
201

The GFtoPK processor

(Version 2.4, 06 January 2014)

Section Page
Introduction . 1 202
The character set . 9 204
Generic font file format . 14 206
Packed file format . 21 211
Input and output for binary files . 37 218
Plan of attack . 48 222
Reading the generic font file . 51 223
Converting the counts to packed format . 62 228
System-dependent changes . 88 239
Index . 89 240

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘hijklmnj ’ is a trademark of Addison-Wesley Publishing Company.

August 12, 2024 at 13:28

202 INTRODUCTION GFtoPK §1

1. Introduction. This program reads a GF file and packs it into a PK file. PK files are significantly
smaller than GF files, and they are much easier to interpret. This program is meant to be the bridge between
METAFONT and DVI drivers that read PK files. Here are some statistics comparing typical input and output
file sizes:

Font Resolution GF size PK size Reduction factor

cmr10 300 13200 5484 42%
cmr10 360 15342 6496 42%
cmr10 432 18120 7808 43%
cmr10 511 21020 9440 45%
cmr10 622 24880 11492 46%
cmr10 746 29464 13912 47%
cminch 300 48764 22076 45%

It is hoped that the simplicity and small size of the PK files will make them widely accepted.
The PK format was designed and implemented by Tomas Rokicki during the summer of 1985. This program

borrows a few routines from GFtoPXL by Arthur Samuel.
The banner string defined here should be changed whenever GFtoPK gets modified. The preamble comment

macro (near the end of the program) should be changed too.

define banner ≡ ´This is GFtoPK, Version 2.4´ { printed when the program starts }

2. Some of the diagnostic information is printed using d print ln . When debugging, it should be set the
same as print ln , defined later.

define d print ln (#) ≡

3. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
one extension is to use a default case as in TANGLE, WEAVE, etc. All places where nonstandard constructions
are used should be listed in the index under “system dependencies.”

define othercases ≡ others : {default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

4. The binary input comes from gf file , and the output font is written on pk file . All text output is written
on Pascal’s standard output file. The term print is used instead of write when this program writes on output ,
so that all such output could easily be redirected if desired.

define print (#) ≡ write (#)
define print ln (#) ≡ write ln (#)

program GFtoPK (gf file , pk file , output);
label 〈Labels in the outer block 5 〉
const 〈Constants in the outer block 6 〉
type 〈Types in the outer block 9 〉
var 〈Globals in the outer block 11 〉
procedure initialize ; { this procedure gets things started properly }

var i: integer ; { loop index for initializations }
begin print ln (banner);
〈Set initial values 12 〉
end;

§5 GFtoPK INTRODUCTION 203

5. If the program has to stop prematurely, it goes to the ‘final end ’.

define final end = 9999 { label for the end of it all }
〈Labels in the outer block 5 〉 ≡

final end ;

This code is used in section 4.

6. The following parameters can be changed at compile time to extend or reduce GFtoPK’s capacity. The
values given here should be quite adequate for most uses. Assuming an average of about three strokes per
raster line, there are six run-counts per line, and therefore max row will be sufficient for a character 2600
pixels high.

〈Constants in the outer block 6 〉 ≡
line length = 79; { bracketed lines of output will be at most this long }
max row = 16000; { largest index in the main row array }

This code is used in section 4.

7. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }

8. If the GF file is badly malformed, the whole process must be aborted; GFtoPK will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump out
has been introduced. This procedure, which simply transfers control to the label final end at the end of the
program, contains the only non-local goto statement in GFtoPK.

define abort (#) ≡
begin print (´ ´, #); jump out ;
end

define bad gf (#) ≡ abort (´Bad GF file: ´, #, ´!´)

procedure jump out ;
begin goto final end ;
end;

204 THE CHARACTER SET GFtoPK §9

9. The character set. Like all programs written with the WEB system, GFtoPK can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used.

The next few sections of GFtoPK have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since GFtoPK need not deal with the controversial ASCII
codes less than 4́0 or greater than 1́76 . If such codes appear in the GF file, they will be printed as question
marks.

〈Types in the outer block 9 〉 ≡
ASCII code = " " . . "~"; { a subrange of the integers }

See also sections 10 and 37.

This code is used in section 4.

10. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtoPK. So we shall assume that the
Pascal system being used for GFtoPK has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text char to stand for the
data type of the characters in the output file. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 127 { ordinal number of the largest element of text char }

〈Types in the outer block 9 〉 +≡
text file = packed file of text char ;

11. The GFtoPK processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 11 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [0 . . 255] of text char ; { specifies conversion of output characters }
See also sections 38, 41, 45, 47, 48, 55, 78, 82, and 87.

This code is used in section 4.

§12 GFtoPK THE CHARACTER SET 205

12. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

〈Set initial values 12 〉 ≡
for i← 0 to 3́7 do xchr [i]← ´?´;
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;
for i← 1́77 to 255 do xchr [i]← ´?´;

See also sections 13, 42, 49, 79, and 83.

This code is used in section 4.

13. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 12 〉 +≡
for i← first text char to last text char do xord [chr (i)]← 4́0 ;
for i← " " to "~" do xord [xchr [i]]← i;

206 GENERIC FONT FILE FORMAT GFtoPK §14

14. Generic font file format. The most important output produced by a typical run of METAFONT is
the “generic font” (GF) file that specifies the bit patterns of the characters that have been drawn. The term
generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer; but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written by TEX and the GF files written by METAFONT; and,
in fact, the file formats have a lot in common.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the ‘boc ’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from −231 to 231 − 1. As in TFM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT

generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

15. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m| or |n| to get extremely large, but the GF format tries to be more general.)

How do GF’s row and column numbers correspond to the conventions of TEX and METAFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0, 0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF

row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy m ≤ x ≤ m + 1
and n ≤ y ≤ n + 1. Negative values of m and x correspond to columns of pixels left of the reference point;
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint switch , which is
always either black or white . Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint switch = black ; then the paint switch changes to the opposite state. GF’s
commands are designed so that m will never decrease within a row, and n will never increase within a
character; hence there is no way to whiten a pixel that has been blackened.

§16 GFtoPK GENERIC FONT FILE FORMAT 207

16. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.

paint 0 0. This is a paint command with d = 0; it does nothing but change the paint switch from black to
white or vice versa.

paint 1 through paint 63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined as follows:
If paint switch = black , blacken d pixels of the current row n, in columns m through m + d − 1
inclusive. Then, in any case, complement the paint switch and advance m by d.

paint1 64 d[1]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 ≤ d < 256.

paint2 65 d[2]. Same as paint1 , but d can be as high as 65535.

paint3 66 d[3]. Same as paint1 , but d can be as high as 224 − 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min m [4] max m [4] min n [4] max n [4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is −1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min m ≤ m ≤ max m and min n ≤ n ≤ max n . (The values of max m and min n need not be
the tightest bounds possible.) When a GF-reading program sees a boc , it can use min m , max m ,
min n , and max n to initialize the bounds of an array. Then it sets m ← min m , n ← max n , and
paint switch ← white .

boc1 68 c[1] del m [1] max m [1] del n [1] max n [1]. Same as boc , but p is assumed to be −1; also del m =
max m −min m and del n = max n −min n are given instead of min m and min n . The one-byte
parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes per character,
in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc .

skip0 70. Decrease n by 1 and set m ← min m , paint switch ← white . (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skip1 71 d[1]. Decrease n by d+ 1, set m← min m , and set paint switch ← white . This is a way to produce
d all-white rows.

skip2 72 d[2]. Same as skip1 , but d can be as large as 65535.

skip3 73 d[3]. Same as skip1 , but d can be as large as 224 − 1. METAFONT obviously never needs this
command.

new row 0 74. Decrease n by 1 and set m ← min m , paint switch ← black . (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new row 1 through new row 164 (opcodes 75 to 238). Same as new row 0 , but with m ← min m + 1
through min m + 164, respectively.

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special GF-reading programs are being used. METAFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear within characters, in GF files generated by other
processors. It is recommended that x be a string having the form of a keyword followed by possible
parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string whose
length exceeds 255.

208 GENERIC FONT FILE FORMAT GFtoPK §16

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no op unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no op 244. No operation, do nothing. Any number of no op ’s may occur between GF commands, but a
no op cannot be inserted between a command and its parameters or between two parameters.

char loc 245 c[1] dx [4] dy [4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char loc0 246 c[1] dm [1] w[4] p[4]. Same as char loc , except that dy is assumed to be zero, and the value
of dx is taken to be 65536 ∗ dm , where 0 ≤ dm < 256.

pre 247 i[1] k[1] x[k]. Beginning of the preamble; this must come at the very beginning of the file. Parameter i
is an identifying number for GF format, currently 131. The other information is merely commentary; it
is not given special interpretation like xxx commands are. (Note that xxx commands may immediately
follow the preamble, before the first boc .)

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

define gf id byte = 131 { identifies the kind of GF files described here }

17. Here are the opcodes that GFtoPK actually refers to.

define paint 0 = 0 { beginning of the paint commands }
define paint1 = 64 {move right a given number of columns, then black↔ white }
define boc = 67 { beginning of a character }
define boc1 = 68 { abbreviated boc }
define eoc = 69 { end of a character }
define skip0 = 70 { skip no blank rows }
define skip1 = 71 { skip over blank rows }
define new row 0 = 74 {move down one row and then right }
define max new row = 238 {move down one row and then right }
define xxx1 = 239 { for special strings }
define yyy = 243 { for numspecial numbers }
define no op = 244 { no operation }
define char loc = 245 { character locators in the postamble }
define char loc0 = 246 { character locators in the postamble }
define pre = 247 { preamble }
define post = 248 { postamble beginning }
define post post = 249 {postamble ending }
define undefined commands ≡ 250, 251, 252, 253, 254, 255

§18 GFtoPK GENERIC FONT FILE FORMAT 209

18. The last character in a GF file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min m [4] max m [4] min n [4] max n [4]
〈 character locators 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters); it can be used to locate the beginning of xxx commands that might have preceded
the postamble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of any TFM file that shares information with this GF file. Parameters hppp
and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled integers (i.e.,
multiplied by 216); they can be used to correlate the font with specific device resolutions, magnifications,
and “at sizes.” Then come min m , max m , min n , and max n , which bound the values that registers m
and n assume in all characters in this GF file. (These bounds need not be the best possible; max m and
min n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some
character may have min n = −100 in its boc , but it might turn out that n never gets lower than −50 in any
character; then min n can have any value ≤ −50. If there are no characters in the file, it’s possible to have
min m > max m and/or min n > max n .)

19. Character locators are introduced by char loc commands, which specify a character residue c, character
escapements (dx , dy), a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code c modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx , dy) are the values of METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 216, and dy is in vertical pixel units
times 216. This is the intended amount of displacement after typesetting the character; for DVI files, dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is 224 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc , or to the first of a sequence of consecutive xxx or yyy
or no op commands that immediately precede the boc , if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc .

Pointer p might be −1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing ≥ 0 in order to get a GF file.

210 GENERIC FONT FILE FORMAT GFtoPK §20

20. The last part of the postamble, following the post post byte that signifies the end of the character
locators, contains q, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in
octal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple
of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,
so GF format has been designed to work most efficiently with modern operating systems. GFtoPK first reads
the postamble, and then scans the file from front to back.

§21 GFtoPK PACKED FILE FORMAT 211

21. Packed file format. The packed file format is a compact representation of the data contained in
a GF file. The information content is the same, but packed (PK) files are almost always less than half the
size of their GF counterparts. They are also easier to convert into a raster representation because they do
not have a profusion of paint , skip , and new row commands to be separately interpreted. In addition, the
PK format expressly forbids special commands within a character. The minimum bounding box for each
character is explicit in the format, and does not need to be scanned for as in the GF format. Finally, the
width and escapement values are combined with the raster information into character “packets”, making it
simpler in many cases to process a character.

A PK file is organized as a stream of 8-bit bytes. At times, these bytes might be split into 4-bit nybbles or
single bits, or combined into multiple byte parameters. When bytes are split into smaller pieces, the ‘first’
piece is always the most significant of the byte. For instance, the first bit of a byte is the bit with value 128;
the first nybble can be found by dividing a byte by 16. Similarly, when bytes are combined into multiple
byte parameters, the first byte is the most significant of the parameter. If the parameter is signed, it is
represented by two’s-complement notation.

The set of possible eight-bit values is separated into two sets, those that introduce a character definition,
and those that do not. The values that introduce a character definition range from 0 to 239; byte values above
239 are interpreted as commands. Bytes that introduce character definitions are called flag bytes, and various
fields within the byte indicate various things about how the character definition is encoded. Command bytes
have zero or more parameters, and can never appear within a character definition or between parameters of
another command, where they would be interpreted as data.

A PK file consists of a preamble, followed by a sequence of one or more character definitions, followed
by a postamble. The preamble command must be the first byte in the file, followed immediately by its
parameters. Any number of character definitions may follow, and any command but the preamble command
and the postamble command may occur between character definitions. The very last command in the file
must be the postamble.

22. The packed file format is intended to be easy to read and interpret by device drivers. The small size of
the file reduces the input/output overhead each time a font is loaded. For those drivers that load and save
each font file into memory, the small size also helps reduce the memory requirements. The length of each
character packet is specified, allowing the character raster data to be loaded into memory by simply counting
bytes, rather than interpreting each command; then, each character can be interpreted on a demand basis.
This also makes it possible for a driver to skip a particular character quickly if it knows that the character
is unused.

212 PACKED FILE FORMAT GFtoPK §23

23. First, the command bytes will be presented; then the format of the character definitions will be defined.
Eight of the possible sixteen commands (values 240 through 255) are currently defined; the others are reserved
for future extensions. The commands are listed below. Each command is specified by its symbolic name
(e.g., pk no op), its opcode byte, and any parameters. The parameters are followed by a bracketed number
telling how many bytes they occupy, with the number preceded by a plus sign if it is a signed quantity. (Four
byte quantities are always signed, however.)

pk xxx1 240 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special PK-reading programs are being used. METAFONT generates xxx commands when encountering
a special string. It is recommended that x be a string having the form of a keyword followed by
possible parameters relevant to that keyword.

pk xxx2 241 k[2] x[k]. Like pk xxx1 , but 0 ≤ k < 65536.

pk xxx3 242 k[3] x[k]. Like pk xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string
whose length exceeds 255.

pk xxx4 243 k[4] x[k]. Like pk xxx1 , but k can be ridiculously large; k mustn’t be negative.

pk yyy 244 y[4]. This command is undefined in general; it functions as a five-byte no op unless special
PK reading programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of
numspecial commands; the intent is to provide numeric parameters to xxx commands that imme-
diately precede.

pk post 245. Beginning of the postamble. This command is followed by enough pk no op commands to make
the file a multiple of four bytes long. Zero through three bytes are usual, but any number is allowed.
This should make the file easy to read on machines that pack four bytes to a word.

pk no op 246. No operation, do nothing. Any number of pk no op ’s may appear between PK commands, but
a pk no op cannot be inserted between a command and its parameters, between two parameters, or
inside a character definition.

pk pre 247 i[1] k[1] x[k] ds [4] cs [4] hppp [4] vppp [4]. Preamble command. Here, i is the identification byte of
the file, currently equal to 89. The string x is merely a comment, usually indicating the source of the
PK file. The parameters ds and cs are the design size of the file in 1/220 points, and the checksum of
the file, respectively. The checksum should match the TFM file and the GF files for this font. Parameters
hppp and vppp are the ratios of pixels per point, horizontally and vertically, multiplied by 216; they can
be used to correlate the font with specific device resolutions, magnifications, and “at sizes”. Usually,
the name of the PK file is formed by concatenating the font name (e.g., cmr10) with the resolution at
which the font is prepared in pixels per inch multiplied by the magnification factor, and the letters
pk. For instance, cmr10 at 300 dots per inch should be named cmr10.300pk; at one thousand dots
per inch and magstephalf, it should be named cmr10.1095pk.

24. We put a few of the above opcodes into definitions for symbolic use by this program.

define pk id = 89 { the version of PK file described }
define pk xxx1 = 240 { special commands }
define pk yyy = 244 {numspecial commands }
define pk post = 245 { postamble }
define pk no op = 246 { no operation }
define pk pre = 247 { preamble }

§25 GFtoPK PACKED FILE FORMAT 213

25. The PK format has two conflicting goals: to pack character raster and size information as compactly as
possible, while retaining ease of translation into raster and other forms. A suitable compromise was found
in the use of run-encoding of the raster information. Instead of packing the individual bits of the character,
we instead count the number of consecutive ‘black’ or ‘white’ pixels in a horizontal raster row, and then
encode this number. Run counts are found for each row from left to right, traversing rows from the top
to bottom. This is essentially the way the GF format works. Instead of presenting each row individually,
however, we concatenate all of the horizontal raster rows into one long string of pixels, and encode this row.
With knowledge of the width of the bit-map, the original character glyph can easily be reconstructed. In
addition, we do not need special commands to mark the end of one row and the beginning of the next.

Next, we place the burden of finding the minimum bounding box on the part of the font generator, since
the characters will usually be used much more often than they are generated. The minimum bounding box is
the smallest rectangle that encloses all ‘black’ pixels of a character. We also eliminate the need for a special
end of character marker, by supplying exactly as many bits as are required to fill the minimum bounding
box, from which the end of the character is implicit.

Let us next consider the distribution of the run counts. Analysis of several dozen pixel files at 300 dots per
inch yields a distribution peaking at four, falling off slowly until ten, then a bit more steeply until twenty,
and then asymptotically approaching the horizontal. Thus, the great majority of our run counts will fit in a
four-bit nybble. The eight-bit byte is attractive for our run-counts, as it is the standard on many systems;
however, the wasted four bits in the majority of cases seem a high price to pay. Another possibility is to
use a Huffman-type encoding scheme with a variable number of bits for each run-count; this was rejected
because of the overhead in fetching and examining individual bits in the file. Thus, the character raster
definitions in the PK file format are based on the four-bit nybble.

26. An analysis of typical pixel files yielded another interesting statistic: Fully 37% of the raster rows
were duplicates of the previous row. Thus, the PK format allows the specification of repeat counts, which
indicate how many times a horizontal raster row is to be repeated. These repeated rows are taken out of the
character glyph before individual rows are concatenated into the long string of pixels.

For elegance, we disallow a run count of zero. The case of a null raster description should be gleaned from
the character width and height being equal to zero, and no raster data should be read. No other zero counts
are ever necessary. Also, in the absence of repeat counts, the repeat value is set to be zero (only the original
row is sent.) If a repeat count is seen, it takes effect on the current row. The current row is defined as the
row on which the first pixel of the next run count will lie. The repeat count is set back to zero when the
last pixel in the current row is seen, and the row is sent out.

This poses a problem for entirely black and entirely white rows, however. Let us say that the current
row ends with four white pixels, and then we have five entirely empty rows, followed by a black pixel at the
beginning of the next row, and the character width is ten pixels. We would like to use a repeat count, but
there is no legal place to put it. If we put it before the white run count, it will apply to the current row. If
we put it after, it applies to the row with the black pixel at the beginning. Thus, entirely white or entirely
black repeated rows are always packed as large run counts (in this case, a white run count of 54) rather than
repeat counts.

27. Now we turn our attention to the actual packing of the run counts and repeat counts into nybbles.
There are only sixteen possible nybble values. We need to indicate run counts and repeat counts. Since the
run counts are much more common, we will devote the majority of the nybble values to them. We therefore
indicate a repeat count by a nybble of 14 followed by a packed number, where a packed number will be
explained later. Since the repeat count value of one is so common, we indicate a repeat one command by
a single nybble of 15. A 14 followed by the packed number 1 is still legal for a repeat one count. The run
counts are coded directly as packed numbers.

For packed numbers, therefore, we have the nybble values 0 through 13. We need to represent the positive
integers up to, say, 231 − 1. We would like the more common smaller numbers to take only one or two
nybbles, and the infrequent large numbers to take three or more. We could therefore allocate one nybble
value to indicate a large run count taking three or more nybbles. We do this with the value 0.

214 PACKED FILE FORMAT GFtoPK §28

28. We are left with the values 1 through 13. We can allocate some of these, say dyn f , to be one-nybble
run counts. These will work for the run counts 1 . . dyn f . For subsequent run counts, we will use a nybble
greater than dyn f , followed by a second nybble, whose value can run from 0 through 15. Thus, the two-
nybble values will run from dyn f + 1 . . (13− dyn f) ∗ 16 + dyn f . We have our definition of large run count
values now, being all counts greater than (13− dyn f) ∗ 16 + dyn f .

We can analyze our several dozen pixel files and determine an optimal value of dyn f , and use this value
for all of the characters. Unfortunately, values of dyn f that pack small characters well tend to pack the
large characters poorly, and values that pack large characters well are not efficient for the smaller characters.
Thus, we choose the optimal dyn f on a character basis, picking the value that will pack each individual
character in the smallest number of nybbles. Legal values of dyn f run from 0 (with no one-nybble run
counts) to 13 (with no two-nybble run counts).

29. Our only remaining task in the coding of packed numbers is the large run counts. We use a scheme
suggested by D. E. Knuth that simply and elegantly represents arbitrarily large values. The general scheme
to represent an integer i is to write its hexadecimal representation, with leading zeros removed. Then we
count the number of digits, and prepend one less than that many zeros before the hexadecimal representation.
Thus, the values from one to fifteen occupy one nybble; the values sixteen through 255 occupy three, the
values 256 through 4095 require five, etc.

For our purposes, however, we have already represented the numbers one through (13−dyn f)∗16+dyn f .
In addition, the one-nybble values have already been taken by our other commands, which means that only
the values from sixteen up are available to us for long run counts. Thus, we simply normalize our long run
counts, by subtracting (13−dyn f)∗16+dyn f +1 and adding 16, and then we represent the result according
to the scheme above.

30. The final algorithm for decoding the run counts based on the above scheme might look like this,
assuming that a procedure called get nyb is available to get the next nybble from the file, and assuming that
the global repeat count indicates whether a row needs to be repeated. Note that this routine is recursive,
but since a repeat count can never directly follow another repeat count, it can only be recursive to one level.

@{

function pk packed num : integer ;
var i, j: integer ;
begin i← get nyb ;
if i = 0 then

begin repeat j ← get nyb ; incr (i);
until j 6= 0;
while i > 0 do

begin j ← j ∗ 16 + get nyb ; decr (i);
end;

pk packed num ← j − 15 + (13− dyn f) ∗ 16 + dyn f ;
end

else if i ≤ dyn f then pk packed num ← i
else if i < 14 then pk packed num ← (i− dyn f − 1) ∗ 16 + get nyb + dyn f + 1

else begin if i = 14 then repeat count ← pk packed num
else repeat count ← 1;
pk packed num ← pk packed num ;
end;

end;
@}

§31 GFtoPK PACKED FILE FORMAT 215

31. For low resolution fonts, or characters with ‘gray’ areas, run encoding can often make the character
many times larger. Therefore, for those characters that cannot be encoded efficiently with run counts, the PK
format allows bit-mapping of the characters. This is indicated by a dyn f value of 14. The bits are packed
tightly, by concatenating all of the horizontal raster rows into one long string, and then packing this string
eight bits to a byte. The number of bytes required can be calculated by (width ∗ height + 7) div 8. This
format should only be used when packing the character by run counts takes more bytes than this, although,
of course, it is legal for any character. Any extra bits in the last byte should be set to zero.

32. At this point, we are ready to introduce the format for a character descriptor. It consists of three
parts: a flag byte, a character preamble, and the raster data. The most significant four bits of the flag byte
yield the dyn f value for that character. (Notice that only values of 0 through 14 are legal for dyn f , with
14 indicating a bit mapped character; thus, the flag bytes do not conflict with the command bytes, whose
upper nybble is always 15.) The next bit (with weight 8) indicates whether the first run count is a black
count or a white count, with a one indicating a black count. For bit-mapped characters, this bit should be
set to a zero. The next bit (with weight 4) indicates whether certain later parameters (referred to as size
parameters) are given in one-byte or two-byte quantities, with a one indicating that they are in two-byte
quantities. The last two bits are concatenated on to the beginning of the packet-length parameter in the
character preamble, which will be explained below.

However, if the last three bits of the flag byte are all set (normally indicating that the size parameters
are two-byte values and that a 3 should be prepended to the length parameter), then a long format of the
character preamble should be used instead of one of the short forms.

Therefore, there are three formats for the character preamble; the one that is used depends on the least
significant three bits of the flag byte. If the least significant three bits are in the range zero through three, the
short format is used. If they are in the range four through six, the extended short format is used. Otherwise,
if the least significant bits are all set, then the long form of the character preamble is used. The preamble
formats are explained below.

Short form: flag [1] pl [1] cc [1] tfm [3] dm [1] w[1] h[1] hoff [+1] voff [+1]. If this format of the character
preamble is used, the above parameters must all fit in the indicated number of bytes, signed or
unsigned as indicated. Almost all of the standard TEX font characters fit; the few exceptions are fonts
such as cminch.

Extended short form: flag [1] pl [2] cc [1] tfm [3] dm [2] w[2] h[2] hoff [+2] voff [+2]. Larger characters use this
extended format.

Long form: flag [1] pl [4] cc [4] tfm [4] dx [4] dy [4] w[4] h[4] hoff [4] voff [4]. This is the general format that
allows all of the parameters of the GF file format, including vertical escapement.

The flag parameter is the flag byte. The parameter pl (packet length) contains the offset of the byte
following this character descriptor, with respect to the beginning of the tfm width parameter. This is given
so a PK reading program can, once it has read the flag byte, packet length, and character code (cc), skip over
the character by simply reading this many more bytes. For the two short forms of the character preamble,
the last two bits of the flag byte should be considered the two most-significant bits of the packet length.
For the short format, the true packet length might be calculated as (flag mod 4) ∗ 256 + pl ; for the short
extended format, it might be calculated as (flag mod 4) ∗ 65536 + pl .

The w parameter is the width and the h parameter is the height in pixels of the minimum bounding box.
The dx and dy parameters are the horizontal and vertical escapements, respectively. In the short formats,
dy is assumed to be zero and dm is dx but in pixels; in the long format, dx and dy are both in pixels
multiplied by 216. The hoff is the horizontal offset from the upper left pixel to the reference pixel; the voff
is the vertical offset. They are both given in pixels, with right and down being positive. The reference pixel
is the pixel that occupies the unit square in METAFONT; the METAFONT reference point is the lower left
hand corner of this pixel. (See the example below.)

216 PACKED FILE FORMAT GFtoPK §33

33. TEX requires all characters that have the same character codes modulo 256 to have also the same tfm
widths and escapement values. The PK format does not itself make this a requirement, but in order for the
font to work correctly with the TEX software, this constraint should be observed. (The standard version of
TEX cannot output character codes greater than 255, but extended versions do exist.)

Following the character preamble is the raster information for the character, packed by run counts or by
bits, as indicated by the flag byte. If the character is packed by run counts and the required number of
nybbles is odd, then the last byte of the raster description should have a zero for its least significant nybble.

34. As an illustration of the PK format, the character Ξ from the font amr10 at 300 dots per inch will
be encoded. This character was chosen because it illustrates some of the borderline cases. The raster for
the character looks like this (the row numbers are chosen for convenience, and are not METAFONT’s row
numbers.)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 +

The width of the minimum bounding box for this character is 20; its height is 29. The ‘+’ represents the
reference pixel; notice how it lies outside the minimum bounding box. The hoff value is −2, and the voff
is 28.

The first task is to calculate the run counts and repeat counts. The repeat counts are placed at the first
transition (black to white or white to black) in a row, and are enclosed in brackets. White counts are enclosed
in parentheses. It is relatively easy to generate the counts list:

82 [2] (16) 2 (42) [2] 2 (12) 2 (4) [3]
16 (4) [2] 2 (12) 2 (62) [2] 2 (16) 82

Note that any duplicated rows that are not all white or all black are removed before the run counts are
calculated. The rows thus removed are rows 5, 6, 10, 11, 13, 14, 15, 17, 18, 23, and 24.

§35 GFtoPK PACKED FILE FORMAT 217

35. The next step in the encoding of this character is to calculate the optimal value of dyn f . The details
of how this calculation is done are not important here; suffice it to say that there is a simple algorithm that
can determine the best value of dyn f in one pass over the count list. For this character, the optimal value
turns out to be 8 (atypically low). Thus, all count values less than or equal to 8 are packed in one nybble;
those from nine to (13 − 8) ∗ 16 + 8 or 88 are packed in two nybbles. The run encoded values now become
(in hex, separated according to the above list):

D9 E2 97 2 B1 E2 2 93 2 4 E3

97 4 E2 2 93 2 C5 E2 2 97 D9

which comes to 36 nybbles, or 18 bytes. This is shorter than the 73 bytes required for the bit map, so we
use the run count packing.

36. The short form of the character preamble is used because all of the parameters fit in their respective
lengths. The packet length is therefore 18 bytes for the raster, plus eight bytes for the character preamble
parameters following the character code, or 26. The tfm width for this character is 640796, or 9C71C in
hexadecimal. The horizontal escapement is 25 pixels. The flag byte is 88 hex, indicating the short preamble,
the black first count, and the dyn f value of 8. The final total character packet, in hexadecimal, is:

Flag byte 88

Packet length 1A

Character code 04

tfm width 09 C7 1C

Horizontal escapement (pixels) 19

Width of bit map 14

Height of bit map 1D

Horizontal offset (signed) FE

Vertical offset 1C

Raster data D9 E2 97

2B 1E 22

93 24 E3

97 4E 22

93 2C 5E

22 97 D9

218 INPUT AND OUTPUT FOR BINARY FILES GFtoPK §37

37. Input and output for binary files. We have seen that a GF file is a sequence of 8-bit bytes. The
bytes appear physically in what is called a ‘packed file of 0 . . 255’ in Pascal lingo. The PK file is also a
sequence of 8-bit bytes.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtoPK is
written in standard Pascal.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

〈Types in the outer block 9 〉 +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
byte file = packed file of eight bits ; { files that contain binary data }

38. The program deals with two binary file variables: gf file is the input file that we are translating into
PK format, to be written on pk file .

〈Globals in the outer block 11 〉 +≡
gf file : byte file ; { the stuff we are GFtoPKing }
pk file : byte file ; { the stuff we have GFtoPKed }

39. To prepare the gf file for input, we reset it.

procedure open gf file ; { prepares to read packed bytes in gf file }
begin reset (gf file); gf loc ← 0;
end;

40. To prepare the pk file for output, we rewrite it.

procedure open pk file ; { prepares to write packed bytes in pk file }
begin rewrite (pk file); pk loc ← 0; pk open ← true ;
end;

41. The variable pk loc contains the number of the byte about to be written to the pk file , and gf loc is
the byte about to be read from the gf file . Also, pk open indicates that the packed file has been opened and
is ready for output.

〈Globals in the outer block 11 〉 +≡
pk loc : integer ; {where we are about to write, in pk file }
gf loc : integer ; {where are we in the gf file }
pk open : boolean ; { is the packed file open? }

42. We do not open the pk file until after the postamble of the gf file has been read. This can be used, for
instance, to calculate a resolution to put in the suffix of the pk file name. This also means, however, that
specials in the postamble (which METAFONT never generates) do not get sent to the pk file .

〈Set initial values 12 〉 +≡
pk open ← false ;

§43 GFtoPK INPUT AND OUTPUT FOR BINARY FILES 219

43. We shall use two simple functions to read the next byte or bytes from gf file . We either need to get
an individual byte or a set of four bytes.

function gf byte : integer ; { returns the next byte, unsigned }
var b: eight bits ;
begin if eof (gf file) then bad gf (´Unexpected end of file!´)
else begin read (gf file , b); gf byte ← b;

end;
incr (gf loc);
end;

function gf signed quad : integer ; { returns the next four bytes, signed }
var a, b, c, d: eight bits ;
begin read (gf file , a); read (gf file , b); read (gf file , c); read (gf file , d);
if a < 128 then gf signed quad ← ((a ∗ 256 + b) ∗ 256 + c) ∗ 256 + d
else gf signed quad ← (((a− 256) ∗ 256 + b) ∗ 256 + c) ∗ 256 + d;
gf loc ← gf loc + 4;
end;

220 INPUT AND OUTPUT FOR BINARY FILES GFtoPK §44

44. We also need a few routines to write data to the PK file. We write data in 4-, 8-, 16-, 24-, and 32-bit
chunks, so we define the appropriate routines. We must be careful not to let the sign bit mess us up, as
some Pascals implement division of a negative integer differently.

procedure pk byte (a : integer);
begin if pk open then

begin if a < 0 then a← a + 256;
write (pk file , a); incr (pk loc);
end;

end;

procedure pk halfword (a : integer);
begin if a < 0 then a← a + 65536;
write (pk file , a div 256); write (pk file , a mod 256); pk loc ← pk loc + 2;
end;

procedure pk three bytes (a : integer);
begin write (pk file , a div 65536 mod 256); write (pk file , a div 256 mod 256); write (pk file , a mod 256);
pk loc ← pk loc + 3;
end;

procedure pk word (a : integer);
var b: integer ;
begin if pk open then

begin if a < 0 then
begin a← a + 1́0000000000 ; a← a + 1́0000000000 ; b← 128 + a div 16777216;
end

else b← a div 16777216;
write (pk file , b); write (pk file , a div 65536 mod 256); write (pk file , a div 256 mod 256);
write (pk file , a mod 256); pk loc ← pk loc + 4;
end;

end;

procedure pk nyb(a : integer);
begin if bit weight = 16 then

begin output byte ← a ∗ 16; bit weight ← 1;
end

else begin pk byte (output byte + a); bit weight ← 16;
end;

end;

45. We need the globals bit weight and output byte for buffering.

〈Globals in the outer block 11 〉 +≡
bit weight : integer ; { output bit weight }
output byte : integer ; { output byte for pk file }

§46 GFtoPK INPUT AND OUTPUT FOR BINARY FILES 221

46. Finally we come to the routines that are used for random access of the gf file . To correctly find and
read the postamble of the file, we need two routines, one to find the length of the gf file , and one to position
the gf file . We assume that the first byte of the file is numbered zero.

Such routines are, of course, highly system dependent. They are implemented here in terms of two
assumed system routines called set pos and cur pos . The call set pos (f, n) moves to item n in file f , unless
n is negative or larger than the total number of items in f ; in the latter case, set pos (f, n) moves to the end
of file f . The call cur pos (f) gives the total number of items in f , if eof (f) is true; we use cur pos only in
such a situation.

procedure find gf length ;
begin set pos (gf file ,−1); gf len ← cur pos (gf file);
end;

procedure move to byte (n : integer);
begin set pos (gf file , n); gf loc ← n;
end;

47. The global gf len contains the final total length of the gf file .

〈Globals in the outer block 11 〉 +≡
gf len : integer ; { length of gf file }

222 PLAN OF ATTACK GFtoPK §48

48. Plan of attack. It would seem at first that converting a GF file to PK format should be relatively
easy, since they both use a form of run-encoding. Unfortunately, several idiosyncrasies of the GF format make
this conversion slightly cumbersome. The GF format separates the raster information from the escapement
values and TFM widths; the PK format combines all information about a single character into one character
packet. The GF run-encoding is on a row-by-row basis, and the PK format is on a glyph basis, as if all of the
raster rows in the glyph were concatenated into one long row. The encoding of the run-counts in the GF files
is fixed, whereas the PK format uses a dynamic encoding scheme that must be adjusted for each character.
And, finally, any repeated rows can be marked and sent with a single command in the PK format.

There are four major steps in the conversion process. First, the postamble of the gf file is found and read,
and the data from the character locators is stored in memory. Next, the preamble of the pk file is written.
The third and by far the most difficult step reads the raster representation of all of the characters from the
GF file, packs them, and writes them to the pk file . Finally, the postamble is written to the pk file .

The conversion of the character raster information from the gf file to the format required by the pk file
takes several smaller steps. The GF file is read, the commands are interpreted, and the run counts are
stored in the working row array. Each row is terminated by a end of row value, and the character glyph is
terminated by an end of char value. Then, this representation of the character glyph is scanned to determine
the minimum bounding box in which it will fit, correcting the min m , max m , min n , and max n values, and
calculating the offset values. The third sub-step is to restructure the row list from a list based on rows to a
list based on the entire glyph. Then, an optimal value of dyn f is calculated, and the final size of the counts
is found for the PK file format, and compared with the bit-wise packed glyph. If the run-encoding scheme
is shorter, the character is written to the pk file as row counts; otherwise, it is written using a bit-packed
scheme.

To save various information while the GF file is being loaded, we need several arrays. The tfm width ,
dx , and dy arrays store the obvious values. The status array contains the current status of the particular
character. A value of 0 indicates that the character has never been defined; a 1 indicates that the character
locator for that character was read in; and a 2 indicates that the raster information for at least one character
was read from the gf file and written to the pk file . The row array contains row counts. It is filled anew for
each character, and is used as a general workspace. The GF counts are stored starting at location 2 in this
array, so that the PK counts can be written to the same array, overwriting the GF counts, without destroying
any counts before they are used. (A possible repeat count in the first row might make the first row of the
PK file one count longer; all succeeding rows are guaranteed to be the same length or shorter because of the
end of row flags in the GF format that are unnecessary in the PK format.)

define virgin ≡ 0 { never heard of this character yet }
define located ≡ 1 { locators read for this character }
define sent ≡ 2 { at least one of these characters has been sent }

〈Globals in the outer block 11 〉 +≡
tfm width : array [0 . . 255] of integer ; { the TFM widths of characters }
dx , dy : array [0 . . 255] of integer ; { the horizontal and vertical escapements }
status : array [0 . . 255] of virgin . . sent ; { character status }
row : array [0 . . max row] of integer ; { the row counts for working }

49. Here we initialize all of the character status values to virgin .

〈Set initial values 12 〉 +≡
for i← 0 to 255 do status [i]← virgin ;

50. And, finally, we need to define the end of row and end of char values. These cannot be values that
can be taken on either by legitimate run counts, even when wrapping around an entire character. Nor can
they be values that repeat counts can take on. Since repeat counts can be arbitrarily large, we restrict
ourselves to negative values whose absolute values are greater than the largest possible repeat count.

define end of row ≡ (−99999) { indicates the end of a row }
define end of char ≡ (−99998) { indicates the end of a character }

§51 GFtoPK READING THE GENERIC FONT FILE 223

51. Reading the generic font file. There are two major procedures in this program that do all of the
work. The first is convert gf file , which interprets the GF commands and puts row counts into the row array.
The second, which we only anticipate at the moment, actually packs the row counts into nybbles and writes
them to the packed file.

〈Packing procedures 62 〉;
procedure convert gf file ;

var i, j, k: integer ; { general purpose indices }
gf com : integer ; { current gf command }
〈Locals to convert gf file 58 〉
begin open gf file ;
if gf byte 6= pre then bad gf (´First byte is not preamble´);
if gf byte 6= gf id byte then bad gf (´Identification byte is incorrect´);
〈Find and interpret postamble 60 〉;
move to byte (2); open pk file ; 〈Write preamble 81 〉;
repeat gf com ← gf byte ;

case gf com of
boc , boc1 : 〈 Interpret character 54 〉;
〈Specials and no op cases 53 〉;

post : ; {we will actually do the work for this one later }
othercases bad gf (´Unexpected ´, gf com : 1, ´ command between characters´)
endcases;

until gf com = post ;
〈Write postamble 84 〉;
end;

52. We need a few easy macros to expand some case statements:

define four cases (#) ≡ #, # + 1, # + 2, # + 3
define sixteen cases (#) ≡ four cases (#), four cases (# + 4), four cases (# + 8), four cases (# + 12)
define sixty four cases (#) ≡ sixteen cases (#), sixteen cases (# + 16), sixteen cases (# + 32),

sixteen cases (# + 48)
define one sixty five cases (#) ≡ sixty four cases (#), sixty four cases (# + 64), sixteen cases (# + 128),

sixteen cases (# + 144), four cases (# + 160), # + 164

53. In this program, all special commands are passed unchanged and any no op bytes are ignored, so we
write some code to handle these:

〈Specials and no op cases 53 〉 ≡
four cases (xxx1): begin pk byte (gf com − xxx1 + pk xxx1); i← 0;

for j ← 0 to gf com − xxx1 do
begin k ← gf byte ; pk byte (k); i← i ∗ 256 + k;
end;

for j ← 1 to i do pk byte (gf byte);
end;

yyy : begin pk byte (pk yyy); pk word (gf signed quad);
end;

no op :

This code is used in sections 51, 57, and 60.

224 READING THE GENERIC FONT FILE GFtoPK §54

54. Now we need the routine that handles the character commands. Again, only a subset of the gf
commands are permissible inside character definitions, so we only look for these.

〈 Interpret character 54 〉 ≡
begin if gf com = boc then

begin gf ch ← gf signed quad ; i← gf signed quad ; { dispose of back pointer }
min m ← gf signed quad ; max m ← gf signed quad ; min n ← gf signed quad ;
max n ← gf signed quad ;
end

else begin gf ch ← gf byte ; i← gf byte ; max m ← gf byte ; min m ← max m − i; i← gf byte ;
max n ← gf byte ; min n ← max n − i;
end;

d print ln (´Character ´, gf ch : 1);
if gf ch ≥ 0 then gf ch mod 256 ← gf ch mod 256
else gf ch mod 256 ← 255− ((−(1 + gf ch)) mod 256);
if status [gf ch mod 256] = virgin then bad gf (´no character locator for character ´, gf ch : 1);
〈Convert character to packed form 57 〉;
end

This code is used in section 51.

55. Communication between the procedures convert gf file and pack and send character is done with a
few global variables.

〈Globals in the outer block 11 〉 +≡
gf ch : integer ; { the character we are working with }
gf ch mod 256 : integer ; { locator pointer }
pred pk loc : integer ; {where we predict the end of the character to be. }
max n ,min n : integer ; { the maximum and minimum horizontal rows }
max m ,min m : integer ; { the maximum and minimum vertical rows }
row ptr : integer ; {where we are in the row array. }

56. Now we are at the beginning of a character that we need the raster for. Before we get into the
complexities of decoding the paint , skip , and new row commands, let’s define a macro that will help us fill
up the row array. Note that we check that row ptr never exceeds max row ; Instead of calling bad gf directly,
as this macro is repeated eight times, we simply set the bad flag true.

define put in rows (#) ≡
begin if row ptr > max row then bad ← true
else begin row [row ptr]← #; incr (row ptr);

end;
end

§57 GFtoPK READING THE GENERIC FONT FILE 225

57. Now we have the procedure that decodes the various commands and puts counts into the row array.
This would be a trivial procedure, except for the paint 0 command. Because the paint 0 command exists,
it is possible to have a sequence like paint 42, paint 0 , paint 38, paint 0 , paint 0 , paint 0 , paint 33, skip 0 .
This would be an entirely empty row, but if we left the zeros in the row array, it would be difficult to
recognize the row as empty.

This type of situation probably would never occur in practice, but it is defined by the GF format, so we
must be able to handle it. The extra code is really quite simple, just difficult to understand; and it does not
cut down the speed appreciably. Our goal is this: to collapse sequences like paint 42, paint 0 , paint 32 to a
single count of 74, and to insure that the last count of a row is a black count rather than a white count. A
buffer variable extra , and two state flags, on and state , enable us to accomplish this.

The on variable is essentially the paint switch described in the GF description. If it is true, then we are
currently painting black pixels. The extra variable holds a count that is about to be placed into the row
array. We hold it in this array until we get a paint command of the opposite color that is greater than 0. If
we get a paint 0 command, then the state flag is turned on, indicating that the next count we receive can
be added to the extra variable as it is the same color.

〈Convert character to packed form 57 〉 ≡
begin bad ← false ; row ptr ← 2; on ← false ; extra ← 0; state ← true ;
repeat gf com ← gf byte ;

case gf com of
〈Cases for paint commands 59 〉;
four cases (skip0): begin i← 0;

for j ← 1 to gf com − skip0 do i← i ∗ 256 + gf byte ;
if on = state then put in rows (extra);
for j ← 0 to i do put in rows (end of row);
on ← false ; extra ← 0; state ← true ;
end;

one sixty five cases (new row 0): begin if on = state then put in rows (extra);
put in rows (end of row); on ← true ; extra ← gf com − new row 0 ; state ← false ;
end;

〈Specials and no op cases 53 〉;
eoc : begin if on = state then put in rows (extra);

if (row ptr > 2) ∧ (row [row ptr − 1] 6= end of row) then put in rows (end of row);
put in rows (end of char);
if bad then abort (´Ran out of internal memory for row counts!´);
pack and send character ; status [gf ch mod 256]← sent ;
if pk loc 6= pred pk loc then abort (´Internal error while writing character!´);
end;

othercases bad gf (´Unexpected ´, gf com : 1, ´ command in character definition´)
endcases;

until gf com = eoc ;
end

This code is used in section 54.

58. A few more locals used above and below:

〈Locals to convert gf file 58 〉 ≡
on : boolean ; { indicates whether we are white or black }
state : boolean ; { a state variable—is the next count the same race as the one in the extra buffer? }
extra : integer ; {where we pool our counts }
bad : boolean ; { did we run out of space? }
See also section 61.

This code is used in section 51.

226 READING THE GENERIC FONT FILE GFtoPK §59

59. 〈Cases for paint commands 59 〉 ≡
paint 0 : begin state ← ¬state ; on ← ¬on ;

end;
sixty four cases (paint 0 + 1), paint1 + 1, paint1 + 2: begin if gf com < paint1 then i← gf com − paint 0

else begin i← 0;
for j ← 0 to gf com − paint1 do i← i ∗ 256 + gf byte ;
end;

if state then
begin extra ← extra + i; state ← false ;
end

else begin put in rows (extra); extra ← i;
end;

on ← ¬on ;
end

This code is used in section 57.

§60 GFtoPK READING THE GENERIC FONT FILE 227

60. Our last remaining task is to interpret the postamble commands. The only things that may appear
in the postamble are post post , char loc , char loc0 , and the special commands. Note that any special
commands that might appear in the postamble are not written to the pk file . Since METAFONT does not
generate special commands in the postamble, this should not be a major difficulty.

〈Find and interpret postamble 60 〉 ≡
find gf length ;
if gf len < 8 then bad gf (´only ´, gf len : 1, ´ bytes long´);
post loc ← gf len − 4;
repeat if post loc = 0 then bad gf (´all 223´´s´);

move to byte (post loc); k ← gf byte ; decr (post loc);
until k 6= 223;
if k 6= gf id byte then bad gf (´ID byte is ´, k : 1);
if post loc < 5 then bad gf (´post location is ´, post loc : 1);
move to byte (post loc − 3); q ← gf signed quad ;
if (q < 0) ∨ (q > post loc − 3) then bad gf (´post pointer is ´, q : 1);
move to byte (q); k ← gf byte ;
if k 6= post then bad gf (´byte at ´, q : 1, ´ is not post´);
i← gf signed quad ; { skip over junk }
design size ← gf signed quad ; check sum ← gf signed quad ; hppp ← gf signed quad ;
h mag ← round (hppp ∗ 72.27/65536); vppp ← gf signed quad ;
if hppp 6= vppp then print ln (´Odd aspect ratio!´);
i← gf signed quad ; i← gf signed quad ; { skip over junk }
i← gf signed quad ; i← gf signed quad ;
repeat gf com ← gf byte ;

case gf com of
char loc , char loc0 : begin gf ch ← gf byte ;

if status [gf ch] 6= virgin then bad gf (´Locator for this character already found.´);
if gf com = char loc then

begin dx [gf ch]← gf signed quad ; dy [gf ch]← gf signed quad ;
end

else begin dx [gf ch]← gf byte ∗ 65536; dy [gf ch]← 0;
end;

tfm width [gf ch]← gf signed quad ; i← gf signed quad ; status [gf ch]← located ;
end;
〈Specials and no op cases 53 〉;

post post : ;
othercases bad gf (´Unexpected ´, gf com : 1, ´ in postamble´)
endcases;

until gf com = post post

This code is used in section 51.

61. Just a few more locals:

〈Locals to convert gf file 58 〉 +≡
hppp , vppp : integer ; { horizontal and vertical pixels per point }
q: integer ; { quad temporary }
post loc : integer ; {where the postamble was }

228 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §62

62. Converting the counts to packed format. This procedure is passed the set of row counts from
the GF file. It writes the character to the PK file. First, the minimum bounding box is determined. Next,
the row-oriented count list is converted to a count list based on the entire glyph. Finally, we calculate the
optimal dyn f and send the character.

〈Packing procedures 62 〉 ≡
procedure pack and send character ;

var i, j, k: integer ; { general indices }
〈Locals to pack and send character 65 〉
begin 〈Scan for bounding box 63 〉;
〈Convert row-list to glyph-list 64 〉;
〈Calculate dyn f and packed size and write character 68 〉;
end

This code is used in section 51.

63. Now we have the row counts in our row array. To find the real max n , we look for the first non-
end of row value in the row . If it is an end of char , the entire character is blank. Otherwise, we first
eliminate all of the blank rows at the end of the character. Next, for each remaining row, we check the first
white count for a new min m , and the total length of the row for a new max m .

〈Scan for bounding box 63 〉 ≡
i← 2; decr (row ptr);
while row [i] = end of row do incr (i);
if row [i] 6= end of char then

begin max n ← max n − i + 2;
while row [row ptr − 2] = end of row do

begin decr (row ptr); row [row ptr]← end of char ;
end;

min n ← max n + 1; extra ← max m −min m + 1; max m ← 0; j ← i;
while row [j] 6= end of char do

begin decr (min n);
if row [j] 6= end of row then

begin k ← row [j];
if k < extra then extra ← k;
incr (j);
while row [j] 6= end of row do

begin k ← k + row [j]; incr (j);
end;

if max m < k then max m ← k;
end;

incr (j);
end;

min m ← min m + extra ; max m ← min m + max m − 1− extra ; height ← max n −min n + 1;
width ← max m −min m + 1; x offset ← −min m ; y offset ← max n ;
d print ln (´W ´,width : 1, ´ H ´, height : 1, ´ X ´, x offset : 1, ´ Y ´, y offset : 1);
end

else begin height ← 0; width ← 0; x offset ← 0; y offset ← 0; d print ln (´Empty raster.´);
end

This code is used in section 62.

§64 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 229

64. We must convert the run-count array from a row orientation to a glyph orientation, with repeat counts
for repeated rows. We separate this task into two smaller tasks, on a per row basis. But first, we define a
new macro to help us fill up this new array. Here, we have no fear that we will run out of space, as the glyph
representation is provably smaller than the rows representation.

define put count (#) ≡
begin row [put ptr]← #; incr (put ptr);
if repeat flag > 0 then

begin row [put ptr]← −repeat flag ; repeat flag ← 0; incr (put ptr);
end;

end

〈Convert row-list to glyph-list 64 〉 ≡
put ptr ← 0; row ptr ← 2; repeat flag ← 0; state ← true ; buff ← 0;
while row [row ptr] = end of row do incr (row ptr);
while row [row ptr] 6= end of char do

begin 〈Skip over repeated rows 66 〉;
〈Reformat count list 67 〉;
end;

if buff > 0 then put count (buff);
put count (end of char)

This code is used in section 62.

65. Some more locals for pack and send character used above:

〈Locals to pack and send character 65 〉 ≡
extra : integer ; { little buffer for count values }
put ptr : integer ; { next location to fill in row }
repeat flag : integer ; { how many times the current row is repeated }
h bit : integer ; { horizontal bit count for each row }
buff : integer ; { our count accumulator }
See also sections 70 and 77.

This code is used in section 62.

66. In this short section of code, we are at the beginning of a new row. We scan forward, looking for
repeated rows. If there are any, repeat flag gets the count, and the row ptr points to the beginning of the
last of the repeated rows. Two points must be made here. First, we do not count all-black or all-white rows
as repeated, as a large “paint” count will take care of them, and also there is no black to white or white to
black transition in the row where we could insert a repeat count. That is the meaning of the big if statement
that conditions this section. Secondly, the while row [i] = row [j] do loop is guaranteed to terminate, as
j > i and the character is terminated by a unique end of char value.

〈Skip over repeated rows 66 〉 ≡
i← row ptr ;
if (row [i] 6= end of row) ∧ ((row [i] 6= extra) ∨ (row [i + 1] 6= width)) then

begin j ← i + 1;
while row [j − 1] 6= end of row do incr (j);
while row [i] = row [j] do

begin if row [i] = end of row then
begin incr (repeat flag); row ptr ← i + 1;
end;

incr (i); incr (j);
end;

end

This code is used in section 64.

230 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §67

67. Here we actually spit out a row. The routine is somewhat similar to the routine where we actually
interpret the GF commands in the count buffering. We must make sure to keep track of how many bits have
actually been sent, so when we hit the end of a row, we can send a white count for the remaining bits, and
possibly add the white count of the next row to it. And, finally, we must not forget to subtract the extra
white space at the beginning of each row from the first white count.

〈Reformat count list 67 〉 ≡
if row [row ptr] 6= end of row then row [row ptr]← row [row ptr]− extra ;
h bit ← 0;
while row [row ptr] 6= end of row do

begin h bit ← h bit + row [row ptr];
if state then

begin buff ← buff + row [row ptr]; state ← false ;
end

else if row [row ptr] > 0 then
begin put count (buff); buff ← row [row ptr];
end

else state ← true ;
incr (row ptr);
end;

if h bit < width then
if state then buff ← buff + width − h bit
else begin put count (buff); buff ← width − h bit ; state ← true ;

end
else state ← false ;
incr (row ptr)

This code is used in section 64.

§68 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 231

68. Here is another piece of rather intricate code. We determine the smallest size in which we can pack
the data, calculating dyn f in the process. To do this, we calculate the size required if dyn f is 0, and put
this in comp size . Then, we calculate the changes in the size for each increment of dyn f , and stick these
values in the deriv array. Finally, we scan through this array and find the final minimum value, which we
then use to send the character data.

〈Calculate dyn f and packed size and write character 68 〉 ≡
for i← 1 to 13 do deriv [i]← 0;
i← 0; first on ← row [i] = 0;
if first on then incr (i);
comp size ← 0;
while row [i] 6= end of char do 〈Process count for best dyn f value 69 〉;
b comp size ← comp size ; dyn f ← 0;
for i← 1 to 13 do

begin comp size ← comp size + deriv [i];
if comp size ≤ b comp size then

begin b comp size ← comp size ; dyn f ← i;
end;

end;
comp size ← (b comp size + 1) div 2;
if (comp size > (height ∗ width + 7) div 8) ∨ (height ∗ width = 0) then

begin comp size ← (height ∗ width + 7) div 8; dyn f ← 14;
end;

d print ln (´Best packing is dyn_f of ´, dyn f : 1, ´ with length ´, comp size : 1);
〈Write character preamble 71 〉;
if dyn f 6= 14 then 〈Send compressed format 75 〉
else if height > 0 then 〈Send bit map 76 〉

This code is used in section 62.

232 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §69

69. When we enter this module, we have a count at row [i]. First, we add to the comp size the number
of nybbles that this count would require, assuming dyn f to be zero. When dyn f is zero, there are no one
nybble counts, so we simply choose between two-nybble and extensible counts and add the appropriate value.

Next, we take the count value and determine the value of dyn f (if any) that would cause this count to
take either more or less nybbles. If a valid value for dyn f exists in this range, we accumulate this change in
the deriv array.

One special case handled here is a repeat count of one. A repeat count of one will never change the length
of the raster representation, no matter what dyn f is, because it is always represented by the nybble value
15.

〈Process count for best dyn f value 69 〉 ≡
begin j ← row [i];
if j = −1 then incr (comp size)
else begin if j < 0 then

begin incr (comp size); j ← −j;
end;

if j < 209 then comp size ← comp size + 2
else begin k ← j − 193;

while k ≥ 16 do
begin k ← k div 16; comp size ← comp size + 2;
end;

incr (comp size);
end;

if j < 14 then decr (deriv [j])
else if j < 209 then incr (deriv [(223− j) div 15])

else begin k ← 16;
while (k ∗ 16 < j + 3) do k ← k ∗ 16;
if j − k ≤ 192 then deriv [(207− j + k) div 15]← deriv [(207− j + k) div 15] + 2;
end;

end;
incr (i);
end

This code is used in section 68.

70. We need a handful of locals:

〈Locals to pack and send character 65 〉 +≡
dyn f : integer ; { packing value }
height ,width : integer ; { height and width of character }
x offset , y offset : integer ; { offsets }
deriv : array [1 . . 13] of integer ; { derivative }
b comp size : integer ; { best size }
first on : boolean ; { indicates that the first bit is on }
flag byte : integer ; { flag byte for character }
state : boolean ; { state variable }
on : boolean ; {white or black? }

§71 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 233

71. Now we write the character preamble information. First we need to determine which of the three
formats we should use.

〈Write character preamble 71 〉 ≡
flag byte ← dyn f ∗ 16;
if first on then flag byte ← flag byte + 8;
if (gf ch 6= gf ch mod 256) ∨ (tfm width [gf ch mod 256] > 16777215) ∨ (tfm width [gf ch mod 256] <

0) ∨ (dy [gf ch mod 256] 6= 0) ∨ (dx [gf ch mod 256] < 0) ∨ (dx [gf ch mod 256] mod 65536 6=
0) ∨ (comp size > 196594) ∨ (width > 65535) ∨ (height > 65535) ∨ (x offset > 32767) ∨ (y offset >
32767) ∨ (x offset < −32768) ∨ (y offset < −32768) then 〈Write long character preamble 72 〉

else if (dx [gf ch] > 16777215) ∨ (width > 255) ∨ (height > 255) ∨ (x offset > 127) ∨ (y offset >
127) ∨ (x offset < −128) ∨ (y offset < −128) ∨ (comp size > 1015) then

〈Write two-byte short character preamble 74 〉
else 〈Write one-byte short character preamble 73 〉

This code is used in section 68.

72. If we must write a long character preamble, we adjust a few parameters, then write the data.

〈Write long character preamble 72 〉 ≡
begin flag byte ← flag byte + 7; pk byte (flag byte); comp size ← comp size + 28; pk word (comp size);
pk word (gf ch); pred pk loc ← pk loc + comp size ; pk word (tfm width [gf ch mod 256]);
pk word (dx [gf ch mod 256]); pk word (dy [gf ch mod 256]); pk word (width); pk word (height);
pk word (x offset); pk word (y offset);
end

This code is used in section 71.

73. Here we write a short short character preamble, with one-byte size parameters.

〈Write one-byte short character preamble 73 〉 ≡
begin comp size ← comp size + 8; flag byte ← flag byte + comp size div 256; pk byte (flag byte);
pk byte (comp size mod 256); pk byte (gf ch); pred pk loc ← pk loc + comp size ;
pk three bytes (tfm width [gf ch mod 256]); pk byte (dx [gf ch mod 256] div 65536); pk byte (width);
pk byte (height); pk byte (x offset); pk byte (y offset);
end

This code is used in section 71.

74. Here we write an extended short character preamble, with two-byte size parameters.

〈Write two-byte short character preamble 74 〉 ≡
begin comp size ← comp size + 13; flag byte ← flag byte + comp size div 65536 + 4; pk byte (flag byte);
pk halfword (comp size mod 65536); pk byte (gf ch); pred pk loc ← pk loc + comp size ;
pk three bytes (tfm width [gf ch mod 256]); pk halfword (dx [gf ch mod 256] div 65536);
pk halfword (width); pk halfword (height); pk halfword (x offset); pk halfword (y offset);
end

This code is used in section 71.

234 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §75

75. At this point, we have decided that the run-encoded format is smaller. (This is almost always the
case.) We send out the data, a nybble at a time.

〈Send compressed format 75 〉 ≡
begin bit weight ← 16; max 2 ← 208− 15 ∗ dyn f ; i← 0;
if row [i] = 0 then incr (i);
while row [i] 6= end of char do

begin j ← row [i];
if j = −1 then pk nyb(15)
else begin if j < 0 then

begin pk nyb(14); j ← −j;
end;

if j ≤ dyn f then pk nyb(j)
else if j ≤ max 2 then

begin j ← j − dyn f − 1; pk nyb(j div 16 + dyn f + 1); pk nyb(j mod 16);
end

else begin j ← j −max 2 + 15; k ← 16;
while k ≤ j do

begin k ← k ∗ 16; pk nyb(0);
end;

while k > 1 do
begin k ← k div 16; pk nyb(j div k); j ← j mod k;
end;

end;
end;

incr (i);
end;

if bit weight 6= 16 then pk byte (output byte);
end

This code is used in section 68.

§76 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 235

76. This code is for the case where we have decided to send the character raster packed by bits. It uses
the bit counts as well, sending eight at a time. Here we have a miniature packed format interpreter, as we
must repeat any rows that are repeated. The algorithm to do this was a lot of fun to generate. Can you
figure out how it works?

〈Send bit map 76 〉 ≡
begin buff ← 0; p bit ← 8; i← 1; h bit ← width ; on ← false ; state ← false ; count ← row [0];
repeat flag ← 0;
while (row [i] 6= end of char) ∨ state ∨ (count > 0) do

begin if state then
begin count ← r count ; i← r i ; on ← r on ; decr (repeat flag);
end

else begin r count ← count ; r i ← i; r on ← on ;
end;

〈Send one row by bits 80 〉;
if state ∧ (repeat flag = 0) then

begin count ← s count ; i← s i ; on ← s on ; state ← false ;
end

else if ¬state ∧ (repeat flag > 0) then
begin s count ← count ; s i ← i; s on ← on ; state ← true ;
end;

end;
if p bit 6= 8 then pk byte (buff);
end

This code is used in section 68.

77. All of the remaining locals:

〈Locals to pack and send character 65 〉 +≡
comp size : integer ; { length of the packed representation in bytes }
count : integer ; { number of bits in current state to send }
p bit : integer ; {what bit are we about to send out? }
r on , s on : boolean ; { state saving variables }
r count , s count : integer ; {ditto }
r i , s i : integer ; { and again. }
max 2 : integer ; { the highest count that fits in two bytes }

78. We make the power array global.

〈Globals in the outer block 11 〉 +≡
power : array [0 . . 8] of integer ; { easy powers of two }

79. We initialize the power array.

〈Set initial values 12 〉 +≡
power [0]← 1;
for i← 1 to 8 do power [i]← power [i− 1] + power [i− 1];

236 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §80

80. Here we are at the beginning of a row and simply output the next width bits. We break the possibilities
up into three cases: we finish a byte but not the row, we finish a row, and we finish neither a row nor a byte.
But, first, we insure that we have a count value.

〈Send one row by bits 80 〉 ≡
repeat if count = 0 then

begin if row [i] < 0 then
begin if ¬state then repeat flag ← −row [i];
incr (i);
end;

count ← row [i]; incr (i); on ← ¬on ;
end;

if (count ≥ p bit) ∧ (p bit < h bit) then
begin { we end a byte, we don’t end the row }
if on then buff ← buff + power [p bit]− 1;
pk byte (buff); buff ← 0; h bit ← h bit − p bit ; count ← count − p bit ; p bit ← 8;
end

else if (count < p bit) ∧ (count < h bit) then
begin { we end neither the row nor the byte }
if on then buff ← buff + power [p bit]− power [p bit − count];
p bit ← p bit − count ; h bit ← h bit − count ; count ← 0;
end

else begin { we end a row and maybe a byte }
if on then buff ← buff + power [p bit]− power [p bit − h bit];
count ← count − h bit ; p bit ← p bit − h bit ; h bit ← width ;
if p bit = 0 then

begin pk byte (buff); buff ← 0; p bit ← 8;
end;

end;
until h bit = width

This code is used in section 76.

§81 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 237

81. Now we are ready for the routine that writes the preamble of the packed file.

define preamble comment ≡ ´GFtoPK 2.4 output from ´

define comm length = 23 { length of preamble comment }
define from length = 6 { length of its ´ from ´ part }

〈Write preamble 81 〉 ≡
pk byte (pk pre); pk byte (pk id); i← gf byte ; { get length of introductory comment }
repeat if i = 0 then j ← "." else j ← gf byte ;

decr (i); { some people think it’s wise to avoid goto statements }
until j 6= " "; { remove leading blanks }
incr (i); { this many bytes to copy }
if i = 0 then k ← comm length − from length
else k ← i + comm length ;
if k > 255 then pk byte (255) else pk byte (k);
for k ← 1 to comm length do

if (i > 0) ∨ (k ≤ comm length − from length) then pk byte (xord [comment [k]]);
print (´´´´);
for k ← 1 to i do

begin if k > 1 then j ← gf byte ;
print (xchr [j]);
if k < 256− comm length then pk byte (j);
end;

print ln (´´´´);
pk word (design size); pk word (check sum); pk word (hppp); pk word (vppp)

This code is used in section 51.

82. Of course, we need an array to hold the comment.

〈Globals in the outer block 11 〉 +≡
comment : packed array [1 . . comm length] of char ;

83. 〈Set initial values 12 〉 +≡
comment ← preamble comment ;

84. Writing the postamble is even easier.

〈Write postamble 84 〉 ≡
pk byte (pk post);
while (pk loc mod 4 6= 0) do pk byte (pk no op)

This code is used in section 51.

85. Once we are finished with the GF file, we check the status of each character to insure that each character
that had a locator also had raster information.

〈Check for unrasterized locators 85 〉 ≡
for i← 0 to 255 do

if status [i] = located then print ln (´Character ´, i : 1, ´ missing raster information!´)

This code is used in section 86.

86. Finally, the main program.

begin initialize ; convert gf file ; 〈Check for unrasterized locators 85 〉;
print ln (gf len : 1, ´ bytes packed to ´, pk loc : 1, ´ bytes.´);

final end : end.

238 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §87

87. A few more globals.

〈Globals in the outer block 11 〉 +≡
check sum : integer ; { the checksum of the file }
design size : integer ; { the design size of the font }
h mag : integer ; { the pixel magnification in pixels per inch }
i: integer ;

§88 GFtoPK SYSTEM-DEPENDENT CHANGES 239

88. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make GFtoPK work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

240 INDEX GFtoPK §89

89. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a: 43.
abort : 8, 57.
all 223’s : 60.
ASCII code : 9, 11.
b: 43, 44.
b comp size : 68, 70.
backpointers: 19.
bad : 56, 57, 58.
Bad GF file : 8.
bad gf : 8, 43, 51, 54, 56, 57, 60.
banner : 1, 4.
bit weight : 44, 45, 75.
black : 15, 16.
boc : 14, 16, 17, 18, 19, 51, 54.
boc1 : 16, 17, 51.
boolean : 41, 58, 70, 77.
buff : 64, 65, 67, 76, 80.
byte is not post : 60.
byte file : 37, 38.
c: 43.
cc : 32.
char : 10, 82.
char loc : 16, 17, 19, 60.
char loc0 : 16, 17, 60.
check sum: 18.
check sum : 60, 81, 87.
Chinese characters: 19.
chr : 10, 11, 13.
comm length : 81, 82.
comment : 81, 82, 83.
comp size : 68, 69, 71, 72, 73, 74, 77.
convert gf file : 51, 55, 86.
count : 76, 77, 80.
cs : 18, 23.
cur pos : 46.
d: 43.
d print ln : 2, 54, 63, 68.
debugging: 2.
decr : 7, 30, 60, 63, 69, 76, 81.
del m : 16.
del n : 16.
deriv : 68, 69, 70.
design size: 18.
design size : 60, 81, 87.
dm : 16, 32.
ds : 18, 23.
dx : 16, 19, 32, 48, 60, 71, 72, 73, 74.
dy : 16, 19, 32, 48, 60, 71, 72.
dyn f : 28, 29, 30, 31, 32, 35, 36, 48, 62, 68,

69, 70, 71, 75.

eight bits : 37, 43.
else: 3.
end: 3.
end of char : 48, 50, 57, 63, 64, 66, 68, 75, 76.
end of row : 48, 50, 57, 63, 64, 66, 67.
endcases: 3.
eoc : 14, 16, 17, 18, 57.
eof : 43, 46.
extra : 57, 58, 59, 63, 65, 66, 67.
false : 42, 57, 59, 67, 76.
final end : 5, 8, 86.
find gf length : 46, 60.
First byte is not preamble : 51.
first on : 68, 70, 71.
first text char : 10, 13.
flag : 32.
flag byte : 70, 71, 72, 73, 74.
four cases : 52, 53, 57.
from length : 81.
Fuchs, David Raymond: 20.
get nyb : 30.
gf byte : 43, 51, 53, 54, 57, 59, 60, 81.
gf ch : 54, 55, 60, 71, 72, 73, 74.
gf ch mod 256 : 54, 55, 57, 71, 72, 73, 74.
gf com : 51, 53, 54, 57, 59, 60.
gf file : 4, 38, 39, 41, 42, 43, 46, 47, 48.
gf id byte : 16, 51, 60.
gf len : 46, 47, 60, 86.
gf loc : 39, 41, 43, 46.
gf signed quad : 43, 53, 54, 60.
GFtoPK : 4.
h bit : 65, 67, 76, 80.
h mag : 60, 87.
height : 31, 63, 68, 70, 71, 72, 73, 74.
hoff : 32, 34.
hppp : 18, 23, 60, 61, 81.
i: 4, 30, 51, 62, 87.
ID byte is wrong : 60.
Identification byte incorrect : 51.
incr : 7, 30, 43, 44, 56, 63, 64, 66, 67, 68, 69,

75, 80, 81.
initialize : 4, 86.
integer : 4, 30, 41, 43, 44, 45, 46, 47, 48, 51, 55,

58, 61, 62, 65, 70, 77, 78, 87.
Internal error : 57.
j: 30, 51, 62.
Japanese characters: 19.
jump out : 8.
k: 51, 62.
Knuth, Donald Ervin: 29.

§89 GFtoPK INDEX 241

last text char : 10, 13.
line length : 6.
located : 48, 60, 85.
Locator...already found : 60.
max m : 16, 18, 48, 54, 55, 63.
max n : 16, 18, 48, 54, 55, 63.
max new row : 17.
max row : 6, 48, 56.
max 2 : 75, 77.
min m : 16, 18, 48, 54, 55, 63.
min n : 16, 18, 48, 54, 55, 63.
missing raster information : 85.
move to byte : 46, 51, 60.
n: 46.
new row : 56.
new row 0 : 16, 17, 57.
new row 1 : 16.
new row 164 : 16.
no character locator... : 54.
no op : 16, 17, 19, 53.
Odd aspect ratio : 60.
on : 57, 58, 59, 70, 76, 80.
one sixty five cases : 52, 57.
only n bytes long : 60.
open gf file : 39, 51.
open pk file : 40, 51.
ord : 11.
oriental characters: 19.
othercases: 3.
others : 3.
output : 4.
output byte : 44, 45, 75.
p bit : 76, 77, 80.
pack and send character : 55, 57, 62, 65.
paint : 56, 57.
paint switch : 15, 16, 57.
paint 0 : 16, 17, 57, 59.
paint1 : 16, 17, 59.
paint2 : 16.
paint3 : 16.
pk byte : 44, 53, 72, 73, 74, 75, 76, 80, 81, 84.
pk file : 4, 38, 40, 41, 42, 44, 48, 60.
pk halfword : 44, 74.
pk id : 24, 81.
pk loc : 40, 41, 44, 57, 72, 73, 74, 84, 86.
pk no op : 23, 24, 84.
pk nyb : 44, 75.
pk open : 40, 41, 42, 44.
pk packed num : 30.
pk post : 23, 24, 84.
pk pre : 23, 24, 81.
pk three bytes : 44, 73, 74.

pk word : 44, 53, 72, 81.
pk xxx1 : 23, 24, 53.
pk yyy : 23, 24, 53.
pl : 32.
post : 14, 16, 17, 18, 20, 51, 60.
post location is : 60.
post pointer is wrong : 60.
post loc : 60, 61.
post post : 16, 17, 18, 20, 60.
power : 78, 79, 80.
pre : 14, 16, 17, 51.
preamble comment : 1, 81, 83.
pred pk loc : 55, 57, 72, 73, 74.
print : 4, 8, 81.
print ln : 2, 4, 60, 81, 85, 86.
proofing : 19.
put count : 64, 67.
put in rows : 56, 57, 59.
put ptr : 64, 65.
q: 61.
r count : 76, 77.
r i : 76, 77.
r on : 76, 77.
Ran out of memory : 57.
read : 43.
repeat count : 30.
repeat flag : 64, 65, 66, 76, 80.
reset : 39.
rewrite : 40.
Rokicki, Tomas Gerhard Paul: 1.
round : 60.
row : 6, 48, 51, 55, 56, 57, 63, 64, 65, 66, 67,

68, 69, 75, 76, 80.
row ptr : 55, 56, 57, 63, 64, 66, 67.
s count : 76, 77.
s i : 76, 77.
s on : 76, 77.
Samuel, Arthur Lee: 1.
scaled : 16, 18, 19, 23.
sent : 48, 57.
set pos : 46.
sixteen cases : 52.
sixty four cases : 52, 59.
skip : 56.
skip 0 : 57.
skip0 : 16, 17, 57.
skip1 : 16, 17.
skip2 : 16.
skip3 : 16.
state : 57, 58, 59, 64, 67, 70, 76, 80.
status : 48, 49, 54, 57, 60, 85.
system dependencies: 3, 8, 10, 20, 37, 43, 46, 88.

242 INDEX GFtoPK §89

text char : 10, 11.
text file : 10.
tfm : 32, 33, 36.
tfm width : 48, 60, 71, 72, 73, 74.
true : 40, 56, 57, 64, 67, 76.
undefined commands : 17.
Unexpected command : 51, 57, 60.
Unexpected end of file : 43.
virgin : 48, 49, 54, 60.
voff : 32, 34.
vppp : 18, 23, 60, 61, 81.
white : 16.
width : 31, 63, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80.
write : 4, 44.
write ln : 4.
x offset : 63, 70, 71, 72, 73, 74.
xchr : 11, 12, 13, 81.
xord : 11, 13, 81.
xxx1 : 16, 17, 53.
xxx2 : 16.
xxx3 : 16.
xxx4 : 16.
y offset : 63, 70, 71, 72, 73, 74.
yyy : 16, 17, 19, 23, 53.

GFtoPK NAMES OF THE SECTIONS 243

〈Calculate dyn f and packed size and write character 68 〉 Used in section 62.

〈Cases for paint commands 59 〉 Used in section 57.

〈Check for unrasterized locators 85 〉 Used in section 86.

〈Constants in the outer block 6 〉 Used in section 4.

〈Convert character to packed form 57 〉 Used in section 54.

〈Convert row-list to glyph-list 64 〉 Used in section 62.

〈Find and interpret postamble 60 〉 Used in section 51.

〈Globals in the outer block 11, 38, 41, 45, 47, 48, 55, 78, 82, 87 〉 Used in section 4.

〈 Interpret character 54 〉 Used in section 51.

〈Labels in the outer block 5 〉 Used in section 4.

〈Locals to convert gf file 58, 61 〉 Used in section 51.

〈Locals to pack and send character 65, 70, 77 〉 Used in section 62.

〈Packing procedures 62 〉 Used in section 51.

〈Process count for best dyn f value 69 〉 Used in section 68.

〈Reformat count list 67 〉 Used in section 64.

〈Scan for bounding box 63 〉 Used in section 62.

〈Send bit map 76 〉 Used in section 68.

〈Send compressed format 75 〉 Used in section 68.

〈Send one row by bits 80 〉 Used in section 76.

〈Set initial values 12, 13, 42, 49, 79, 83 〉 Used in section 4.

〈Skip over repeated rows 66 〉 Used in section 64.

〈Specials and no op cases 53 〉 Used in sections 51, 57, and 60.

〈Types in the outer block 9, 10, 37 〉 Used in section 4.

〈Write character preamble 71 〉 Used in section 68.

〈Write long character preamble 72 〉 Used in section 71.

〈Write one-byte short character preamble 73 〉 Used in section 71.

〈Write postamble 84 〉 Used in section 51.

〈Write preamble 81 〉 Used in section 51.

〈Write two-byte short character preamble 74 〉 Used in section 71.

	 Introduction
	 The character set
	 Generic font file format
	 Packed file format
	 Input and output for binary files
	 Plan of attack
	 Reading the generic font file
	 Converting the counts to packed format
	 System-dependent changes
	 Index
	Names of the sections
	Calculate dyn_f and packed size and write character
	Cases for paint commands
	Check for unrasterized locators
	Constants in the outer block
	Convert character to packed form
	Convert row-list to glyph-list
	Find and interpret postamble
	Globals in the outer block
	Interpret character
	Labels in the outer block
	Locals to convert_gf_file
	Locals to pack_and_send_character
	Packing procedures
	Process count for best dyn_f value
	Reformat count list
	Scan for bounding box
	Send bit map
	Send compressed format
	Send one row by bits
	Set initial values
	Skip over repeated rows
	Specials and no_op cases
	Types in the outer block
	Write character preamble
	Write long character preamble
	Write one-byte short character preamble
	Write postamble
	Write preamble
	Write two-byte short character preamble

