 642, 643, 644, 646.
set two : 387, 388.
set two end : 387.
set up direction time : 983, 984.
set up known trans : 960, 962, 963, 967.
set up offset : 983, 984.
set up trans : 953, 960, 970.
seventh octant : 139, 141, 380, 387, 388, 396, 435,

443, 449, 461, 462.
sf : 116, 297, 298, 299, 300, 301.
shifted primitive: 893.
shifted by : 189, 893, 952, 957.
ship out : 1070, 1149, 1165, 1175.
shipout primitive: 211.
ship out command : 186, 211, 212, 1069.
show primitive: 1037.
show cmd mod : 626, 713, 895.
show code : 1037, 1038, 1040, 1051.
show command : 186, 1037, 1038, 1039.

show context : 54, 73, 77, 83, 634, 635, 644,
786, 789, 793.

show cur cmd mod : 626, 707, 832, 992.
showdependencies primitive: 1037.
show dependencies code : 1037, 1051.
show macro : 227, 645, 721, 1041, 1048.
showstats primitive: 1037.
show stats code : 1037, 1038, 1051.
showtoken primitive: 1037.
show token code : 1037, 1038, 1051.
show token list : 217, 224, 227, 235, 639, 640,

645, 646, 665, 722, 723, 762, 840, 851, 998,
1043, 1057, 1213.

showvariable primitive: 1037.
show var code : 1037, 1038, 1051.
showstopping : 190, 192, 193, 1051.
showstopping primitive: 192.
si : 37, 41, 85, 1193.
sind primitive: 893.
sin d op : 189, 893, 906.
sine : 280, 281, 299, 300.
single dependency : 608, 829, 855, 858, 1007, 1009.
sixth octant : 139, 141, 379, 380, 387, 388, 395,

396, 443, 448, 449, 461, 462, 488.
skew : 387, 389, 421, 445, 447, 451, 457, 481.
skew line edges : 508, 510, 517, 523.
skimp : 1121, 1124, 1126.
skip byte : 1093, 1107, 1110, 1111, 1112, 1137.
skip error : 1110, 1111.
skip table : 1096, 1097, 1110, 1111, 1139.
skip to : 186, 211, 212, 1107.
skipto primitive: 211.
skipping : 659, 661, 742.
skip0 : 1144, 1145, 1173.
skip1 : 1144, 1145, 1174.
skip2 : 1144.
skip3 : 1144.
slant : 1095.
slant code : 1095.
slanted primitive: 893.
slanted by : 189, 893, 952, 957.
slash : 186, 837, 893, 894.
slow add : 100, 594, 597, 930, 931, 933.
slow case down : 378, 380.
slow case up : 378, 380.
slow print : 60, 61, 79, 219, 223, 254, 638, 664,

722, 725, 773, 790, 793, 802, 994, 998, 999,
1032, 1034, 1041, 1042, 1043, 1082, 1086, 1134,
1182, 1200, 1205, 1213.

small computers: 95.
small number : 101, 102, 121, 135, 139, 145, 187,

210, 217, 230, 232, 238, 248, 311, 387, 388, 390,

480 PART 52: INDEX METAFONT §1215

394, 451, 453, 477, 589, 594, 597, 599, 600, 601,
610, 621, 651, 685, 738, 746, 778, 796, 801, 805,
809, 843, 875, 900, 930, 935, 943, 949, 966,
1001, 1015, 1054, 1098, 1104, 1123, 1177, 1209.

smooth bot : 511, 512, 517, 518, 523.
smooth moves : 321, 468, 517, 523.
smooth top : 511, 512, 517, 518, 523.
smoothing : 190, 192, 193, 468, 517, 523.
smoothing primitive: 192.
so : 37, 45, 59, 60, 85, 210, 223, 717, 774, 913,

976, 977, 1103, 1160, 1192.
solve choices : 278, 284.
some chardps... : 1123.
some charhts... : 1123.
some charics... : 1123.
some charwds... : 1123.
Some number got too big : 270.
Sorry, I can’t find... : 779.
sort avail : 173, 1194.
sort edges : 346, 348, 354, 578, 1169.
sort in : 1117, 1124, 1126.
sorted : 324, 325, 328, 330, 331, 332, 335, 339, 343,

344, 345, 346, 347, 348, 349, 355, 356, 358, 364,
367, 368, 369, 385, 580, 582, 1169.

sorted loc : 325, 335, 345, 347, 368.
south edge : 435, 438.
space : 1095.
space class : 198, 199, 669.
space code : 1095.
space shrink : 1095.
space shrink code : 1095.
space stretch : 1095.
space stretch code : 1095.
spec atan : 137, 138, 143, 147.
spec head : 506.
spec log : 129, 131, 133, 136.
special primitive: 1176.
special command : 186, 1175, 1176, 1180.
split cubic : 410, 411, 412, 415, 416, 424, 425,

493, 980, 981, 986.
split for offset : 493, 499, 503, 504.
spotless : 71, 72, 195, 1204, 1209.
sqrt primitive: 893.
sqrt op : 189, 893, 906.
Square root...replaced by 0 : 122.
square rt : 121, 122, 906.
ss : 242, 243, 245, 299, 300, 334, 335, 340, 978, 980.
st : 116, 297, 298, 299, 300, 301.
st count : 200, 203, 207, 1196, 1197, 1208.
stack argument : 737, 760.
stack dx : 553, 559, 561.
stack dy : 553, 559, 561.

stack l : 309, 312, 314.
stack m : 309, 312, 314.
stack max : 553, 554, 556.
stack min : 553, 554, 556.
stack n : 309, 312, 314.
stack r : 309, 312, 314.
stack s : 309, 312, 314.
stack size : 11, 628, 634, 647, 1208.
stack tol : 553, 559, 561.
stack uv : 553, 559, 561.
stack xy : 553, 559, 561.
stack x1 : 309, 312, 314.
stack x2 : 309, 312, 314.
stack x3 : 309, 312, 314.
stack y1 : 309, 312, 314.
stack y2 : 309, 312, 314.
stack y3 : 309, 312, 314.
stack 1 : 553, 554, 559, 560.
stack 2 : 553, 554, 559, 560.
stack 3 : 553, 554, 559, 560.
start : 627, 629, 630, 632, 644, 645, 649, 650, 654,

655, 657, 679, 681, 682, 714, 717, 794, 897.
start decimal token : 667, 669.
start def : 683, 684, 697, 698, 700.
start field : 627, 629.
start forever : 683, 684, 755.
start here : 5, 1204.
start input : 706, 709, 711, 793, 1211.
start numeric token : 667, 669.
start of MF : 6, 1204.
start screen : 570, 574.
start sym : 1076, 1077, 1078, 1198, 1199, 1204.
stash cur exp : 651, 718, 728, 734, 760, 764, 799,

800, 801, 837, 839, 848, 859, 862, 863, 864, 868,
926, 946, 955, 970, 988, 995, 1000.

stash in : 827, 830, 903.
stat: 7, 160, 163, 164, 165, 167, 172, 177, 207,

508, 510, 515, 521, 1045, 1134, 1205.
step primitive: 211.
step size : 752, 760, 761, 765.
step token : 186, 211, 212, 764.
Stern, Moritz Abraham: 526.
Stolfi, Jorge: 469.
stop : 186, 732, 991, 1017, 1018, 1019.
stop flag : 1093, 1107, 1110.
stop iteration : 706, 714, 760, 763, 1209.
store base file : 1186, 1209.
str primitive: 211.
str eq buf : 45, 205.
str number : 37, 38, 42, 43, 44, 45, 46, 47, 62, 74,

88, 89, 90, 94, 190, 197, 210, 214, 257, 332, 394,

§1215 METAFONT PART 52: INDEX 481

395, 398, 473, 754, 767, 774, 780, 782, 784, 785,
786, 791, 807, 824, 976, 977, 1087, 1160, 1183.

str op : 186, 211, 212, 823.
str pool : 37, 38, 41, 44, 45, 46, 47, 59, 60, 85, 200,

210, 223, 630, 707, 717, 774, 913, 976, 977,
1103, 1160, 1192, 1193, 1208.

str ptr : 37, 38, 40, 43, 44, 47, 59, 60, 210, 218,
772, 780, 793, 798, 1045, 1163, 1192, 1193,
1199, 1200, 1204.

str ref : 42, 43, 44, 48, 52, 207, 793, 1193, 1200.
str room : 41, 207, 671, 771, 780, 897, 912, 976,

977, 1200, 1205.
str start : 37, 38, 39, 40, 43, 44, 45, 46, 47, 59,

60, 85, 200, 210, 223, 717, 772, 774, 913, 976,
977, 1103, 1160, 1163, 1192, 1193.

str to num : 912, 913.
str vs str : 46, 936, 1004.
Strange path... : 1068.
String contains illegal digits : 914.
string pool: 47, 1191.
string primitive: 1013.
string class : 198, 199, 219, 669.
string token : 186, 671, 678, 691, 743, 823.
string type : 187, 189, 214, 216, 219, 248, 621, 651,

716, 798, 802, 808, 809, 833, 840, 855, 895,
897, 912, 915, 918, 919, 936, 975, 993, 1003,
1004, 1013, 1082, 1103, 1176, 1177.

string vacancies : 11, 52.
structured : 187, 188, 228, 229, 239, 242, 243,

246, 247, 809, 850, 1046.
structured root : 188, 229, 236, 239.
subpath primitive: 893.
subpath of : 189, 893, 975.
subscr : 188, 229, 236, 239, 244, 246, 247, 1047.
subscr head : 228, 229, 239, 240, 244, 246, 247,

1047.
subscr head loc : 228, 240, 241, 244, 246.
subscr node size : 229, 240, 244, 246, 247.
subscript : 229, 236, 240, 244.
subscript loc : 229, 244.
subst list : 685, 686.
substring primitive: 893.
substring of : 189, 893, 975.
succumb : 88, 89, 90.
SUFFIX : 222.
suffix primitive: 695.
suffix base : 214, 222, 676, 677, 683, 690, 695, 696,

697, 705, 726, 729, 755, 764.
suffix count : 685, 690.
suffix macro : 226, 227, 705, 733.
suffixed macro : 187, 700, 798, 809, 845, 1048.
sum : 378.

switch : 667, 669, 670, 672.
switch x and y : 139, 406, 423, 424, 441, 442,

445, 480, 489.
sx : 601.
symmetric : 527, 528, 530.
sys day : 194, 196, 790, 1211.
sys month : 194, 196, 790.
sys time : 194, 196, 790, 1211.
sys year : 194, 196, 790.
system dependencies: 2, 3, 4, 9, 10, 11, 12, 19, 21,

22, 25, 26, 27, 31, 32, 33, 34, 36, 37, 49, 56,
59, 61, 67, 76, 79, 91, 107, 109, 153, 155, 156,
194, 199, 564, 567, 568, 631, 637, 654, 766,
767, 768, 769, 770, 771, 772, 773, 774, 775,
776, 778, 780, 781, 793, 794, 1148, 1152, 1154,
1189, 1203, 1204, 1205, 1212, 1214.

s1 : 77, 83.
s2 : 77, 83.
s3 : 77, 83.
t: 46, 116, 139, 145, 167, 187, 197, 238, 242, 246,

280, 284, 311, 321, 340, 342, 344, 398, 406,
410, 419, 493, 495, 497, 542, 589, 594, 597,
601, 603, 604, 610, 621, 649, 801, 805, 809,
843, 855, 860, 868, 875, 899, 900, 930, 935,
943, 949, 968, 972, 974, 1001, 1006, 1011, 1015,
1029, 1054, 1057, 1104, 1160, 1163.

t of the way : 410, 411, 415, 424, 499, 503,
504, 547, 548.

t of the way end : 410.
t open in : 32, 36.
t open out : 32, 1204.
tag : 1091, 1092.
tag token : 186, 202, 229, 234, 242, 249, 254, 702,

823, 844, 850, 860, 1011, 1035, 1043, 1049.
tail : 720, 724, 728, 734, 842, 843, 844, 845.
tail end : 685.
take fraction : 109, 112, 116, 125, 127, 151, 152,

281, 287, 288, 289, 290, 291, 294, 295, 296,
297, 299, 300, 302, 375, 376, 410, 436, 439,
444, 454, 498, 516, 522, 530, 533, 543, 594,
595, 596, 599, 943, 944.

take part : 909, 910, 939.
take scaled : 112, 594, 595, 596, 599, 942, 943,

961, 968, 971, 974.
tally : 54, 55, 57, 58, 217, 227, 235, 636, 639,

640, 641, 642, 643.
tarnished : 926, 927, 928, 944.
tats: 7.
temp head : 175, 335, 346, 347, 349, 351, 484,

594, 597, 599, 600, 601, 612, 616, 1117, 1118,
1121, 1124, 1126.

temp val : 175, 910, 911.

482 PART 52: INDEX METAFONT §1215

tension : 186, 211, 212, 881.
tension primitive: 211.
term and log : 54, 57, 58, 66, 70, 87, 195, 788,

804, 1200, 1209.
term in : 31, 32, 33, 35, 36, 66, 1212, 1213.
term input : 66, 73.
term offset : 54, 55, 57, 58, 61, 62, 66, 793, 1165.
term only : 54, 55, 57, 58, 66, 70, 87, 789, 804,

1205, 1209.
term out : 31, 32, 33, 34, 35, 36, 51, 56.
terminal input : 631, 637, 654, 656.
terminator : 685.
tertiary primitive: 695.
tertiary binary : 186, 893, 894.
tertiarydef primitive: 683.
tertiary macro : 226, 227, 695, 733.
tertiary secondary macro : 186, 249, 683, 684,

864, 1035, 1043.
test known : 918, 919.
text : 200, 202, 203, 205, 206, 207, 210, 218, 254,

638, 664, 722, 725, 727, 735, 759, 1032, 1034,
1036, 1041, 1043, 1196.

TEXT : 222.
Text line contains... : 670.
text primitive: 695.
text base : 214, 222, 677, 695, 697, 723, 729.
text char : 19, 20, 24, 26, 47.
text macro : 226, 227, 697, 705, 723, 733.
TFM files: 1087.
tfm changed : 1129, 1130, 1132, 1136, 1140.
tfm check : 1098, 1099.
tfm command : 186, 1100, 1101, 1102.
tfm depth : 1096, 1097, 1099, 1126, 1136.
tfm file : 1087, 1133, 1134.
tfm four : 1133, 1136, 1139, 1140.
tfm height : 1096, 1097, 1099, 1126, 1136.
tfm ital corr : 1096, 1097, 1099, 1126, 1136.
tfm out : 1133, 1135, 1136, 1139.
tfm qqqq : 1133, 1139, 1140.
tfm two : 1133, 1135, 1139.
tfm warning : 1123, 1124, 1126.
tfm width : 1096, 1097, 1099, 1124, 1131, 1132,

1136, 1182, 1205.
That makes 100 errors... : 77.
That transformation... : 963.
The token...delimiter : 1032.
The token...quantity : 1034.
There’s unbounded black... : 1169.
theta : 283, 291, 292, 295, 297, 527, 530, 533,

542, 544, 865, 866.
thing to add : 186, 1052, 1053, 1059.

third octant : 139, 141, 379, 380, 387, 388, 393,
396, 406, 443, 449, 461, 462.

This can’t happen : 90.
/ : 107, 114.
1: 517.
2: 523.
copy: 855.
dep: 589.
endinput: 655.
exp: 802.
if: 746.
m: 311.
recycle: 809.
struct: 239.
token: 216.
var: 236.
xy: 362.
0: 378.

This variable already... : 701.
three : 101, 296.
three bytes : 1128, 1133, 1157, 1182.
three choices : 156.
three l : 557, 558, 559, 560, 561.
three quarter unit : 101, 883.
three sixty deg : 106, 145, 292.
three sixty units : 906, 958.
threshold : 594, 595, 596, 597, 598, 599, 600,

1120, 1121.
time : 190, 192, 193, 194, 1163.
time primitive: 192.
time to go : 555, 556.
times : 189, 837, 859, 893, 941, 944.
tini: 8.
title : 1179.
to primitive: 211.
to token : 186, 211, 212, 1073.
token: 214.
token : 188, 214, 215, 219, 651, 678.
token list : 187, 726, 728, 730, 798, 799, 809, 841,

852, 860, 996, 1059, 1070, 1071, 1074.
token node size : 214, 215, 216, 651, 694, 704,

705, 755.
token recycle : 216, 224.
token state : 632, 652, 670, 672, 712, 736, 795,

1209.
token type : 632, 635, 636, 638, 645, 649, 650,

653, 714.
tol : 552, 553, 556, 557, 558, 559, 560, 561.
tol step : 552, 557, 559, 561, 562.
Too far to shift : 965.
Too far to skip : 1110.
Too many arguments... : 725.

§1215 METAFONT PART 52: INDEX 483

too small : 1187, 1189.
top : 1094.
top row : 567, 572, 574, 577.
toss edges : 385, 808, 809, 964.
toss knot list : 268, 465, 506, 808, 809, 865, 921,

978, 1064, 1067.
toss pen : 475, 487.
total chars : 1149, 1150, 1165, 1182.
total weight : 369, 921.
totalweight primitive: 893.
total weight op : 189, 893, 921.
trace a corner : 372, 373.
trace new edge : 373, 375, 376, 381, 382, 383, 384.
trace x : 371, 372, 373.
trace y : 371, 372, 373.
trace yy : 371, 372, 373.
tracing : 402.
tracing capsules : 190, 192, 193, 238.
tracingcapsules primitive: 192.
tracing choices : 190, 192, 193, 269.
tracingchoices primitive: 192.
tracing commands : 190, 192, 193, 707, 713, 748,

760, 832, 895, 898, 922, 944, 992, 995, 996.
tracingcommands primitive: 192.
tracing edges : 190, 192, 193, 371, 375, 376, 381,

382, 383, 384, 465, 506, 508, 510, 515, 521.
tracingedges primitive: 192.
tracing equations : 190, 192, 193, 603, 610, 816.
tracingequations primitive: 192.
tracing macros : 190, 192, 193, 720, 728, 734.
tracingmacros primitive: 192.
tracing online : 190, 192, 193, 195, 804.
tracingonline primitive: 192.
tracing output : 190, 192, 193, 1165.
tracingoutput primitive: 192.
tracing pens : 190, 192, 193, 253, 477.
tracingpens primitive: 192.
tracing restores : 190, 192, 193, 254.
tracingrestores primitive: 192.
tracing specs : 190, 192, 193, 1064.
tracingspecs primitive: 192.
tracing stats : 160, 190, 192, 193, 1134, 1198, 1205.
tracingstats primitive: 192.
tracing titles : 190, 192, 193, 994.
tracingtitles primitive: 192.
trans : 961, 962.
trans spec : 565, 568, 579.
Transcript written... : 1205.
Transform components... : 960.
transform primitive: 1013.
transform node size : 230, 231, 233, 956.

transform type : 187, 216, 230, 231, 232, 233, 248,
798, 799, 800, 802, 808, 809, 855, 909, 918,
919, 926, 927, 936, 944, 952, 953, 955, 967,
970, 973, 1003, 1013, 1015.

transformed primitive: 893.
transformed by : 189, 893, 952, 953, 957.
transition line... : 515, 521.
trick buf : 54, 58, 641, 643.
trick count : 54, 58, 641, 642, 643.
trivial knot : 484, 485, 486.
true : 4, 16, 30, 33, 36, 45, 49, 51, 53, 66, 72, 83,

92, 93, 97, 100, 107, 109, 110, 112, 114, 124,
126, 135, 181, 182, 238, 257, 269, 332, 372, 394,
402, 407, 426, 446, 452, 454, 455, 473, 477, 497,
503, 504, 530, 564, 567, 568, 569, 570, 574, 577,
592, 593, 595, 596, 598, 599, 600, 621, 653, 654,
661, 670, 672, 675, 680, 681, 700, 711, 767, 771,
779, 788, 801, 886, 899, 913, 942, 946, 968, 969,
977, 978, 1003, 1009, 1010, 1054, 1056, 1064,
1072, 1086, 1099, 1112, 1137, 1165, 1187.

true primitive: 893.
true code : 189, 713, 748, 750, 798, 802, 892, 893,

895, 905, 906, 918, 919, 920, 940.
try eq : 1003, 1005, 1006.
tt : 167, 169, 539, 541, 547, 548, 594, 595, 596,

842, 843, 844, 845, 850, 1006, 1009, 1010.
turning check : 190, 192, 193, 1068.
turningcheck primitive: 192.
turning number : 403, 450, 459, 917, 1068.
turningnumber primitive: 893.
turning op : 189, 893, 917.
two : 101, 102, 256, 294, 295, 556, 895, 898,

922, 944, 995, 996.
two choices : 156.
two halves : 156, 161, 166, 185, 201.
two to the : 129, 131, 133, 136, 143, 147, 314,

317, 608, 616.
tx : 374, 375, 376, 511, 516, 522, 866, 867, 953,

954, 956, 960, 961, 962, 965, 967, 973.
txx : 866, 953, 954, 956, 960, 961, 963, 964,

967, 973.
txy : 866, 953, 954, 956, 960, 961, 963, 967, 973.
ty : 511, 516, 522, 866, 867, 953, 954, 956, 960,

961, 962, 965, 967, 973.
type : 4, 188, 214, 215, 216, 219, 228, 229, 232, 233,

234, 239, 242, 243, 244, 245, 246, 247, 248, 585,
587, 589, 595, 596, 598, 599, 600, 603, 604, 605,
614, 615, 619, 621, 651, 678, 700, 738, 744, 745,
746, 799, 800, 801, 803, 809, 812, 819, 827, 829,
830, 842, 850, 855, 856, 857, 858, 868, 873, 899,
903, 910, 919, 923, 926, 928, 929, 930, 931, 932,
935, 936, 939, 940, 941, 942, 943, 946, 947, 948,

484 PART 52: INDEX METAFONT §1215

949, 951, 952, 956, 957, 959, 966, 968, 969, 971,
972, 975, 982, 983, 988, 995, 1000, 1001, 1002,
1006, 1007, 1009, 1015, 1046, 1048, 1050, 1057.

Type <return> to proceed... : 80.
type name : 186, 823, 989, 992, 1013, 1014, 1015.
type range : 918.
type range end : 918.
type test : 918.
type test end : 918.
tyx : 866, 953, 954, 956, 960, 961, 963, 967, 973.
tyy : 866, 953, 954, 956, 960, 961, 963, 964,

967, 973.
t0 : 495, 497, 498, 503, 599, 600.
t1 : 495, 497, 498, 499, 503, 599, 600.
t2 : 495, 497, 498, 499, 503.
u: 152, 311, 344, 432, 527, 946, 968, 972, 974.
u packet : 553, 556, 559, 560.
ul packet : 553, 559.
unary : 186, 823, 893, 894.
und type : 248, 1000.
undefined : 187, 229, 234, 239, 242, 244, 245, 247,

248, 585, 809, 842, 844, 845, 850, 1046.
Undefined condition... : 892.
Undefined coordinates... : 872, 873, 878.
undefined label : 1096, 1097, 1110, 1111, 1137,

1139, 1141.
undump : 1189, 1193, 1195, 1197, 1199.
undump end : 1189.
undump end end : 1189.
undump four ASCII : 1193.
undump hh : 1189, 1197.
undump int : 1189, 1191, 1195, 1197, 1199.
undump qqqq : 1189, 1193.
undump size : 1189, 1193.
undump size end : 1189.
undump size end end : 1189.
undump wd : 1189, 1195.
unequal to : 189, 893, 936, 937.
unif rand : 151, 906.
uniform deviate : 189, 893, 906.
uniformdeviate primitive: 893.
unity : 101, 103, 112, 114, 115, 116, 119, 132, 194,

233, 256, 258, 271, 282, 288, 294, 295, 296, 300,
302, 311, 374, 375, 376, 402, 430, 431, 433, 462,
463, 508, 510, 515, 516, 521, 522, 530, 539, 548,
555, 556, 562, 590, 674, 675, 707, 713, 748, 760,
816, 817, 819, 876, 881, 883, 886, 887, 890,
891, 896, 906, 913, 915, 916, 917, 932, 943,
949, 960, 963, 964, 968, 969, 972, 974, 978,
980, 985, 1010, 1068, 1071, 1074, 1097, 1128,
1133, 1157, 1158, 1166, 1182, 1211.

Unknown relation... : 937.

Unknown value...ignored : 1021.
unknown primitive: 893.
unknown boolean : 187, 229, 248, 618, 798, 799,

918, 936.
unknown op : 189, 893, 918.
unknown path : 187, 248, 618, 798, 918, 995, 1003.
unknown pen : 187, 248, 618, 798.
unknown picture : 187, 248, 618, 798, 918.
unknown string : 187, 248, 618, 798, 918, 936.
unknown tag : 187, 621, 1003, 1015.
unknown types : 187, 216, 799, 800, 802, 808,

809, 855, 1003.
unsave : 254, 832.
unskew : 388, 389, 394, 421, 445, 447, 451, 454,

457, 485, 488, 510.
unsorted : 324, 325, 326, 328, 330, 331, 332,

335, 338, 343, 344, 346, 348, 354, 355, 364,
367, 368, 369, 375, 376, 381, 382, 383, 384,
385, 578, 1169.

unstash cur exp : 718, 800, 801, 859, 870, 926, 942,
946, 948, 962, 963, 988, 995, 1000, 1003.

unsuffixed macro : 187, 700, 798, 809, 842, 844,
845, 1046, 1048.

Unsuitable expression : 1178.
until primitive: 211.
until token : 186, 211, 212, 765.
update screen : 564, 569, 571, 574, 577.
update terminal : 33, 36, 61, 66, 81, 564, 681,

779, 793, 994, 1165, 1212.
ur packet : 553, 558, 559.
use err help : 74, 75, 84, 86, 1086.
uu : 283, 285, 287, 288, 290, 291, 293, 294, 295, 297.
uv : 553, 556, 557, 558, 559, 560, 561.
u1l : 553, 559.
u1r : 553, 558, 559.
u2l : 553, 559.
u2r : 553, 558, 559.
u3l : 553, 559.
u3r : 553, 558, 559.
v: 215, 217, 410, 432, 497, 527, 589, 594, 597, 599,

600, 601, 607, 610, 621, 801, 808, 809, 820,
900, 922, 930, 935, 943, 944, 946, 949, 961,
971, 972, 974, 985, 1001, 1117, 1121.

v is scaled : 599, 943.
v packet : 553, 556, 559, 560.
vacuous : 187, 216, 219, 248, 621, 764, 798, 799,

800, 802, 809, 827, 844, 855, 919, 989, 992, 993,
996, 1003, 1054, 1059, 1070, 1071, 1074.

val too big : 602, 603, 615.
valid range : 326, 329, 965.
value : 214, 215, 216, 219, 220, 228, 229, 230, 232,

233, 239, 242, 244, 246, 250, 253, 254, 585, 587,

§1215 METAFONT PART 52: INDEX 485

589, 590, 591, 594, 595, 596, 597, 598, 599, 600,
601, 603, 604, 605, 607, 608, 609, 610, 611, 612,
615, 616, 617, 619, 620, 621, 622, 651, 678, 685,
686, 694, 698, 700, 704, 705, 752, 755, 760, 765,
798, 799, 800, 801, 803, 806, 809, 812, 814, 816,
817, 818, 819, 827, 829, 830, 845, 853, 855, 857,
858, 872, 873, 899, 903, 904, 907, 910, 915, 919,
928, 929, 930, 931, 933, 935, 936, 938, 939, 940,
942, 943, 944, 946, 948, 949, 951, 955, 956, 957,
958, 959, 966, 967, 968, 969, 970, 971, 972,
973, 974, 975, 976, 977, 978, 982, 983, 984,
988, 1000, 1001, 1005, 1006, 1007, 1008, 1009,
1010, 1015, 1048, 1057, 1072, 1116, 1117, 1118,
1121, 1122, 1127, 1132, 1136, 1182.

Value is too large : 602.
value loc : 214, 587, 605, 812, 827, 947.
value node size : 228, 233, 234, 239, 247, 249, 603,

615, 619, 650, 763, 799, 800, 808, 827, 830, 837,
856, 857, 903, 910, 922, 925, 931, 942, 944,
947, 955, 970, 982, 1001, 1006, 1117.

var def : 683, 684, 697, 992.
vardef primitive: 683.
var defining : 659, 664, 665, 700.
var flag : 821, 822, 823, 824, 868, 993, 995, 996,

1059, 1070, 1071, 1074.
var used : 160, 167, 172, 176, 1045, 1194, 1195.
Variable x is the wrong type : 1057.
Variable...obliterated : 851.
velocity : 116, 275, 299.
verbosity : 801, 802, 803, 804, 805, 1040.
VIRMF : 1203.
virtual memory: 168.
Vitter, Jeffrey Scott: 208.
vl packet : 553, 559.
void : 324, 326, 328, 330, 331, 332, 335, 338, 343,

344, 346, 348, 354, 367, 368, 369, 385, 578,
639, 650, 719, 723, 752, 755, 760, 762, 763,
799, 926, 927, 928, 944, 1169.

vppp : 190, 192, 193, 1146, 1182.
vppp primitive: 192.
vr packet : 553, 558, 559.
vv : 283, 285, 290, 291, 293, 294, 295, 297, 809,

817, 935, 972.
v1l : 553, 559.
v1r : 553, 558, 559.
v2l : 553, 559.
v2r : 553, 558, 559.
v3l : 553, 559.
v3r : 553, 558, 559.
w: 157, 333, 342, 348, 357, 373, 473, 476, 477,

484, 487, 488, 491, 497, 510, 511, 580, 599, 600,
610, 1059, 1074, 1165, 1186, 1187.

w close : 27, 1201, 1211.
w hi : 348, 349.
w in : 348, 349, 1074, 1075.
w lo : 348, 349.
w make name string : 780, 1200.
w open in : 26, 779.
w open out : 26, 1200.
w out : 348, 349, 1074, 1075.
wake up terminal : 33, 36, 51, 66, 68, 398, 682,

779, 786, 807, 1051, 1187, 1205, 1212.
warning check : 190, 192, 193, 602.
warningcheck primitive: 192.
warning info : 659, 661, 664, 694, 698, 700, 701,

730, 742, 758.
warning issued : 71, 195, 1209.
was free : 178, 180, 184.
was hi min : 178, 179, 180, 184.
was lo max : 178, 179, 180, 184.
was mem end : 178, 179, 180, 184.
watch coefs : 592, 593, 595, 596, 598, 1010.
we found it : 547, 548, 549.
WEB : 1, 4, 37, 39, 50, 1191.
Weight must be... : 1056.
west edge : 435.
white : 565, 567, 568, 577, 579, 583, 584, 1143,

1144.
width index : 1091.
window number : 571, 572, 574, 577.
window open : 572, 573, 574, 1071.
window time : 572, 573, 574, 577.
Wirth, Niklaus: 10.
with option : 186, 1052, 1053, 1062, 1074.
withpen primitive: 1052.
withweight primitive: 1052.
wlog : 56, 58, 564, 568, 790, 1208.
wlog cr : 56, 57, 58, 567, 1205.
wlog ln : 56, 564, 567, 568, 1141, 1208.
word file : 24, 26, 27, 156, 780, 1188.
write : 36, 56, 1133, 1154.
write gf : 1154, 1155, 1156.
write ln : 34, 36, 51, 56.
wterm : 56, 58, 61.
wterm cr : 56, 57, 58.
wterm ln : 56, 61, 779, 1187, 1204.
ww : 283, 285, 290, 291, 293, 294, 348, 349, 357,

362, 473, 474, 484, 485, 487, 488, 491, 497,
498, 502, 503, 508, 509, 510, 511, 513, 519,
580, 582, 583, 584, 1165, 1169.

www : 506, 508.
x: 100, 104, 119, 121, 132, 135, 139, 145, 149,

151, 152, 234, 387, 388, 390, 391, 463, 486,
488, 539, 574, 591, 601, 602, 604, 610, 868,

486 PART 52: INDEX METAFONT §1215

875, 898, 982, 1011, 1129, 1131, 1133, 1157,
1158, 1186, 1187, 1205.

x coord : 255, 256, 258, 265, 266, 271, 281, 282,
299, 302, 393, 394, 397, 404, 405, 406, 407, 409,
410, 411, 412, 413, 415, 416, 418, 419, 421, 423,
424, 425, 434, 436, 441, 442, 444, 445, 447, 451,
457, 467, 468, 472, 473, 474, 475, 476, 477, 479,
481, 483, 484, 485, 486, 488, 492, 493, 496, 498,
502, 508, 509, 510, 512, 513, 515, 518, 519, 521,
528, 534, 535, 536, 537, 543, 558, 563, 866, 867,
871, 887, 896, 962, 980, 981, 986, 987, 1066.

x corr : 461, 462, 463.
x height : 1095.
x height code : 1095.
x off : 332, 333, 1165, 1166, 1169, 1172.
x offset : 190, 192, 193, 1165.
xoffset primitive: 192.
x packet : 553, 556, 559, 560.
x part : 189, 893, 909, 910, 939.
xpart primitive: 893.
x part loc : 230, 830, 873, 899, 903, 907, 915, 929,

942, 944, 946, 947, 948, 956, 957, 959, 967,
970, 973, 977, 978, 982, 984, 1072.

x part sector : 188, 230, 232, 235, 237, 238.
x reflect edges : 337, 964.
x scale edges : 342, 964.
x scaled : 189, 893, 952, 957.
xscaled primitive: 893.
xchr : 20, 21, 22, 23, 37, 49, 58, 774.
xclause: 16.
xi corr : 306, 311, 313, 314, 317.
xl packet : 553, 559.
xord : 20, 23, 30, 52, 53, 778, 780.
xp : 511, 515, 516, 521, 522.
xq : 410.
xr packet : 553, 558, 559.
xw : 362, 363.
xx : 391, 392, 511, 515, 516, 521, 522.
xx part : 189, 893, 909.
xxpart primitive: 893.
xx part loc : 230, 233, 956, 957, 958, 959, 967,

970, 973.
xx part sector : 188, 230, 237.
xxx1 : 1144, 1145, 1160.
xxx2 : 1144.
xxx3 : 1144, 1145, 1160.
xxx4 : 1144.
xx0 : 311.
xx1 : 311.
xx2 : 311.
xx3 : 311.
xy : 553, 556, 557, 558, 559, 560, 561.

xy corr : 461, 462, 468, 512, 513, 515, 516, 518,
519, 521, 522.

xy part : 189, 893, 909.
xypart primitive: 893.
xy part loc : 230, 956, 957, 958, 959, 967, 970, 973.
xy part sector : 188, 230, 237.
xy round : 402, 433.
xy swap edges : 354, 963.
x0 : 374, 375, 376, 391, 392, 495, 496, 497, 498,

499, 501, 503, 504, 505, 510.
x0a : 495, 504.
x1 : 311, 312, 313, 314, 317, 318, 374, 391, 392,

495, 496, 497, 498, 499, 501, 503, 504, 505, 510,
541, 542, 543, 544, 546, 547, 548, 549.

x1a : 495, 503, 504.
x1l : 553, 559.
x1r : 553, 558, 559.
x2 : 311, 312, 313, 314, 317, 318, 391, 392, 495,

496, 497, 498, 499, 501, 503, 504, 505, 542,
543, 546, 547, 548, 549.

x2a : 311, 317, 318, 495, 503.
x2l : 553, 559.
x2r : 553, 558, 559.
x3 : 311, 312, 313, 314, 317, 318, 541, 542, 543,

546, 547, 548, 549.
x3a : 311, 317, 318.
x3l : 553, 559.
x3r : 553, 558, 559.
y: 100, 104, 121, 132, 135, 139, 145, 151, 387, 388,

390, 463, 486, 488, 539, 574, 868, 982.
y coord : 255, 256, 258, 265, 266, 271, 281, 282,

299, 302, 393, 394, 397, 404, 405, 406, 407, 409,
410, 413, 414, 415, 416, 419, 421, 423, 424, 425,
435, 437, 439, 444, 445, 447, 451, 457, 467, 468,
472, 473, 474, 475, 476, 477, 479, 481, 483, 484,
485, 486, 488, 492, 493, 496, 498, 502, 508,
509, 510, 512, 515, 518, 521, 528, 534, 535,
536, 537, 543, 558, 563, 866, 867, 871, 887,
896, 962, 980, 981, 986, 987, 1066.

y corr : 461, 462, 463, 468, 512, 515, 516, 518,
521, 522.

y off : 332, 1165, 1166, 1167, 1172.
y offset : 190, 192, 193, 1165.
yoffset primitive: 192.
y packet : 553, 556, 559, 560.
y part : 189, 893, 909.
ypart primitive: 893.
y part loc : 230, 830, 873, 899, 903, 907, 915, 929,

942, 944, 946, 947, 948, 956, 957, 959, 967,
970, 973, 977, 978, 982, 984, 1072.

y part sector : 188, 230, 237.
y reflect edges : 336, 964.

§1215 METAFONT PART 52: INDEX 487

y scale edges : 340, 964.
y scaled : 189, 893, 952, 957.
yscaled primitive: 893.
year : 190, 192, 193, 194, 1163, 1200.
year primitive: 192.
yl packet : 553, 559.
You have to increase POOLSIZE : 52.
You want to edit file x : 79.
yp : 511, 515, 516, 521, 522.
yq : 410.
yr packet : 553, 558, 559.
yt : 374.
yx part : 189, 893, 909.
yxpart primitive: 893.
yx part loc : 230, 956, 958, 959, 967, 970, 973.
yx part sector : 188, 230, 237.
yy : 511, 515, 516, 521, 522.
yy part : 189, 893, 909.
yypart primitive: 893.
yy part loc : 230, 233, 956, 957, 958, 959, 967,

970, 973.
yy part sector : 188, 230, 237.
yyy : 1144, 1145, 1147, 1166, 1177.
yy0 : 311.
yy1 : 311.
yy2 : 311.
yy3 : 311.
y0 : 374, 375, 376, 495, 496, 497, 498, 499, 501,

503, 504, 505, 510.
y0a : 495, 504.
y1 : 311, 312, 313, 314, 317, 318, 374, 375, 376,

495, 496, 497, 498, 499, 501, 503, 504, 505, 510,
541, 542, 543, 544, 546, 547, 548.

y1a : 495, 503, 504.
y1l : 553, 559.
y1r : 553, 558, 559.
y2 : 311, 312, 313, 314, 317, 318, 495, 496, 497, 498,

499, 501, 503, 504, 505, 542, 543, 546, 547, 548.
y2a : 311, 317, 318, 495, 503.
y2l : 553, 559.
y2r : 553, 558, 559.
y3 : 311, 312, 313, 314, 317, 318, 541, 542, 543,

546, 547, 548.
y3a : 311, 317, 318.
y3l : 553, 559.
y3r : 553, 558, 559.
z: 132, 135, 139, 145.
z corr : 461, 462, 463.
z scaled : 189, 893, 952, 957.
zscaled primitive: 893.
Zabala Salelles, Ignacio Andrés: 812.
zero crossing : 391.

zero field : 326, 328, 329, 332, 336, 337, 340,
342, 352, 364, 365, 366, 370, 374, 377, 378,
577, 1167, 1172.

zero val : 175, 1126, 1127.
zero w : 324, 326, 333, 337, 349, 350, 358, 365, 370,

373, 375, 376, 381, 382, 383, 384, 582, 1169.

488 NAMES OF THE SECTIONS METAFONT

〈Abandon edges command because there’s no variable 1060 〉 Used in sections 1059, 1070, 1071, and 1074.

〈Absorb delimited parameters, putting them into lists q and r 703 〉 Used in section 697.

〈Absorb parameter tokens for type base 704 〉 Used in section 703.

〈Absorb undelimited parameters, putting them into list r 705 〉 Used in section 697.

〈Add a known value to the constant term of dep list (p) 931 〉 Used in section 930.

〈Add dependency list pp of type tt to dependency list p of type t 1010 〉 Used in section 1009.

〈Add edges for fifth or eighth octants, then goto done 382 〉 Used in section 378.

〈Add edges for first or fourth octants, then goto done 381 〉 Used in section 378.

〈Add edges for second or third octants, then goto done 383 〉 Used in section 378.

〈Add edges for sixth or seventh octants, then goto done 384 〉 Used in section 378.

〈Add operand p to the dependency list v 932 〉 Used in section 930.

〈Add or subtract the current expression from p 929 〉 Used in section 922.

〈Add the contribution of node q to the total weight, and set q ← link (q) 370 〉 Used in sections 369 and 369.

〈Add the known value (p) to the constant term of v 933 〉 Used in section 932.

〈Add the right operand to list p 1009 〉 Used in section 1006.

〈Additional cases of binary operators 936, 940, 941, 948, 951, 952, 975, 983, 988 〉 Used in section 922.

〈Additional cases of unary operators 905, 906, 907, 909, 912, 915, 917, 918, 920, 921 〉 Used in section 898.

〈Adjust θn to equal θ0 and goto found 291 〉 Used in section 287.

〈Adjust the balance for a delimited argument; goto done if done 731 〉 Used in section 730.

〈Adjust the balance for an undelimited argument; goto done if done 732 〉 Used in section 730.

〈Adjust the balance; goto done if it’s zero 687 〉 Used in section 685.

〈Adjust the coordinates (r0 , c0) and (r1 , c1) so that they lie in the proper range 575 〉 Used in section 574.

〈Adjust the data of h to account for a difference of offsets 367 〉 Used in section 366.

〈Adjust the header to reflect the new edges 364 〉 Used in section 354.

〈Advance pointer p to the next vertical edge, after destroying the previous one 360 〉 Used in section 358.

〈Advance pointer r to the next vertical edge 359 〉 Used in section 358.

〈Advance to the next pair (cur t , cur tt) 560 〉 Used in section 556.

〈Advance p to node q, removing any “dead” cubics that might have been introduced by the splitting
process 492 〉 Used in section 491.

〈Allocate entire node p and goto found 171 〉 Used in section 169.

〈Allocate from the top of node p and goto found 170 〉 Used in section 169.

〈Announce that the equation cannot be performed 1002 〉 Used in section 1001.

〈Append the current expression to arg list 728 〉 Used in sections 726 and 733.

〈Ascend one level, pushing a token onto list q and replacing p by its parent 236 〉 Used in section 235.

〈Assign the current expression to an internal variable 999 〉 Used in section 996.

〈Assign the current expression to the variable lhs 1000 〉 Used in section 996.

〈Attach the replacement text to the tail of node p 698 〉 Used in section 697.

〈Augment some edges by others 1061 〉 Used in section 1059.

〈Back up an outer symbolic token so that it can be reread 662 〉 Used in section 661.

〈Basic printing procedures 57, 58, 59, 60, 62, 63, 64, 103, 104, 187, 195, 197, 773 〉 Used in section 4.

〈Calculate integers α, β, γ for the vertex coordinates 530 〉 Used in section 528.

〈Calculate the given value of θn and goto found 292 〉 Used in section 284.

〈Calculate the ratio ff = Ck/(Ck +Bk − uk−1Ak) 289 〉 Used in section 287.

〈Calculate the turning angles ψk and the distances dk,k+1; set n to the length of the path 281 〉 Used in

section 278.

〈Calculate the values aa = Ak/Bk, bb = Dk/Ck, dd = (3 − αk−1)dk,k+1, ee = (3 − βk+1)dk−1,k, and
cc = (Bk − uk−1Ak)/Bk 288 〉 Used in section 287.

〈Calculate the values of vk and wk 290 〉 Used in section 287.

〈Cases of do statement that invoke particular commands 1020, 1023, 1026, 1030, 1033, 1039, 1058, 1069, 1076, 1081,

1100, 1175 〉 Used in section 992.

〈Cases of print cmd mod for symbolic printing of primitives 212, 684, 689, 696, 710, 741, 894, 1014, 1019, 1025,

1028, 1038, 1043, 1053, 1080, 1102, 1109, 1180 〉 Used in section 625.

METAFONT NAMES OF THE SECTIONS 489

〈Change node q to a path for an elliptical pen 866 〉 Used in section 865.

〈Change one-point paths into dead cycles 563 〉 Used in section 562.

〈Change the interaction level and return 81 〉 Used in section 79.

〈Change the tentative pen 1063 〉 Used in section 1062.

〈Change to ‘a bad variable’ 701 〉 Used in section 700.

〈Change variable x from independent to dependent or known 615 〉 Used in section 610.

〈Character k cannot be printed 49 〉 Used in section 48.

〈Check flags of unavailable nodes 183 〉 Used in section 180.

〈Check for the presence of a colon 756 〉 Used in section 755.

〈Check if unknowns have been equated 938 〉 Used in section 936.

〈Check single-word avail list 181 〉 Used in section 180.

〈Check that the proper right delimiter was present 727 〉 Used in section 726.

〈Check the “constant” values for consistency 14, 154, 204, 214, 310, 553, 777 〉 Used in section 1204.

〈Check the list of linear dependencies 617 〉 Used in section 180.

〈Check the places where B(y1, y2, y3; t) = 0 to see if B(x1, x2, x3; t) ≥ 0 547 〉 Used in section 546.

〈Check the pool check sum 53 〉 Used in section 52.

〈Check the tentative weight 1056 〉 Used in section 1054.

〈Check the turning number 1068 〉 Used in section 1064.

〈Check variable-size avail list 182 〉 Used in section 180.

〈Choose a dependent variable to take the place of the disappearing independent variable, and change all
remaining dependencies accordingly 815 〉 Used in section 812.

〈Choose control points for the path and put the result into cur exp 891 〉 Used in section 869.

〈Close the base file 1201 〉 Used in section 1186.

〈Compare the current expression with zero 937 〉 Used in section 936.

〈Compile a ligature/kern command 1112 〉 Used in section 1107.

〈Compiler directives 9 〉 Used in section 4.

〈Complain about a bad pen path 478 〉 Used in section 477.

〈Complain about a character tag conflict 1105 〉 Used in section 1104.

〈Complain about improper special operation 1178 〉 Used in section 1177.

〈Complain about improper type 1055 〉 Used in section 1054.

〈Complain about non-cycle and goto not found 1067 〉 Used in section 1064.

〈Complement the x coordinates of the cubic between p and q 409 〉 Used in section 407.

〈Complement the y coordinates of the cubic between pp and qq 414 〉 Used in sections 413 and 417.

〈Complete the contour filling operation 1064 〉 Used in section 1062.

〈Complete the ellipse by copying the negative of the half already computed 537 〉 Used in section 527.

〈Complete the error message, and set cur sym to a token that might help recover from the error 664 〉 Used

in section 663.

〈Complete the half ellipse by reflecting the quarter already computed 536 〉 Used in section 527.

〈Complete the offset splitting process 503 〉 Used in section 494.

〈Compute f = b216(1 + p/q) + 1
2c 115 〉 Used in section 114.

〈Compute f = b228(1 + p/q) + 1
2c 108 〉 Used in section 107.

〈Compute p = bqf/216 + 1
2c − q 113 〉 Used in section 112.

〈Compute p = bqf/228 + 1
2c − q 111 〉 Used in section 109.

〈Compute a check sum in (b1 , b2 , b3 , b4) 1132 〉 Used in section 1131.

〈Compute a compromise pen edge 443 〉 Used in section 442.

〈Compute a good coordinate at a diagonal transition 442 〉 Used in section 441.

〈Compute before-and-after x values based on the current pen 435 〉 Used in section 434.

〈Compute before-and-after y values based on the current pen 438 〉 Used in section 437.

〈Compute test coefficients (t0 , t1 , t2) for s(t) versus sk or sk−1 498 〉 Used in sections 497 and 503.

〈Compute the distance d from class 0 to the edge of the ellipse in direction (u, v), times
√
u2 + v2, rounded

to the nearest integer 533 〉 Used in section 531.

〈Compute the hash code h 208 〉 Used in section 205.

490 NAMES OF THE SECTIONS METAFONT

〈Compute the incoming and outgoing directions 457 〉 Used in section 454.

〈Compute the ligature/kern program offset and implant the left boundary label 1137 〉 Used in section 1135.

〈Compute the magic offset values 365 〉 Used in section 354.

〈Compute the octant code; skew and rotate the coordinates (x, y) 489 〉 Used in section 488.

〈Compute the offsets between screen coordinates and actual coordinates 576 〉 Used in section 574.

〈Constants in the outer block 11 〉 Used in section 4.

〈Construct a path from pp to qq of length dbe 980 〉 Used in section 978.

〈Construct a path from pp to qq of length zero 981 〉 Used in section 978.

〈Construct the offset list for the kth octant 481 〉 Used in section 477.

〈Contribute a term from p, plus the corresponding term from q 598 〉 Used in section 597.

〈Contribute a term from p, plus f times the corresponding term from q 595 〉 Used in section 594.

〈Contribute a term from q, multiplied by f 596 〉 Used in section 594.

〈Convert a suffix to a string 840 〉 Used in section 823.

〈Convert the left operand, p, into a partial path ending at q; but return if p doesn’t have a suitable
type 870 〉 Used in section 869.

〈Convert the right operand, cur exp , into a partial path from pp to qq 885 〉 Used in section 869.

〈Convert (x, y) to the octant determined by q 146 〉 Used in section 145.

〈Copy both sorted and unsorted lists of p to pp 335 〉 Used in sections 334 and 341.

〈Copy the big node p 857 〉 Used in section 855.

〈Copy the unskewed and unrotated coordinates of node ww 485 〉 Used in section 484.

〈Correct the octant code in segments with decreasing y 418 〉 Used in section 413.

〈Create the base ident , open the base file, and inform the user that dumping has begun 1200 〉 Used in

section 1186.

〈Cull superfluous edge-weight entries from sorted (p) 349 〉 Used in section 348.

〈Deal with redundant or inconsistent equation 1008 〉 Used in section 1006.

〈Decide whether or not to go clockwise 454 〉 Used in section 452.

〈Declare action procedures for use by do statement 995, 996, 1015, 1021, 1029, 1031, 1034, 1035, 1036, 1040, 1041,

1044, 1045, 1046, 1049, 1050, 1051, 1054, 1057, 1059, 1070, 1071, 1072, 1073, 1074, 1082, 1103, 1104, 1106, 1177, 1186 〉
Used in section 989.

〈Declare basic dependency-list subroutines 594, 600, 602, 603, 604 〉 Used in section 246.

〈Declare binary action procedures 923, 928, 930, 943, 946, 949, 953, 960, 961, 962, 963, 966, 976, 977, 978, 982, 984,

985 〉 Used in section 922.

〈Declare generic font output procedures 1154, 1155, 1157, 1158, 1159, 1160, 1161, 1163, 1165 〉 Used in section 989.

〈Declare miscellaneous procedures that were declared forward 224 〉 Used in section 1202.

〈Declare subroutines for printing expressions 257, 332, 388, 473, 589, 801, 807 〉 Used in section 246.

〈Declare subroutines needed by big trans 968, 971, 972, 974 〉 Used in section 966.

〈Declare subroutines needed by make exp copy 856, 858 〉 Used in section 855.

〈Declare subroutines needed by make spec 405, 406, 419, 426, 429, 431, 432, 433, 440, 451 〉 Used in section 402.

〈Declare subroutines needed by offset prep 493, 497 〉 Used in section 491.

〈Declare subroutines needed by solve choices 296, 299 〉 Used in section 284.

〈Declare the basic parsing subroutines 823, 860, 862, 864, 868, 892 〉 Used in section 1202.

〈Declare the function called open base file 779 〉 Used in section 1187.

〈Declare the function called scan declared variable 1011 〉 Used in section 697.

〈Declare the function called tfm check 1098 〉 Used in section 1070.

〈Declare the function called trivial knot 486 〉 Used in section 484.

〈Declare the procedure called check delimiter 1032 〉 Used in section 697.

〈Declare the procedure called dep finish 935 〉 Used in section 930.

〈Declare the procedure called dual moves 518 〉 Used in section 506.

〈Declare the procedure called flush below variable 247 〉 Used in section 246.

〈Declare the procedure called flush cur exp 808, 820 〉 Used in section 246.

〈Declare the procedure called flush string 43 〉 Used in section 73.

〈Declare the procedure called known pair 872 〉 Used in section 871.

METAFONT NAMES OF THE SECTIONS 491

〈Declare the procedure called macro call 720 〉 Used in section 706.

〈Declare the procedure called make eq 1001 〉 Used in section 995.

〈Declare the procedure called make exp copy 855 〉 Used in section 651.

〈Declare the procedure called print arg 723 〉 Used in section 720.

〈Declare the procedure called print cmd mod 625 〉 Used in section 227.

〈Declare the procedure called print dp 805 〉 Used in section 801.

〈Declare the procedure called print macro name 722 〉 Used in section 720.

〈Declare the procedure called print weight 333 〉 Used in section 332.

〈Declare the procedure called runaway 665 〉 Used in section 162.

〈Declare the procedure called scan text arg 730 〉 Used in section 720.

〈Declare the procedure called show token list 217 〉 Used in section 162.

〈Declare the procedure called skew line edges 510 〉 Used in section 506.

〈Declare the procedure called solve choices 284 〉 Used in section 269.

〈Declare the procedure called split cubic 410 〉 Used in section 406.

〈Declare the procedure called try eq 1006 〉 Used in section 995.

〈Declare the recycling subroutines 268, 385, 487, 620, 809 〉 Used in section 246.

〈Declare the stashing/unstashing routines 799, 800 〉 Used in section 801.

〈Declare unary action procedures 899, 900, 901, 904, 908, 910, 913, 916, 919 〉 Used in section 898.

〈Decrease the string reference count, if the current token is a string 743 〉 Used in sections 83, 742, 991,

and 1016.

〈Decrease the velocities, if necessary, to stay inside the bounding triangle 300 〉 Used in section 299.

〈Decrease k by 1, maintaining the invariant relations between x, y, and q 123 〉 Used in section 121.

〈Decry the invalid character and goto restart 670 〉 Used in section 669.

〈Decry the missing string delimiter and goto restart 672 〉 Used in section 671.

〈Define an extensible recipe 1113 〉 Used in section 1106.

〈Delete all the row headers 353 〉 Used in section 352.

〈Delete empty rows at the top and/or bottom; update the boundary values in the header 352 〉 Used in

section 348.

〈Delete c− "0" tokens and goto continue 83 〉 Used in section 79.

〈Descend one level for the attribute info(t) 245 〉 Used in section 242.

〈Descend one level for the subscript value (t) 244 〉 Used in section 242.

〈Descend past a collective subscript 1012 〉 Used in section 1011.

〈Descend the structure 1047 〉 Used in section 1046.

〈Descend to the previous level and goto not found 561 〉 Used in section 560.

〈Determine if a character has been shipped out 1181 〉 Used in section 906.

〈Determine the before-and-after values of both coordinates 445 〉 Used in sections 444 and 446.

〈Determine the dependency list s to substitute for the independent variable p 816 〉 Used in section 815.

〈Determine the envelope’s starting and ending lattice points (m0 ,n0) and (m1 ,n1) 508 〉 Used in

section 506.

〈Determine the file extension, gf ext 1164 〉 Used in section 1163.

〈Determine the number n of arguments already supplied, and set tail to the tail of arg list 724 〉 Used in

section 720.

〈Determine the octant boundary q that precedes f 400 〉 Used in section 398.

〈Determine the octant code for direction (dx , dy) 480 〉 Used in section 479.

〈Determine the path join parameters; but goto finish path if there’s only a direction specifier 874 〉 Used

in section 869.

〈Determine the starting and ending lattice points (m0 ,n0) and (m1 ,n1) 467 〉 Used in section 465.

〈Determine the tension and/or control points 881 〉 Used in section 874.

〈Dispense with the cases a < 0 and/or b > l 979 〉 Used in section 978.

〈Display a big node 803 〉 Used in section 802.

〈Display a collective subscript 221 〉 Used in section 218.

〈Display a complex type 804 〉 Used in section 802.

492 NAMES OF THE SECTIONS METAFONT

〈Display a numeric token 220 〉 Used in section 219.

〈Display a parameter token 222 〉 Used in section 218.

〈Display a variable macro 1048 〉 Used in section 1046.

〈Display a variable that’s been declared but not defined 806 〉 Used in section 802.

〈Display the boolean value of cur exp 750 〉 Used in section 748.

〈Display the current context 636 〉 Used in section 635.

〈Display the new dependency 613 〉 Used in section 610.

〈Display the pixels of edge row p in screen row r 578 〉 Used in section 577.

〈Display token p and set c to its class; but return if there are problems 218 〉 Used in section 217.

〈Display two-word token 219 〉 Used in section 218.

〈Divide list p by 2n 616 〉 Used in section 615.

〈Divide list p by −v, removing node q 612 〉 Used in section 610.

〈Divide the variables by two, to avoid overflow problems 313 〉 Used in section 311.

〈Do a statement that doesn’t begin with an expression 992 〉 Used in section 989.

〈Do a title 994 〉 Used in section 993.

〈Do an equation, assignment, title, or ‘〈 expression 〉 endgroup’ 993 〉 Used in section 989.

〈Do any special actions needed when y is constant; return or goto continue if a dead cubic from p to q is
removed 417 〉 Used in section 413.

〈Do magic computation 646 〉 Used in section 217.

〈Do multiple equations and goto done 1005 〉 Used in section 1003.

〈Double the path 1065 〉 Used in section 1064.

〈Dump a few more things and the closing check word 1198 〉 Used in section 1186.

〈Dump constants for consistency check 1190 〉 Used in section 1186.

〈Dump the dynamic memory 1194 〉 Used in section 1186.

〈Dump the string pool 1192 〉 Used in section 1186.

〈Dump the table of equivalents and the hash table 1196 〉 Used in section 1186.

〈Either begin an unsuffixed macro call or prepare for a suffixed one 845 〉 Used in section 844.

〈Empty the last bytes out of gf buf 1156 〉 Used in section 1182.

〈Ensure that type (p) = proto dependent 969 〉 Used in section 968.

〈Error handling procedures 73, 76, 77, 88, 89, 90 〉 Used in section 4.

〈Exclaim about a redundant equation 623 〉 Used in sections 622, 1004, and 1008.

〈Exit a loop if the proper time has come 713 〉 Used in section 707.

〈Exit prematurely from an iteration 714 〉 Used in section 713.

〈Exit to found if an eastward direction occurs at knot p 544 〉 Used in section 541.

〈Exit to found if the curve whose derivatives are specified by x1 , x2 , x3 , y1 , y2 , y3 travels eastward at some
time tt 546 〉 Used in section 541.

〈Exit to found if the derivative B(x1, x2, x3; t) becomes ≥ 0 549 〉 Used in section 548.

〈Expand the token after the next token 715 〉 Used in section 707.

〈Feed the arguments and replacement text to the scanner 736 〉 Used in section 720.

〈Fill in the control information between consecutive breakpoints p and q 278 〉 Used in section 273.

〈Fill in the control points between p and the next breakpoint, then advance p to that breakpoint 273 〉
Used in section 269.

〈Find a node q in list p whose coefficient v is largest 611 〉 Used in section 610.

〈Find the approximate type tt and corresponding q 850 〉 Used in section 844.

〈Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken
cycle 272 〉 Used in section 269.

〈Find the index k such that sk−1 ≤ dy/dx < sk 502 〉 Used in section 494.

〈Find the initial slope, dy/dx 501 〉 Used in section 494.

〈Find the minimum lk offset and adjust all remainders 1138 〉 Used in section 1137.

〈Find the starting point, f 399 〉 Used in section 398.

〈Finish choosing angles and assigning control points 297 〉 Used in section 284.

〈Finish getting the symbolic token in cur sym ; goto restart if it is illegal 668 〉 Used in section 667.

METAFONT NAMES OF THE SECTIONS 493

〈Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary 483 〉 Used in

section 481.

〈Finish off an entirely blank character 1168 〉 Used in section 1167.

〈Finish the GF file 1182 〉 Used in section 1206.

〈Finish the TFM and GF files 1206 〉 Used in section 1205.

〈Finish the TFM file 1134 〉 Used in section 1206.

〈Fix up the transition fields and adjust the turning number 459 〉 Used in section 452.

〈Flush spurious symbols after the declared variable 1016 〉 Used in section 1015.

〈Flush unparsable junk that was found after the statement 991 〉 Used in section 989.

〈For each of the eight cases, change the relevant fields of cur exp and goto done ; but do nothing if capsule
p doesn’t have the appropriate type 957 〉 Used in section 955.

〈For each type t, make an equation and goto done unless cur type is incompatible with t 1003 〉 Used in

section 1001.

〈Get a stored numeric or string or capsule token and return 678 〉 Used in section 676.

〈Get a string token and return 671 〉 Used in section 669.

〈Get given directions separated by commas 878 〉 Used in section 877.

〈Get ready to close a cycle 886 〉 Used in section 869.

〈Get ready to fill a contour, and fill it 1062 〉 Used in section 1059.

〈Get the first line of input and prepare to start 1211 〉 Used in section 1204.

〈Get the fraction part f of a numeric token 674 〉 Used in section 669.

〈Get the integer part n of a numeric token; set f ← 0 and goto fin numeric token if there is no decimal
point 673 〉 Used in section 669.

〈Get the linear equations started; or return with the control points in place, if linear equations needn’t be
solved 285 〉 Used in section 284.

〈Get user’s advice and return 78 〉 Used in section 77.

〈Give error messages if bad char or n ≥ 4096 914 〉 Used in section 913.

〈Global variables 13, 20, 25, 29, 31, 38, 42, 50, 54, 68, 71, 74, 91, 97, 129, 137, 144, 148, 159, 160, 161, 166, 178, 190, 196,

198, 200, 201, 225, 230, 250, 267, 279, 283, 298, 308, 309, 327, 371, 379, 389, 395, 403, 427, 430, 448, 455, 461, 464, 507,

552, 555, 557, 566, 569, 572, 579, 585, 592, 624, 628, 631, 633, 634, 659, 680, 699, 738, 752, 767, 768, 775, 782, 785, 791,

796, 813, 821, 954, 1077, 1084, 1087, 1096, 1119, 1125, 1130, 1149, 1152, 1162, 1183, 1188, 1203 〉 Used in section 4.

〈Grow more variable-size memory and goto restart 168 〉 Used in section 167.

〈Handle erroneous pyth sub and set a← 0 128 〉 Used in section 126.

〈Handle non-positive logarithm 134 〉 Used in section 132.

〈Handle quoted symbols, #@, @, or @# 690 〉 Used in section 685.

〈Handle square root of zero or negative argument 122 〉 Used in section 121.

〈Handle the special case of infinite slope 505 〉 Used in section 494.

〈Handle the test for eastward directions when y1y3 = y22 ; either goto found or goto done 548 〉 Used in

section 546.

〈Handle undefined arg 140 〉 Used in section 139.

〈Handle unusual cases that masquerade as variables, and goto restart or goto done if appropriate;
otherwise make a copy of the variable and goto done 852 〉 Used in section 844.

〈 If consecutive knots are equal, join them explicitly 271 〉 Used in section 269.

〈 If node q is a transition point between octants, compute and save its before-and-after coordinates 441 〉
Used in section 440.

〈 If node q is a transition point for x coordinates, compute and save its before-and-after coordinates 434 〉
Used in section 433.

〈 If node q is a transition point for y coordinates, compute and save its before-and-after coordinates 437 〉
Used in section 433.

〈 If the current transform is entirely known, stash it in global variables; otherwise return 956 〉 Used in

section 953.

〈 Increase and decrease move [k − 1] and move [k] by δk 322 〉 Used in section 321.

〈 Increase k until x can be multiplied by a factor of 2−k, and adjust y accordingly 133 〉 Used in section 132.

494 NAMES OF THE SECTIONS METAFONT

〈 Increase z to the arg of (x, y) 143 〉 Used in section 142.

〈 Initialize for dual envelope moves 519 〉 Used in section 518.

〈 Initialize for intersections at level zero 558 〉 Used in section 556.

〈 Initialize for ordinary envelope moves 513 〉 Used in section 512.

〈 Initialize for the display computations 581 〉 Used in section 577.

〈 Initialize table entries (done by INIMF only) 176, 193, 203, 229, 324, 475, 587, 702, 759, 911, 1116, 1127, 1185 〉
Used in section 1210.

〈 Initialize the array of new edge list heads 356 〉 Used in section 354.

〈 Initialize the ellipse data structure by beginning with directions (0,−1), (1, 0), (0, 1) 528 〉 Used in

section 527.

〈 Initialize the input routines 657, 660 〉 Used in section 1211.

〈 Initialize the output routines 55, 61, 783, 792 〉 Used in section 1204.

〈 Initialize the print selector based on interaction 70 〉 Used in sections 1023 and 1211.

〈 Initialize the random seed to cur exp 1022 〉 Used in section 1021.

〈 Initiate or terminate input from a file 711 〉 Used in section 707.

〈 Input from external file; goto restart if no input found, or return if a non-symbolic token is found 669 〉
Used in section 667.

〈 Input from token list; goto restart if end of list or if a parameter needs to be expanded, or return if a
non-symbolic token is found 676 〉 Used in section 667.

〈 Insert a fractional node by splitting the cubic 986 〉 Used in section 985.

〈 Insert a line segment dually to approach the correct offset 521 〉 Used in section 518.

〈 Insert a line segment to approach the correct offset 515 〉 Used in section 512.

〈 Insert a new line for direction (u, v) between p and q 535 〉 Used in section 531.

〈 Insert a new symbolic token after p, then make p point to it and goto found 207 〉 Used in section 205.

〈 Insert a suffix or text parameter and goto restart 677 〉 Used in section 676.

〈 Insert additional boundary nodes, then goto done 458 〉 Used in section 452.

〈 Insert an edge-weight for edge m, if the new pixel weight has changed 350 〉 Used in section 349.

〈 Insert blank rows at the top and bottom, and set p to the new top row 355 〉 Used in section 354.

〈 Insert downward edges for a line 376 〉 Used in section 374.

〈 Insert exactly n min (cur edges)− nl empty rows at the bottom 330 〉 Used in section 329.

〈 Insert exactly nr − n max (cur edges) empty rows at the top 331 〉 Used in section 329.

〈 Insert horizontal edges of weight w between m and mm 362 〉 Used in section 358.

〈 Insert octant boundaries and compute the turning number 450 〉 Used in section 402.

〈 Insert one or more octant boundary nodes just before q 452 〉 Used in section 450.

〈 Insert the horizontal edges defined by adjacent rows p, q, and destroy row p 358 〉 Used in section 354.

〈 Insert the new envelope moves dually in the pixel data 523 〉 Used in section 518.

〈 Insert the new envelope moves in the pixel data 517 〉 Used in section 512.

〈 Insert upward edges for a line 375 〉 Used in section 374.

〈 Install a complex multiplier, then goto done 959 〉 Used in section 957.

〈 Install sines and cosines, then goto done 958 〉 Used in section 957.

〈 Interpolate new vertices in the ellipse data structure until improvement is impossible 531 〉 Used in

section 527.

〈 Interpret code c and return if done 79 〉 Used in section 78.

〈 Introduce new material from the terminal and return 82 〉 Used in section 79.

〈 Join the partial paths and reset p and q to the head and tail of the result 887 〉 Used in section 869.

〈Labels in the outer block 6 〉 Used in section 4.

〈Last-minute procedures 1205, 1209, 1210, 1212 〉 Used in section 1202.

〈Link a new attribute node r in place of node p 241 〉 Used in section 239.

〈Link a new subscript node r in place of node p 240 〉 Used in section 239.

〈Link node r to the previous node 482 〉 Used in section 481.

〈Local variables for formatting calculations 641 〉 Used in section 635.

〈Local variables for initialization 19, 130 〉 Used in section 4.

METAFONT NAMES OF THE SECTIONS 495

〈Log the subfile sizes of the TFM file 1141 〉 Used in section 1134.

〈Make a special knot node for pencircle 896 〉 Used in section 895.

〈Make a trivial one-point path cycle 1066 〉 Used in section 1065.

〈Make moves for current subinterval; if bisection is necessary, push the second subinterval onto the stack,
and goto continue in order to handle the first subinterval 314 〉 Used in section 311.

〈Make one move of each kind 317 〉 Used in section 314.

〈Make sure that all the diagonal roundings are safe 446 〉 Used in section 444.

〈Make sure that both nodes p and pp are of structured type 243 〉 Used in section 242.

〈Make sure that both x and y parts of p are known; copy them into cur x and cur y 873 〉 Used in

section 872.

〈Make sure that the current expression is a valid tension setting 883 〉 Used in sections 882 and 882.

〈Make the dynamic memory into one big available node 1207 〉 Used in section 1206.

〈Make the envelope moves for the current octant and insert them in the pixel data 512 〉 Used in section 506.

〈Make the first 256 strings 48 〉 Used in section 47.

〈Make the moves for the current octant 468 〉 Used in section 465.

〈Make variable q + s newly independent 586 〉 Used in section 232.

〈Massage the TFM heights, depths, and italic corrections 1126 〉 Used in section 1206.

〈Massage the TFM widths 1124 〉 Used in section 1206.

〈Merge row pp into row p 368 〉 Used in section 366.

〈Merge the temp head list into sorted (h) 347 〉 Used in section 346.

〈Move right then up 319 〉 Used in sections 317 and 317.

〈Move the dependent variable p into both parts of the pair node r 947 〉 Used in section 946.

〈Move to next line of file, or goto restart if there is no next line 679 〉 Used in section 669.

〈Move to row n0 , pointed to by p 377 〉 Used in sections 375, 376, 381, 382, 383, and 384.

〈Move to the next remaining triple (p, q, r), removing and skipping past zero-length lines that might be
present; goto done if all triples have been processed 532 〉 Used in section 531.

〈Move to the right m steps 316 〉 Used in section 314.

〈Move up then right 320 〉 Used in sections 317 and 317.

〈Move upward n steps 315 〉 Used in section 314.

〈Multiply when at least one operand is known 942 〉 Used in section 941.

〈Multiply y by exp(−z/227) 136 〉 Used in section 135.

〈Negate the current expression 903 〉 Used in section 898.

〈Normalize the given direction for better accuracy; but return with zero result if it’s zero 540 〉 Used in

section 539.

〈Numbered cases for debug help 1213 〉 Used in section 1212.

〈Other local variables for disp edges 580 〉 Used in section 577.

〈Other local variables for fill envelope 511 〉 Used in sections 506 and 518.

〈Other local variables for find direction time 542 〉 Used in section 539.

〈Other local variables for make choices 280 〉 Used in section 269.

〈Other local variables for make spec 453 〉 Used in section 402.

〈Other local variables for offset prep 495 〉 Used in section 491.

〈Other local variables for scan primary 831, 836, 843 〉 Used in section 823.

〈Other local variables for solve choices 286 〉 Used in section 284.

〈Other local variables for xy swap edges 357, 363 〉 Used in section 354.

〈Output statistics about this job 1208 〉 Used in section 1205.

〈Output the answer, v (which might have become known) 934 〉 Used in section 932.

〈Output the character information bytes, then output the dimensions themselves 1136 〉 Used in section 1134.

〈Output the character represented in cur edges 1167 〉 Used in section 1165.

〈Output the extensible character recipes and the font metric parameters 1140 〉 Used in section 1134.

〈Output the ligature/kern program 1139 〉 Used in section 1134.

〈Output the pixels of edge row p to font row n 1169 〉 Used in section 1167.

〈Output the subfile sizes and header bytes 1135 〉 Used in section 1134.

496 NAMES OF THE SECTIONS METAFONT

〈Pack the numeric and fraction parts of a numeric token and return 675 〉 Used in section 669.

〈Plug an opening in right type (pp), if possible 889 〉 Used in section 887.

〈Plug an opening in right type (q), if possible 888 〉 Used in section 887.

〈Pop the condition stack 745 〉 Used in sections 748, 749, and 751.

〈Preface the output with a part specifier; return in the case of a capsule 237 〉 Used in section 235.

〈Prepare for and switch to the appropriate case, based on octant 380 〉 Used in section 378.

〈Prepare for derivative computations; goto not found if the current cubic is dead 496 〉 Used in section 494.

〈Prepare for step-until construction and goto done 765 〉 Used in section 764.

〈Pretend we’re reading a new one-line file 717 〉 Used in section 716.

〈Print a line of diagnostic info to introduce this octant 509 〉 Used in section 508.

〈Print an abbreviated value of v with format depending on t 802 〉 Used in section 801.

〈Print control points between p and q, then goto done1 261 〉 Used in section 258.

〈Print information for a curve that begins curl or given 263 〉 Used in section 258.

〈Print information for a curve that begins open 262 〉 Used in section 258.

〈Print information for adjacent knots p and q 258 〉 Used in section 257.

〈Print location of current line 637 〉 Used in section 636.

〈Print newly busy locations 184 〉 Used in section 180.

〈Print string cur exp as an error message 1086 〉 Used in section 1082.

〈Print string r as a symbolic token and set c to its class 223 〉 Used in section 218.

〈Print tension between p and q 260 〉 Used in section 258.

〈Print the banner line, including the date and time 790 〉 Used in section 788.

〈Print the coefficient, unless it’s ±1.0 590 〉 Used in section 589.

〈Print the cubic between p and q 397 〉 Used in section 394.

〈Print the current loop value 639 〉 Used in section 638.

〈Print the help information and goto continue 84 〉 Used in section 79.

〈Print the menu of available options 80 〉 Used in section 79.

〈Print the name of a vardef ’d macro 640 〉 Used in section 638.

〈Print the string err help , possibly on several lines 85 〉 Used in sections 84 and 86.

〈Print the turns, if any, that start at q, and advance q 401 〉 Used in sections 398 and 398.

〈Print the unskewed and unrotated coordinates of node ww 474 〉 Used in section 473.

〈Print two dots, followed by given or curl if present 259 〉 Used in section 257.

〈Print two lines using the tricky pseudoprinted information 643 〉 Used in section 636.

〈Print type of token list 638 〉 Used in section 636.

〈Process a skip to command and goto done 1110 〉 Used in section 1107.

〈Protest division by zero 838 〉 Used in section 837.

〈Pseudoprint the line 644 〉 Used in section 636.

〈Pseudoprint the token list 645 〉 Used in section 636.

〈Push the condition stack 744 〉 Used in section 748.

〈Put a string into the input buffer 716 〉 Used in section 707.

〈Put each of METAFONT’s primitives into the hash table 192, 211, 683, 688, 695, 709, 740, 893, 1013, 1018, 1024,

1027, 1037, 1052, 1079, 1101, 1108, 1176 〉 Used in section 1210.

〈Put help message on the transcript file 86 〉 Used in section 77.

〈Put the current transform into cur exp 955 〉 Used in section 953.

〈Put the desired file name in (cur name , cur ext , cur area) 795 〉 Used in section 793.

〈Put the left bracket and the expression back to be rescanned 847 〉 Used in sections 846 and 859.

〈Put the list sorted (p) back into sort 345 〉 Used in section 344.

〈Put the post-join direction information into x and t 880 〉 Used in section 874.

〈Put the pre-join direction information into node q 879 〉 Used in section 874.

〈Read a string from the terminal 897 〉 Used in section 895.

〈Read next line of file into buffer , or goto restart if the file has ended 681 〉 Used in section 679.

〈Read one string, but return false if the string memory space is getting too tight for comfort 52 〉 Used in

section 51.

METAFONT NAMES OF THE SECTIONS 497

〈Read the first line of the new file 794 〉 Used in section 793.

〈Read the other strings from the MF.POOL file and return true , or give an error message and return false 51 〉
Used in section 47.

〈Record a label in a lig/kern subprogram and goto continue 1111 〉 Used in section 1107.

〈Record a line segment from (xx , yy) to (xp , yp) dually in env move 522 〉 Used in section 521.

〈Record a line segment from (xx , yy) to (xp , yp) in env move 516 〉 Used in section 515.

〈Record a new maximum coefficient of type t 814 〉 Used in section 812.

〈Record a possible transition in column m 583 〉 Used in section 582.

〈Recycle a big node 810 〉 Used in section 809.

〈Recycle a dependency list 811 〉 Used in section 809.

〈Recycle an independent variable 812 〉 Used in section 809.

〈Recycle any sidestepped independent capsules 925 〉 Used in section 922.

〈Reduce comparison of big nodes to comparison of scalars 939 〉 Used in section 936.

〈Reduce to simple case of straight line and return 302 〉 Used in section 285.

〈Reduce to simple case of two givens and return 301 〉 Used in section 285.

〈Reduce to the case that a, c ≥ 0, b, d > 0 118 〉 Used in section 117.

〈Reduce to the case that f ≥ 0 and q ≥ 0 110 〉 Used in sections 109 and 112.

〈Reflect the edge-and-weight data in sorted (p) 339 〉 Used in section 337.

〈Reflect the edge-and-weight data in unsorted (p) 338 〉 Used in section 337.

〈Remove a subproblem for make moves from the stack 312 〉 Used in section 311.

〈Remove dead cubics 447 〉 Used in section 402.

〈Remove the left operand from its container, negate it, and put it into dependency list p with constant
term q 1007 〉 Used in section 1006.

〈Remove the line from p to q, and adjust vertex q to introduce a new line 534 〉 Used in section 531.

〈Remove open types at the breakpoints 282 〉 Used in section 278.

〈Repeat a loop 712 〉 Used in section 707.

〈Replace an interval of values by its midpoint 1122 〉 Used in section 1121.

〈Replace a by an approximation to
√
a2 + b2 125 〉 Used in section 124.

〈Replace a by an approximation to
√
a2 − b2 127 〉 Used in section 126.

〈Replicate every row exactly s times 341 〉 Used in section 340.

〈Report an unexpected problem during the choice-making 270 〉 Used in section 269.

〈Report overflow of the input buffer, and abort 34 〉 Used in section 30.

〈Report redundant or inconsistent equation and goto done 1004 〉 Used in section 1003.

〈Return an appropriate answer based on z and octant 141 〉 Used in section 139.

〈Revise the values of α, β, γ, if necessary, so that degenerate lines of length zero will not be obtained 529 〉
Used in section 528.

〈Rotate the cubic between p and q; then goto found if the rotated cubic travels due east at some time tt ;
but goto not found if an entire cyclic path has been traversed 541 〉 Used in section 539.

〈Run through the dependency list for variable t, fixing all nodes, and ending with final link q 605 〉 Used

in section 604.

〈Save string cur exp as the err help 1083 〉 Used in section 1082.

〈Scale the x coordinates of each row by s 343 〉 Used in section 342.

〈Scale the edges, shift them, and return 964 〉 Used in section 963.

〈Scale up del1 , del2 , and del3 for greater accuracy; also set del to the first nonzero element of
(del1 , del2 , del3) 408 〉 Used in sections 407, 413, and 420.

〈Scan a binary operation with ‘of ’ between its operands 839 〉 Used in section 823.

〈Scan a bracketed subscript and set cur cmd ← numeric token 861 〉 Used in section 860.

〈Scan a curl specification 876 〉 Used in section 875.

〈Scan a delimited primary 826 〉 Used in section 823.

〈Scan a given direction 877 〉 Used in section 875.

〈Scan a grouped primary 832 〉 Used in section 823.

〈Scan a mediation construction 859 〉 Used in section 823.

498 NAMES OF THE SECTIONS METAFONT

〈Scan a nullary operation 834 〉 Used in section 823.

〈Scan a path construction operation; but return if p has the wrong type 869 〉 Used in section 868.

〈Scan a primary that starts with a numeric token 837 〉 Used in section 823.

〈Scan a string constant 833 〉 Used in section 823.

〈Scan a suffix with optional delimiters 735 〉 Used in section 733.

〈Scan a unary operation 835 〉 Used in section 823.

〈Scan a variable primary; goto restart if it turns out to be a macro 844 〉 Used in section 823.

〈Scan an expression followed by ‘of 〈primary〉’ 734 〉 Used in section 733.

〈Scan an internal numeric quantity 841 〉 Used in section 823.

〈Scan file name in the buffer 787 〉 Used in section 786.

〈Scan for a subscript; replace cur cmd by numeric token if found 846 〉 Used in section 844.

〈Scan the argument represented by info(r) 729 〉 Used in section 726.

〈Scan the delimited argument represented by info(r) 726 〉 Used in section 725.

〈Scan the loop text and put it on the loop control stack 758 〉 Used in section 755.

〈Scan the remaining arguments, if any; set r to the first token of the replacement text 725 〉 Used in

section 720.

〈Scan the second of a pair of numerics 830 〉 Used in section 826.

〈Scan the token or variable to be defined; set n, scanner status , and warning info 700 〉 Used in section 697.

〈Scan the values to be used in the loop 764 〉 Used in section 755.

〈Scan undelimited argument(s) 733 〉 Used in section 725.

〈Scold the user for having an extra endfor 708 〉 Used in section 707.

〈Search eqtb for equivalents equal to p 209 〉 Used in section 185.

〈Send nonzero offsets to the output file 1166 〉 Used in section 1165.

〈Send the current expression as a title to the output file 1179 〉 Used in section 994.

〈Set explicit control points 884 〉 Used in section 881.

〈Set explicit tensions 882 〉 Used in section 881.

〈Set initial values of key variables 21, 22, 23, 69, 72, 75, 92, 98, 131, 138, 179, 191, 199, 202, 231, 251, 396, 428, 449,

456, 462, 570, 573, 593, 739, 753, 776, 797, 822, 1078, 1085, 1097, 1150, 1153, 1184 〉 Used in section 4.

〈Set local variables x1 , x2 , x3 and y1 , y2 , y3 to multiples of the control points of the rotated derivatives 543 〉
Used in section 541.

〈Set the current expression to the desired path coordinates 987 〉 Used in section 985.

〈Set up equation for a curl at θn and goto found 295 〉 Used in section 284.

〈Set up equation to match mock curvatures at zk; then goto found with θn adjusted to equal θ0, if a cycle
has ended 287 〉 Used in section 284.

〈Set up suffixed macro call and goto restart 854 〉 Used in section 852.

〈Set up the culling weights, or goto not found if the thresholds are bad 1075 〉 Used in section 1074.

〈Set up the equation for a curl at θ0 294 〉 Used in section 285.

〈Set up the equation for a given value of θ0 293 〉 Used in section 285.

〈Set up the parameters needed for paint row ; but goto done if no painting is needed after all 582 〉 Used

in section 578.

〈Set up the variables (del1 , del2 , del3) to represent x′ − y′ 421 〉 Used in section 420.

〈Set up unsuffixed macro call and goto restart 853 〉 Used in section 845.

〈Set variable q to the node at the end of the current octant 466 〉 Used in sections 465, 506, and 506.

〈Set variable z to the arg of (x, y) 142 〉 Used in section 139.

〈Shift the coordinates of path q 867 〉 Used in section 866.

〈Shift the edges by (tx , ty), rounded 965 〉 Used in section 964.

〈Show a numeric or string or capsule token 1042 〉 Used in section 1041.

〈Show the text of the macro being expanded, and the existing arguments 721 〉 Used in section 720.

〈Show the transformed dependency 817 〉 Used in section 816.

〈Sidestep independent cases in capsule p 926 〉 Used in section 922.

〈Sidestep independent cases in the current expression 927 〉 Used in section 922.

〈Simplify all existing dependencies by substituting for x 614 〉 Used in section 610.

METAFONT NAMES OF THE SECTIONS 499

〈Skip down prev n − n rows 1174 〉 Used in section 1172.

〈Skip to elseif or else or fi, then goto done 749 〉 Used in section 748.

〈Skip to column m in the next row and goto done , or skip zero rows 1173 〉 Used in section 1172.

〈Sort p into the list starting at rover and advance p to rlink (p) 174 〉 Used in section 173.

〈Splice independent paths together 890 〉 Used in section 887.

〈Split off another rising cubic for fin offset prep 504 〉 Used in section 503.

〈Split the cubic at t, and split off another cubic if the derivative crosses back 499 〉 Used in section 497.

〈Split the cubic between p and q, if necessary, into cubics associated with single offsets, after which q should
point to the end of the final such cubic 494 〉 Used in section 491.

〈Squeal about division by zero 950 〉 Used in section 948.

〈Stamp all nodes with an octant code, compute the maximum offset, and set hh to the node that begins
the first octant; goto not found if there’s a problem 479 〉 Used in section 477.

〈Start a new row at (m,n) 1172 〉 Used in section 1170.

〈Start black at (m,n) 1170 〉 Used in section 1169.

〈Stash an independent cur exp into a big node 829 〉 Used in section 827.

〈Stop black at (m,n) 1171 〉 Used in section 1169.

〈Store a list of font dimensions 1115 〉 Used in section 1106.

〈Store a list of header bytes 1114 〉 Used in section 1106.

〈Store a list of ligature/kern steps 1107 〉 Used in section 1106.

〈Store the width information for character code c 1099 〉 Used in section 1070.

〈Subdivide all cubics between p and q so that the results travel toward the first quadrant; but return or
goto continue if the cubic from p to q was dead 413 〉 Used in section 406.

〈Subdivide for a new level of intersection 559 〉 Used in section 556.

〈Subdivide the cubic a second time with respect to x′ 412 〉 Used in section 411.

〈Subdivide the cubic a second time with respect to x′ − y′ 425 〉 Used in section 424.

〈Subdivide the cubic a second time with respect to y′ 416 〉 Used in section 415.

〈Subdivide the cubic between p and q so that the results travel toward the first octant 420 〉 Used in

section 419.

〈Subdivide the cubic between p and q so that the results travel toward the right halfplane 407 〉 Used in

section 406.

〈Subdivide the cubic with respect to x′, possibly twice 411 〉 Used in section 407.

〈Subdivide the cubic with respect to x′ − y′, possibly twice 424 〉 Used in section 420.

〈Subdivide the cubic with respect to y′, possibly twice 415 〉 Used in section 413.

〈Substitute for cur sym , if it’s on the subst list 686 〉 Used in section 685.

〈Substitute new dependencies in place of p 818 〉 Used in section 815.

〈Substitute new proto-dependencies in place of p 819 〉 Used in section 815.

〈Subtract angle z from (x, y) 147 〉 Used in section 145.

〈Supply diagnostic information, if requested 825 〉 Used in section 823.

〈Swap the x and y coordinates of the cubic between p and q 423 〉 Used in section 420.

〈Switch to the right subinterval 318 〉 Used in section 317.

〈Tell the user what has run away and try to recover 663 〉 Used in section 661.

〈Terminate the current conditional and skip to fi 751 〉 Used in section 707.

〈The arithmetic progression has ended 761 〉 Used in section 760.

〈Trace the current assignment 998 〉 Used in section 996.

〈Trace the current binary operation 924 〉 Used in section 922.

〈Trace the current equation 997 〉 Used in section 995.

〈Trace the current unary operation 902 〉 Used in section 898.

〈Trace the fraction multiplication 945 〉 Used in section 944.

〈Trace the start of a loop 762 〉 Used in section 760.

〈Transfer moves dually from the move array to env move 520 〉 Used in section 518.

〈Transfer moves from the move array to env move 514 〉 Used in section 512.

〈Transform a known big node 970 〉 Used in section 966.

500 NAMES OF THE SECTIONS METAFONT

〈Transform an unknown big node and return 967 〉 Used in section 966.

〈Transform known by known 973 〉 Used in section 970.

〈Transform the skewed coordinates 444 〉 Used in section 440.

〈Transform the x coordinates 436 〉 Used in section 433.

〈Transform the y coordinates 439 〉 Used in section 433.

〈Treat special case of length 1 and goto found 206 〉 Used in section 205.

〈Truncate the values of all coordinates that exceed max allowed , and stamp segment numbers in each
left type field 404 〉 Used in section 402.

〈Try to allocate within node p and its physical successors, and goto found if allocation was possible 169 〉
Used in section 167.

〈Try to get a different log file name 789 〉 Used in section 788.

〈Types in the outer block 18, 24, 37, 101, 105, 106, 156, 186, 565, 571, 627, 1151 〉 Used in section 4.

〈Undump a few more things and the closing check word 1199 〉 Used in section 1187.

〈Undump constants for consistency check 1191 〉 Used in section 1187.

〈Undump the dynamic memory 1195 〉 Used in section 1187.

〈Undump the string pool 1193 〉 Used in section 1187.

〈Undump the table of equivalents and the hash table 1197 〉 Used in section 1187.

〈Update the max/min amounts 351 〉 Used in section 349.

〈Use bisection to find the crossing point, if one exists 392 〉 Used in section 391.

〈Wind up the paint row parameter calculation by inserting the final transition; goto done if no painting is
needed 584 〉 Used in section 582.

〈Worry about bad statement 990 〉 Used in section 989.

	[1] Introduction
	[2] The character set
	[3] Input and output
	[4] String handling
	[5] On-line and off-line printing
	[6] Reporting errors
	[7] Arithmetic with scaled numbers
	[8] Algebraic and transcendental functions
	[9] Packed data
	[10] Dynamic memory allocation
	[11] Memory layout
	[12] The command codes
	[13] The hash table
	[14] Token lists
	[15] Data structures for variables
	[16] Saving and restoring equivalents
	[17] Data structures for paths
	[18] Choosing control points
	[19] Generating discrete moves
	[20] Edge structures
	[21] Subdivision into octants
	[22] Filling a contour
	[23] Polygonal pens
	[24] Filling an envelope
	[25] Elliptical pens
	[26] Direction and intersection times
	[27] Online graphic output
	[28] Dynamic linear equations
	[29] Dynamic nonlinear equations
	[30] Introduction to the syntactic routines
	[31] Input stacks and states
	[32] Maintaining the input stacks
	[33] Getting the next token
	[34] Scanning macro definitions
	[35] Expanding the next token
	[36] Conditional processing
	[37] Iterations
	[38] File names
	[39] Introduction to the parsing routines
	[40] Parsing primary expressions
	[41] Parsing secondary and higher expressions
	[42] Doing the operations
	[43] Statements and commands
	[44] Commands
	[45] Font metric data
	[46] Generic font file format
	[47] Shipping characters out
	[48] Dumping and undumping the tables
	[49] The main program
	[50] Debugging
	[51] System-dependent changes
	[52] Index
	Names of the sections
	Abandon edges command because there's no variable
	Absorb delimited parameters, putting them into lists q and r
	Absorb parameter tokens for type base
	Absorb undelimited parameters, putting them into list r
	Add a known value to the constant term of dep_list(p)
	Add dependency list pp of type tt to dependency list p of type t
	Add edges for fifth or eighth octants, then goto done
	Add edges for first or fourth octants, then goto done
	Add edges for second or third octants, then goto done
	Add edges for sixth or seventh octants, then goto done
	Add operand p to the dependency list v
	Add or subtract the current expression from p
	Add the contribution of node q to the total weight, and set q:=link(q)
	Add the known value(p) to the constant term of v
	Add the right operand to list p
	Additional cases of binary operators
	Additional cases of unary operators
	Adjust theta_n to equal theta_0 and goto found
	Adjust the balance for a delimited argument; goto done if done
	Adjust the balance for an undelimited argument; goto done if done
	Adjust the balance; goto done if it's zero
	Adjust the coordinates (r0,c0) and (r1,c1) so that they lie in the proper range
	Adjust the data of h to account for a difference of offsets
	Adjust the header to reflect the new edges
	Advance pointer p to the next vertical edge, after destroying the previous one
	Advance pointer r to the next vertical edge
	Advance to the next pair (cur_t,cur_tt)
	Advance p to node q, removing any ``dead'' cubics that might have been introduced by the splitting process
	Allocate entire node p and goto found
	Allocate from the top of node p and goto found
	Announce that the equation cannot be performed
	Append the current expression to arg_list
	Ascend one level, pushing a token onto list q and replacing p by its parent
	Assign the current expression to an internal variable
	Assign the current expression to the variable lhs
	Attach the replacement text to the tail of node p
	Augment some edges by others
	Back up an outer symbolic token so that it can be reread
	Basic printing procedures
	Calculate integers alpha, beta, gamma for the vertex coordinates
	Calculate the given value of theta_n and goto found
	Calculate the ratio ff=C_k/(C_k+B_k-u_k-1A_k)
	Calculate the turning angles _k and the distances d_k,k+1; set n to the length of the path
	Calculate the values aa=A_k/B_k, bb=D_k/C_k, dd=(3-alpha_k-1)d_k,k+1, ee=(3-beta)d_k-1,k, and cc=(B_k-u_k-1A_k)/B_k
	Calculate the values of v_k and w_k
	Cases of do_statement that invoke particular commands
	Cases of print_cmd_mod for symbolic printing of primitives
	Change node q to a path for an elliptical pen
	Change one-point paths into dead cycles
	Change the interaction level and return
	Change the tentative pen
	Change to `a bad variable'
	Change variable x from independent to dependent or known
	Character k cannot be printed
	Check flags of unavailable nodes
	Check for the presence of a colon
	Check if unknowns have been equated
	Check single-word avail list
	Check that the proper right delimiter was present
	Check the ``constant'' values for consistency
	Check the list of linear dependencies
	Check the places where B(y_1,y_2,y_3;t)=0 to see if B(x_1,x_2,x_3;t)0
	Check the pool check sum
	Check the tentative weight
	Check the turning number
	Check variable-size avail list
	Choose a dependent variable to take the place of the disappearing independent variable, and change all remaining dependencies accordingly
	Choose control points for the path and put the result into cur_exp
	Close the base file
	Compare the current expression with zero
	Compile a ligature/kern command
	Compiler directives
	Complain about a bad pen path
	Complain about a character tag conflict
	Complain about improper special operation
	Complain about improper type
	Complain about non-cycle and goto not_found
	Complement the x coordinates of the cubic between p and q
	Complement the y coordinates of the cubic between pp and qq
	Complete the contour filling operation
	Complete the ellipse by copying the negative of the half already computed
	Complete the error message, and set cur_sym to a token that might help recover from the error
	Complete the half ellipse by reflecting the quarter already computed
	Complete the offset splitting process
	Compute f=2^16(1+p/q)+1/2
	Compute f=2^28(1+p/q)+1/2
	Compute p=qf/2^16+1/2-q
	Compute p=qf/2^28+1/2-q
	Compute a check sum in (b1,b2,b3,b4)
	Compute a compromise pen_edge
	Compute a good coordinate at a diagonal transition
	Compute before-and-after x values based on the current pen
	Compute before-and-after y values based on the current pen
	Compute test coefficients (t0,t1,t2) for s(t) versus s_k or s_k-1
	Compute the distance d from class 0 to the edge of the ellipse in direction (u,v), times root u^2+v^2, rounded to the nearest integer
	Compute the hash code h
	Compute the incoming and outgoing directions
	Compute the ligature/kern program offset and implant the left boundary label
	Compute the magic offset values
	Compute the octant code; skew and rotate the coordinates (x,y)
	Compute the offsets between screen coordinates and actual coordinates
	Constants in the outer block
	Construct a path from pp to qq of length b
	Construct a path from pp to qq of length zero
	Construct the offset list for the kth octant
	Contribute a term from p, plus the corresponding term from q
	Contribute a term from p, plus f times the corresponding term from q
	Contribute a term from q, multiplied by f
	Convert a suffix to a string
	Convert the left operand, p, into a partial path ending at q; but return if p doesn't have a suitable type
	Convert the right operand, cur_exp, into a partial path from pp to qq
	Convert (x,y) to the octant determined by q
	Copy both sorted and unsorted lists of p to pp
	Copy the big node p
	Copy the unskewed and unrotated coordinates of node ww
	Correct the octant code in segments with decreasing y
	Create the base_ident, open the base file, and inform the user that dumping has begun
	Cull superfluous edge-weight entries from sorted(p)
	Deal with redundant or inconsistent equation
	Decide whether or not to go clockwise
	Declare action procedures for use by do_statement
	Declare basic dependency-list subroutines
	Declare binary action procedures
	Declare generic font output procedures
	Declare miscellaneous procedures that were declared forward
	Declare subroutines for printing expressions
	Declare subroutines needed by big_trans
	Declare subroutines needed by make_exp_copy
	Declare subroutines needed by make_spec
	Declare subroutines needed by offset_prep
	Declare subroutines needed by solve_choices
	Declare the basic parsing subroutines
	Declare the function called open_base_file
	Declare the function called scan_declared_variable
	Declare the function called tfm_check
	Declare the function called trivial_knot
	Declare the procedure called check_delimiter
	Declare the procedure called dep_finish
	Declare the procedure called dual_moves
	Declare the procedure called flush_below_variable
	Declare the procedure called flush_cur_exp
	Declare the procedure called flush_string
	Declare the procedure called known_pair
	Declare the procedure called macro_call
	Declare the procedure called make_eq
	Declare the procedure called make_exp_copy
	Declare the procedure called print_arg
	Declare the procedure called print_cmd_mod
	Declare the procedure called print_dp
	Declare the procedure called print_macro_name
	Declare the procedure called print_weight
	Declare the procedure called runaway
	Declare the procedure called scan_text_arg
	Declare the procedure called show_token_list
	Declare the procedure called skew_line_edges
	Declare the procedure called solve_choices
	Declare the procedure called split_cubic
	Declare the procedure called try_eq
	Declare the recycling subroutines
	Declare the stashing/unstashing routines
	Declare unary action procedures
	Decrease the string reference count, if the current token is a string
	Decrease the velocities, if necessary, to stay inside the bounding triangle
	Decrease k by 1, maintaining the invariant relations between x, y, and q
	Decry the invalid character and goto restart
	Decry the missing string delimiter and goto restart
	Define an extensible recipe
	Delete all the row headers
	Delete empty rows at the top and/or bottom; update the boundary values in the header
	Delete c-"0" tokens and goto continue
	Descend one level for the attribute info(t)
	Descend one level for the subscript value(t)
	Descend past a collective subscript
	Descend the structure
	Descend to the previous level and goto not_found
	Determine if a character has been shipped out
	Determine the before-and-after values of both coordinates
	Determine the dependency list s to substitute for the independent variable p
	Determine the envelope's starting and ending lattice points (m0,n0) and (m1,n1)
	Determine the file extension, gf_ext
	Determine the number n of arguments already supplied, and set tail to the tail of arg_list
	Determine the octant boundary q that precedes f
	Determine the octant code for direction (dx,dy)
	Determine the path join parameters; but goto finish_path if there's only a direction specifier
	Determine the starting and ending lattice points (m0,n0) and (m1,n1)
	Determine the tension and/or control points
	Dispense with the cases a<0 and/or b>l
	Display a big node
	Display a collective subscript
	Display a complex type
	Display a numeric token
	Display a parameter token
	Display a variable macro
	Display a variable that's been declared but not defined
	Display the boolean value of cur_exp
	Display the current context
	Display the new dependency
	Display the pixels of edge row p in screen row r
	Display token p and set c to its class; but return if there are problems
	Display two-word token
	Divide list p by 2^n
	Divide list p by -v, removing node q
	Divide the variables by two, to avoid overflow problems
	Do a statement that doesn't begin with an expression
	Do a title
	Do an equation, assignment, title, or `<expression>endgroup'
	Do any special actions needed when y is constant; return or goto continue if a dead cubic from p to q is removed
	Do magic computation
	Do multiple equations and goto done
	Double the path
	Dump a few more things and the closing check word
	Dump constants for consistency check
	Dump the dynamic memory
	Dump the string pool
	Dump the table of equivalents and the hash table
	Either begin an unsuffixed macro call or prepare for a suffixed one
	Empty the last bytes out of gf_buf
	Ensure that type(p)=proto_dependent
	Error handling procedures
	Exclaim about a redundant equation
	Exit a loop if the proper time has come
	Exit prematurely from an iteration
	Exit to found if an eastward direction occurs at knot p
	Exit to found if the curve whose derivatives are specified by x1,x2,x3,y1,y2,y3 travels eastward at some time tt
	Exit to found if the derivative B(x_1,x_2,x_3;t) becomes 0
	Expand the token after the next token
	Feed the arguments and replacement text to the scanner
	Fill in the control information between consecutive breakpoints p and q
	Fill in the control points between p and the next breakpoint, then advance p to that breakpoint
	Find a node q in list p whose coefficient v is largest
	Find the approximate type tt and corresponding q
	Find the first breakpoint, h, on the path; insert an artificial breakpoint if the path is an unbroken cycle
	Find the index k such that s_k-1dy/dx<s_k
	Find the initial slope, dy/dx
	Find the minimum lk_offset and adjust all remainders
	Find the starting point, f
	Finish choosing angles and assigning control points
	Finish getting the symbolic token in cur_sym; goto restart if it is illegal
	Finish linking the offset nodes, and duplicate the borderline offset nodes if necessary
	Finish off an entirely blank character
	Finish the GF file
	Finish the TFM and GF files
	Finish the TFM file
	Fix up the transition fields and adjust the turning number
	Flush spurious symbols after the declared variable
	Flush unparsable junk that was found after the statement
	For each of the eight cases, change the relevant fields of cur_exp and goto done; but do nothing if capsule p doesn't have the appropriate type
	For each type t, make an equation and goto done unless cur_type is incompatible with t
	Get a stored numeric or string or capsule token and return
	Get a string token and return
	Get given directions separated by commas
	Get ready to close a cycle
	Get ready to fill a contour, and fill it
	Get the first line of input and prepare to start
	Get the fraction part f of a numeric token
	Get the integer part n of a numeric token; set f:=0 and goto fin_numeric_token if there is no decimal point
	Get the linear equations started; or return with the control points in place, if linear equations needn't be solved
	Get user's advice and return
	Give error messages if bad_char or n4096
	Global variables
	Grow more variable-size memory and goto restart
	Handle erroneous pyth_sub and set a:=0
	Handle non-positive logarithm
	Handle quoted symbols, #!, !, or !#
	Handle square root of zero or negative argument
	Handle the special case of infinite slope
	Handle the test for eastward directions when y_1y_3=y_2^2; either goto found or goto done
	Handle undefined arg
	Handle unusual cases that masquerade as variables, and goto restart or goto done if appropriate; otherwise make a copy of the variable and goto done
	If consecutive knots are equal, join them explicitly
	If node q is a transition point between octants, compute and save its before-and-after coordinates
	If node q is a transition point for x coordinates, compute and save its before-and-after coordinates
	If node q is a transition point for y coordinates, compute and save its before-and-after coordinates
	If the current transform is entirely known, stash it in global variables; otherwise return
	Increase and decrease move[k-1] and move[k] by delta_k
	Increase k until x can be multiplied by a factor of 2^-k, and adjust y accordingly
	Increase z to the arg of (x,y)
	Initialize for dual envelope moves
	Initialize for intersections at level zero
	Initialize for ordinary envelope moves
	Initialize for the display computations
	Initialize table entries (done by INIMF only)
	Initialize the array of new edge list heads
	Initialize the ellipse data structure by beginning with directions (0,-1), (1,0), (0,1)
	Initialize the input routines
	Initialize the output routines
	Initialize the print selector based on interaction
	Initialize the random seed to cur_exp
	Initiate or terminate input from a file
	Input from external file; goto restart if no input found, or return if a non-symbolic token is found
	Input from token list; goto restart if end of list or if a parameter needs to be expanded, or return if a non-symbolic token is found
	Insert a fractional node by splitting the cubic
	Insert a line segment dually to approach the correct offset
	Insert a line segment to approach the correct offset
	Insert a new line for direction (u,v) between p and q
	Insert a new symbolic token after p, then make p point to it and goto found
	Insert a suffix or text parameter and goto restart
	Insert additional boundary nodes, then goto done
	Insert an edge-weight for edge m, if the new pixel weight has changed
	Insert blank rows at the top and bottom, and set p to the new top row
	Insert downward edges for a line
	Insert exactly n_min(cur_edges)-nl empty rows at the bottom
	Insert exactly nr-n_max(cur_edges) empty rows at the top
	Insert horizontal edges of weight w between m and mm
	Insert octant boundaries and compute the turning number
	Insert one or more octant boundary nodes just before q
	Insert the horizontal edges defined by adjacent rows p,q, and destroy row p
	Insert the new envelope moves dually in the pixel data
	Insert the new envelope moves in the pixel data
	Insert upward edges for a line
	Install a complex multiplier, then goto done
	Install sines and cosines, then goto done
	Interpolate new vertices in the ellipse data structure until improvement is impossible
	Interpret code c and return if done
	Introduce new material from the terminal and return
	Join the partial paths and reset p and q to the head and tail of the result
	Labels in the outer block
	Last-minute procedures
	Link a new attribute node r in place of node p
	Link a new subscript node r in place of node p
	Link node r to the previous node
	Local variables for formatting calculations
	Local variables for initialization
	Log the subfile sizes of the TFM file
	Make a special knot node for pencircle
	Make a trivial one-point path cycle
	Make moves for current subinterval; if bisection is necessary, push the second subinterval onto the stack, and goto continue in order to handle the first subinterval
	Make one move of each kind
	Make sure that all the diagonal roundings are safe
	Make sure that both nodes p and pp are of structured type
	Make sure that both x and y parts of p are known; copy them into cur_x and cur_y
	Make sure that the current expression is a valid tension setting
	Make the dynamic memory into one big available node
	Make the envelope moves for the current octant and insert them in the pixel data
	Make the first 256 strings
	Make the moves for the current octant
	Make variable q+s newly independent
	Massage the TFM heights, depths, and italic corrections
	Massage the TFM widths
	Merge row pp into row p
	Merge the temp_head list into sorted(h)
	Move right then up
	Move the dependent variable p into both parts of the pair node r
	Move to next line of file, or goto restart if there is no next line
	Move to row n0, pointed to by p
	Move to the next remaining triple (p,q,r), removing and skipping past zero-length lines that might be present; goto done if all triples have been processed
	Move to the right m steps
	Move up then right
	Move upward n steps
	Multiply when at least one operand is known
	Multiply y by (-z/2^27)
	Negate the current expression
	Normalize the given direction for better accuracy; but return with zero result if it's zero
	Numbered cases for debug_help
	Other local variables for disp_edges
	Other local variables for fill_envelope
	Other local variables for find_direction_time
	Other local variables for make_choices
	Other local variables for make_spec
	Other local variables for offset_prep
	Other local variables for scan_primary
	Other local variables for solve_choices
	Other local variables for xy_swap_edges
	Output statistics about this job
	Output the answer, v (which might have become known)
	Output the character information bytes, then output the dimensions themselves
	Output the character represented in cur_edges
	Output the extensible character recipes and the font metric parameters
	Output the ligature/kern program
	Output the pixels of edge row p to font row n
	Output the subfile sizes and header bytes
	Pack the numeric and fraction parts of a numeric token and return
	Plug an opening in right_type(pp), if possible
	Plug an opening in right_type(q), if possible
	Pop the condition stack
	Preface the output with a part specifier; return in the case of a capsule
	Prepare for and switch to the appropriate case, based on octant
	Prepare for derivative computations; goto not_found if the current cubic is dead
	Prepare for step-until construction and goto done
	Pretend we're reading a new one-line file
	Print a line of diagnostic info to introduce this octant
	Print an abbreviated value of v with format depending on t
	Print control points between p and q, then goto done1
	Print information for a curve that begins curl or given
	Print information for a curve that begins open
	Print information for adjacent knots p and q
	Print location of current line
	Print newly busy locations
	Print string cur_exp as an error message
	Print string r as a symbolic token and set c to its class
	Print tension between p and q
	Print the banner line, including the date and time
	Print the coefficient, unless it's 1.0
	Print the cubic between p and q
	Print the current loop value
	Print the help information and goto continue
	Print the menu of available options
	Print the name of a vardef'd macro
	Print the string err_help, possibly on several lines
	Print the turns, if any, that start at q, and advance q
	Print the unskewed and unrotated coordinates of node ww
	Print two dots, followed by given or curl if present
	Print two lines using the tricky pseudoprinted information
	Print type of token list
	Process a skip_to command and goto done
	Protest division by zero
	Pseudoprint the line
	Pseudoprint the token list
	Push the condition stack
	Put a string into the input buffer
	Put each of Metafont's primitives into the hash table
	Put help message on the transcript file
	Put the current transform into cur_exp
	Put the desired file name in (cur_name,cur_ext,cur_area)
	Put the left bracket and the expression back to be rescanned
	Put the list sorted(p) back into sort
	Put the post-join direction information into x and t
	Put the pre-join direction information into node q
	Read a string from the terminal
	Read next line of file into buffer, or goto restart if the file has ended
	Read one string, but return false if the string memory space is getting too tight for comfort
	Read the first line of the new file
	Read the other strings from the MF.POOL file and return true, or give an error message and return false
	Record a label in a lig/kern subprogram and goto continue
	Record a line segment from (xx,yy) to (xp,yp) dually in env_move
	Record a line segment from (xx,yy) to (xp,yp) in env_move
	Record a new maximum coefficient of type t
	Record a possible transition in column m
	Recycle a big node
	Recycle a dependency list
	Recycle an independent variable
	Recycle any sidestepped independent capsules
	Reduce comparison of big nodes to comparison of scalars
	Reduce to simple case of straight line and return
	Reduce to simple case of two givens and return
	Reduce to the case that a,c0, b,d>0
	Reduce to the case that f0 and q0
	Reflect the edge-and-weight data in sorted(p)
	Reflect the edge-and-weight data in unsorted(p)
	Remove a subproblem for make_moves from the stack
	Remove dead cubics
	Remove the left operand from its container, negate it, and put it into dependency list p with constant term q
	Remove the line from p to q, and adjust vertex q to introduce a new line
	Remove open types at the breakpoints
	Repeat a loop
	Replace an interval of values by its midpoint
	Replace a by an approximation to root a^2+b^2
	Replace a by an approximation to root a^2-b^2
	Replicate every row exactly s times
	Report an unexpected problem during the choice-making
	Report overflow of the input buffer, and abort
	Report redundant or inconsistent equation and goto done
	Return an appropriate answer based on z and octant
	Revise the values of alpha, beta, gamma, if necessary, so that degenerate lines of length zero will not be obtained
	Rotate the cubic between p and q; then goto found if the rotated cubic travels due east at some time tt; but goto not_found if an entire cyclic path has been traversed
	Run through the dependency list for variable t, fixing all nodes, and ending with final link q
	Save string cur_exp as the err_help
	Scale the x coordinates of each row by s
	Scale the edges, shift them, and return
	Scale up del1, del2, and del3 for greater accuracy; also set del to the first nonzero element of (del1,del2,del3)
	Scan a binary operation with `of' between its operands
	Scan a bracketed subscript and set cur_cmd:=numeric_token
	Scan a curl specification
	Scan a delimited primary
	Scan a given direction
	Scan a grouped primary
	Scan a mediation construction
	Scan a nullary operation
	Scan a path construction operation; but return if p has the wrong type
	Scan a primary that starts with a numeric token
	Scan a string constant
	Scan a suffix with optional delimiters
	Scan a unary operation
	Scan a variable primary; goto restart if it turns out to be a macro
	Scan an expression followed by `of <primary>'
	Scan an internal numeric quantity
	Scan file name in the buffer
	Scan for a subscript; replace cur_cmd by numeric_token if found
	Scan the argument represented by info(r)
	Scan the delimited argument represented by info(r)
	Scan the loop text and put it on the loop control stack
	Scan the remaining arguments, if any; set r to the first token of the replacement text
	Scan the second of a pair of numerics
	Scan the token or variable to be defined; set n, scanner_status, and warning_info
	Scan the values to be used in the loop
	Scan undelimited argument(s)
	Scold the user for having an extra endfor
	Search eqtb for equivalents equal to p
	Send nonzero offsets to the output file
	Send the current expression as a title to the output file
	Set explicit control points
	Set explicit tensions
	Set initial values of key variables
	Set local variables x1,x2,x3 and y1,y2,y3 to multiples of the control points of the rotated derivatives
	Set the current expression to the desired path coordinates
	Set up equation for a curl at theta_n and goto found
	Set up equation to match mock curvatures at z_k; then goto found with theta_n adjusted to equal theta_0, if a cycle has ended
	Set up suffixed macro call and goto restart
	Set up the culling weights, or goto not_found if the thresholds are bad
	Set up the equation for a curl at theta_0
	Set up the equation for a given value of theta_0
	Set up the parameters needed for paint_row; but goto done if no painting is needed after all
	Set up the variables (del1,del2,del3) to represent x'-y'
	Set up unsuffixed macro call and goto restart
	Set variable q to the node at the end of the current octant
	Set variable z to the arg of (x,y)
	Shift the coordinates of path q
	Shift the edges by (tx,ty), rounded
	Show a numeric or string or capsule token
	Show the text of the macro being expanded, and the existing arguments
	Show the transformed dependency
	Sidestep independent cases in capsule p
	Sidestep independent cases in the current expression
	Simplify all existing dependencies by substituting for x
	Skip down prev_n-n rows
	Skip to elseif or else or fi, then goto done
	Skip to column m in the next row and goto done, or skip zero rows
	Sort p into the list starting at rover and advance p to rlink(p)
	Splice independent paths together
	Split off another rising cubic for fin_offset_prep
	Split the cubic at t, and split off another cubic if the derivative crosses back
	Split the cubic between p and q, if necessary, into cubics associated with single offsets, after which q should point to the end of the final such cubic
	Squeal about division by zero
	Stamp all nodes with an octant code, compute the maximum offset, and set hh to the node that begins the first octant; goto not_found if there's a problem
	Start a new row at (m,n)
	Start black at (m,n)
	Stash an independent cur_exp into a big node
	Stop black at (m,n)
	Store a list of font dimensions
	Store a list of header bytes
	Store a list of ligature/kern steps
	Store the width information for character code c
	Subdivide all cubics between p and q so that the results travel toward the first quadrant; but return or goto continue if the cubic from p to q was dead
	Subdivide for a new level of intersection
	Subdivide the cubic a second time with respect to x'
	Subdivide the cubic a second time with respect to x'-y'
	Subdivide the cubic a second time with respect to y'
	Subdivide the cubic between p and q so that the results travel toward the first octant
	Subdivide the cubic between p and q so that the results travel toward the right halfplane
	Subdivide the cubic with respect to x', possibly twice
	Subdivide the cubic with respect to x'-y', possibly twice
	Subdivide the cubic with respect to y', possibly twice
	Substitute for cur_sym, if it's on the subst_list
	Substitute new dependencies in place of p
	Substitute new proto-dependencies in place of p
	Subtract angle z from (x,y)
	Supply diagnostic information, if requested
	Swap the x and y coordinates of the cubic between p and q
	Switch to the right subinterval
	Tell the user what has run away and try to recover
	Terminate the current conditional and skip to fi
	The arithmetic progression has ended
	Trace the current assignment
	Trace the current binary operation
	Trace the current equation
	Trace the current unary operation
	Trace the fraction multiplication
	Trace the start of a loop
	Transfer moves dually from the move array to env_move
	Transfer moves from the move array to env_move
	Transform a known big node
	Transform an unknown big node and return
	Transform known by known
	Transform the skewed coordinates
	Transform the x coordinates
	Transform the y coordinates
	Treat special case of length 1 and goto found
	Truncate the values of all coordinates that exceed max_allowed, and stamp segment numbers in each left_type field
	Try to allocate within node p and its physical successors, and goto found if allocation was possible
	Try to get a different log file name
	Types in the outer block
	Undump a few more things and the closing check word
	Undump constants for consistency check
	Undump the dynamic memory
	Undump the string pool
	Undump the table of equivalents and the hash table
	Update the max/min amounts
	Use bisection to find the crossing point, if one exists
	Wind up the paint_row parameter calculation by inserting the final transition; goto done if no painting is needed
	Worry about bad statement

