
The TIE processor

(CWEB Version 2.4)

Section Page
Introduction . 1 1
The character set . 7 3
Input and output . 15 6
Data structures . 18 7
File I/O . 24 9
Reporting errors to the user . 31 12
Handling multiple change files . 34 13
Input/output organization . 38 14
The main program . 59 21
System-dependent changes . 61 22
Index . 62 23

c© 1989, 1992 by Technische Hochschule Darmstadt,
Fachbereich Informatik, Institut für Theoretische Informatik
All rights reserved.
This program is distributed WITHOUT ANY WARRANTY, express or implied.
Permission is granted to make and distribute verbatim copies of this program provided that the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this program under the conditions for ver-
batim copying, provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

§1 TIE INTRODUCTION 1

August 12, 2024 at 13:29

1. Introduction.
Whenever a programmer wants to change a given WEB or CWEB program (referred to as a WEB program
throughout this program) because of system dependencies, she or he will create a new change file. In
addition there may be a second change file to modify system independent modules of the program. But
the WEB file cannot be tangled and weaved with more than one change file simultaneously. Therefore, we
introduce the present program to merge a WEB file and several change files producing a new WEB file. Since
the input files are tied together, the program is called TIE. Furthermore, the program can be used to merge
several change files giving a new single change file. This method seems to be more important because it
doesn’t modify the original source file. The use of TIE can be expanded to other programming languages
since this processor only knows about the structure of change files and does not interpret the master file at
all.

The program TIE has to read lines from several input files to bring them in some special ordering. For
this purpose an algorithm is used which looks a little bit complicated. But the method used only needs one
buffer line for each input file. Thus the storage requirement of TIE does not depend on the input data.

The program is written in C and uses only few features of a particular environment that may need to be
changed in other installations. E.g. it will not use the enum type declarations. The changes needed may
refer to the access of the command line if this can be not supported by any C compiler.

The “banner line” defined here should be changed whenever TIE is modified. This program is put into
the public domain. Nevertheless the copyright notice must not be replaced or modified.

#define banner "This is TIE, CWEB Version 2.4."

#define copyright "Copyright (c) 1989,1992 by THD/ITI. All rights reserved."

2. The main outline of the program is given in the next section. This can be used more or less for any C
program.

〈Global # includes 15 〉
〈Global constants 5 〉
〈Global types 4 〉
〈Global variables 6 〉
〈Error handling functions 31 〉
〈 Internal functions 24 〉
〈The main function 59 〉

3. Here are some macros for common programming idioms.

#define incr (v) v += 1 . increase a variable by unity /
#define decr (v) v −= 1 . decrease a variable by unity /
#define loop while (1) . repeat over and over until a break happens /
#define do nothing . empty statement /

format loop while

4. Furthermore we include the additional types boolean and string .

#define false 0
#define true 1

〈Global types 4 〉 ≡
typedef int boolean;
typedef char ∗string;

See also sections 7, 8, 18, 19, 20, and 21.

This code is used in section 2.

2 INTRODUCTION TIE §5

5. The following parameters should be sufficient for most applications of TIE.

〈Global constants 5 〉 ≡
#define buf size 512 . maximum length of one input line /
#define max file index 9

. we don’t think that anyone needs more than 9 change files, but . . . just change it /

This code is used in section 2.

6. We introduce a history variable that allows us to set a return code if the operating system can use it.
First we introduce the coded values for the history. This variable must be initialized. (We do this even if
the value given may be the default for variables, just to document the need for the initial value.)

#define spotless 0
#define troublesome 1
#define fatal 2

〈Global variables 6 〉 ≡
static int history ← spotless ;

See also sections 9, 22, 23, 26, and 35.

This code is used in section 2.

§7 TIE THE CHARACTER SET 3

7. The character set.
One of the main goals in the design of TIE has been to make it readily portable between a wide variety of
computers. Yet TIE by its very nature must use a greater variety of characters than most computer programs
deal with, and character encoding is one of the areas in which existing machines differ most widely from
each other.

To resolve this problem, all input to TIE is converted to an internal seven-bit code that is essentially
standard ASCII, the “American Standard Code for Information Interchange.” The conversion is done
immediately when each character is read in. Conversely, characters are converted from ASCII to the user’s
external representation just before they are output. But the algorithm is prepared for the usage of eight-bit
data.
Here is a table of the standard visible ASCII codes:

0 1 2 3 4 5 6 7

Ø040 ! " # $ % & ’

Ø050 () * + , - . /

Ø060 0 1 2 3 4 5 6 7

Ø070 8 9 : ; < = > ?

Ø100 @ A B C D E F G

Ø110 H I J K L M N O

Ø120 P Q R S T U V W

Ø130 X Y Z [\] ^ _

Ø140 ‘ a b c d e f g

Ø150 h i j k l m n o

Ø160 p q r s t u v w

Ø170 x y z { | } ~

(Actually, of course, code ◦40 is an invisible blank space.) Code ◦136 was once an upward arrow (↑), and
code ◦137 was once a left arrow (←), in olden times when the first draft of ASCII code was prepared; but
TIE works with today’s standard ASCII in which those codes represent circumflex and underline as shown.
The maximum value used is also defined, it must be changed if an extended ASCII is used.

If the C compiler is not able to process unsigned char’s, you should define ASCII Code as short.

〈Global types 4 〉 +≡
#define max ASCII (@’~’ + 1)

typedef unsigned char ASCII Code; . eight-bit numbers, a subrange of the integers /

8. C was first implemented on a machine that uses the ASCII representation for characters. But to make it
readily available also for other machines (big brother is watching?) we add a conversion that may be undone
for most installations. TIE assumes that it is being used with a character set that contains at least the
characters of standard ASCII as listed above.

In order to accommodate this difference, we shall use the name text char to stand for the data type of
the characters in the input and output files. We shall also assume that text char consists of the elements
first text char through last text char , inclusive. The following definitions should be adjusted if necessary.

#define first text char 0 . ordinal number of the smallest element of text char /
#define last text char 255 . ordinal number of the largest element of text char /

〈Global types 4 〉 +≡
typedef unsigned char text char; . the data type of characters in text files /
typedef FILE ∗text file;

4 THE CHARACTER SET TIE §9

9. The TIE processor converts between ASCII code and the user’s external character set by means of arrays
xord and xchr that are analogous to Pascal’s ord and chr functions.

The mapping may be disabled by changing the following macro definitions to just a cast. If your C compiler
does not support unsigned char’s, you should incorporate a binary and with #ff.

#define map xchr (c) (text char)(c) . change this to xchr [c] on non ASCII machines /
#define map xord (c) (ASCII Code)(c) . change this to xord [c] on non ASCII machines /

〈Global variables 6 〉 +≡
static ASCII Code xord [last text char + 1]; . specifies conversion of input characters /
static text char xchr [max ASCII + 1]; . specifies conversion of output characters /

10. If we assume that every system using WEB is able to read and write the visible characters of stan-
dard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the xchr array properly, without needing any system-dependent changes. For
example, the statement xchr [@’A’] ← ’A’ that appears in the present WEB file might be encoded in, say,
EBCDIC code on the external medium on which it resides, but CTANGLE will convert from this external code
to ASCII and back again. Therefore the assignment statement xchr [65]← ’A’ will appear in the correspond-
ing C file, and C will compile this statement so that xchr [65] receives the character A in the external code.
Note that it would be quite incorrect to say xchr [@’A’]← @’A’, because @’A’ is a constant of type int not
char, and because we have @’A’ ≡ 65 regardless of the external character set.

〈Set initial values 10 〉 ≡
xchr [@’ ’]← ’ ’; xchr [@’!’]← ’!’; xchr [@’\"’]← ’\"’; xchr [@’#’]← ’#’;
xchr [@’$’]← ’$’; xchr [@’%’]← ’%’; xchr [@’&’]← ’&’; xchr [@’\’’]← ’\’’;
xchr [@’(’]← ’(’; xchr [@’)’]← ’)’; xchr [@’*’]← ’*’; xchr [@’+’]← ’+’;
xchr [@’,’]← ’,’; xchr [@’−’]← ’−’; xchr [@’.’]← ’.’; xchr [@’/’]← ’/’;
xchr [@’0’]← ’0’; xchr [@’1’]← ’1’; xchr [@’2’]← ’2’; xchr [@’3’]← ’3’;
xchr [@’4’]← ’4’; xchr [@’5’]← ’5’; xchr [@’6’]← ’6’; xchr [@’7’]← ’7’;
xchr [@’8’]← ’8’; xchr [@’9’]← ’9’; xchr [@’:’]← ’:’; xchr [@’;’]← ’;’;
xchr [@’<’]← ’<’; xchr [@’=’]← ’=’; xchr [@’>’]← ’>’; xchr [@’?’]← ’?’;
xchr [@’@’]← ’@’; xchr [@’A’]← ’A’; xchr [@’B’]← ’B’; xchr [@’C’]← ’C’;
xchr [@’D’]← ’D’; xchr [@’E’]← ’E’; xchr [@’F’]← ’F’; xchr [@’G’]← ’G’;
xchr [@’H’]← ’H’; xchr [@’I’]← ’I’; xchr [@’J’]← ’J’; xchr [@’K’]← ’K’;
xchr [@’L’]← ’L’; xchr [@’M’]← ’M’; xchr [@’N’]← ’N’; xchr [@’O’]← ’O’;
xchr [@’P’]← ’P’; xchr [@’Q’]← ’Q’; xchr [@’R’]← ’R’; xchr [@’S’]← ’S’;
xchr [@’T’]← ’T’; xchr [@’U’]← ’U’; xchr [@’V’]← ’V’; xchr [@’W’]← ’W’;
xchr [@’X’]← ’X’; xchr [@’Y’]← ’Y’; xchr [@’Z’]← ’Z’; xchr [@’[’]← ’[’;
xchr [@’\\’]← ’\\’; xchr [@’]’]← ’]’; xchr [@’^’]← ’^’; xchr [@’_’]← ’_’;
xchr [@’‘’]← ’‘’; xchr [@’a’]← ’a’; xchr [@’b’]← ’b’; xchr [@’c’]← ’c’;
xchr [@’d’]← ’d’; xchr [@’e’]← ’e’; xchr [@’f’]← ’f’; xchr [@’g’]← ’g’;
xchr [@’h’]← ’h’; xchr [@’i’]← ’i’; xchr [@’j’]← ’j’; xchr [@’k’]← ’k’;
xchr [@’l’]← ’l’; xchr [@’m’]← ’m’; xchr [@’n’]← ’n’; xchr [@’o’]← ’o’;
xchr [@’p’]← ’p’; xchr [@’q’]← ’q’; xchr [@’r’]← ’r’; xchr [@’s’]← ’s’;
xchr [@’t’]← ’t’; xchr [@’u’]← ’u’; xchr [@’v’]← ’v’; xchr [@’w’]← ’w’;
xchr [@’x’]← ’x’; xchr [@’y’]← ’y’; xchr [@’z’]← ’z’; xchr [@’{’]← ’{’;
xchr [@’|’]← ’|’; xchr [@’}’]← ’}’; xchr [@’~’]← ’~’;
xchr [0]← ’ ’; xchr [#7F]← ’ ’; . these ASCII codes are not used /

See also sections 13 and 14.

This code is used in section 59.

§11 TIE THE CHARACTER SET 5

11. Some of the ASCII codes below #20 have been given a symbolic name in TIE because they are used
with a special meaning.

#define tab mark @’\t’ . ASCII code used as tab-skip /
#define nl mark @’\n’ . ASCII code used as line end marker /
#define form feed @’\f’ . ASCII code used as page eject /

12. When we initialize the xord array and the remaining parts of xchr , it will be convenient to make use
of an index variable, i.

〈Local variables for initialisation 12 〉 ≡
int i;

This code is used in section 59.

13. Here now is the system-dependent part of the character set. If TIE is being implemented on a garden-
variety C for which only standard ASCII codes will appear in the input and output files, you don’t need to
make any changes here.

Changes to the present module will make TIE more friendly on computers that have an extended character
set, so that one can type things like ≠. If you have an extended set of characters that are easily incorporated
into text files, you can assign codes arbitrarily here, giving an xchr equivalent to whatever characters the
users of TIE are allowed to have in their input files, provided that unsuitable characters do not correspond
to special codes like tab mark that are listed above.

〈Set initial values 10 〉 +≡
for (i← 1; i < @’ ’; xchr [i++]← ’ ’) ;
xchr [tab mark]← ’\t’; xchr [form feed]← ’\f’; xchr [nl mark]← ’\n’;

14. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 10 〉 +≡
for (i← first text char ; i ≤ last text char ; xord [i++]← @’ ’) do nothing ;
for (i← 1; i ≤ @’~’; i++) xord [xchr [i]]← i;

6 INPUT AND OUTPUT TIE §15

15. Input and output.
Output for the user is done by writing on file term out , which is assumed to consist of characters of type
text char. It should be linked to stdout usually. Terminal input is not needed in this version of TIE.
stdin and stdout are predefined if we include the stdio.h definitions. Although I/O redirection for stdout
is usually available you may lead output to another file if you change the definition of term out . Also we
define some macros for terminating an output line and writing strings to the user.

#define term out stdout
#define print (a) fprintf (term out , a) . ‘print ’ means write on the terminal /
#define print2 (a, b) fprintf (term out , a, b) . same with two arguments /
#define print3 (a, b, c) fprintf (term out , a, b, c) . same with three arguments /
#define print c(v) fputc(v, term out); . print a single character /
#define new line (v) fputc(’\n’, v) . start new line /
#define term new line new line (term out) . start new line of the terminal /
#define print ln (v)

{
fprintf (term out , v); term new line ;
} . ‘print ’ and then start new line /

#define print2 ln (a, b)
{

print2 (a, b); term new line ;
} . same with two arguments /

#define print3 ln (a, b, c)
{

print3 (a, b, c); term new line ;
} . same with three arguments /

#define print nl (v)
{

term new line ; print (v);
} . print information starting on a new line /

#define print2 nl (a, b)
{

term new line ; print2 (a, b);
} . same for two arguments /

〈Global # includes 15 〉 ≡
#include <stdio.h>

See also section 16.

This code is used in section 2.

16. And we need dynamic memory allocation. This should cause no trouble in any C program.

〈Global # includes 15 〉 +≡
#ifdef __STDC__

#include <stdlib.h>

#else
#include <malloc.h>

#endif

17. The update terminal function is called when we want to make sure that everything we have output to
the terminal so far has actually left the computer’s internal buffers and been sent.

#define update terminal fflush (term out) . empty the terminal output buffer /

§18 TIE DATA STRUCTURES 7

18. Data structures.
The multiple input files (master file and change files) are treated the same way. To organize the simultaneous
usage of several input files, we introduce the data type in file modes.

The mode search indicates that TIE searches for a match of the input line with any line of an input file
in reading mode. test is used whenever a match is found and it has to be tested if the next input lines do
match also. reading describes that the lines can be read without any check for matching other lines. ignore
denotes that the file cannot be used. This may happen because an error has been detected or because the
end of the file has been found.

file types is used to describe whether a file is a master file or a change file. The value unknown is added
to this type to set an initial mode for the output file. This enables us to check whether any option was used
to select the kind of output. (this would even be necessary if we would assume a default action for missing
options.)

〈Global types 4 〉 +≡
#define search 0
#define test 1
#define reading 2
#define ignore 3

typedef int in file modes; . should be enum (search , test , reading , ignore) /
#define unknown 0
#define master 1
#define chf 2

typedef int file types; . should be enum (unknown ,master , chf) /

19. A variable of type out md type will tell us in what state the output change file is during processing.
normal will be the state, when we did not yet start a change, pre will be set when we write the lines to be
changes and post will indicate that the replacement lines are written.

〈Global types 4 〉 +≡
#define normal 0
#define pre 1
#define post 2

typedef int out md type; . should be enum (normal , pre , post) /

20. Two more types will indicate variables used as an index into either the file buffer or the file table.

〈Global types 4 〉 +≡
typedef int buffer index; . −1..buf size /
typedef int file index; . −1..max file index + 1 /

21. The following data structure joins all informations needed to use these input files.

format line dummy

〈Global types 4 〉 +≡
typedef struct idsc {

string name of file ;
ASCII Code buffer [buf size];
in file modes mode ;
long line ;
file types type of file ;
buffer index limit ;
text file the file ;
} input description;

8 DATA STRUCTURES TIE §22

22. These data types are used in the global variable section. They refer to the files in action, the number
of change files, the mode of operation and the current output state.

〈Global variables 6 〉 +≡
static file index actual input , test input ,no ch ;
static file types prod chf ← unknown ;
static out md type out mode ;

23. All input files (including the master file) are recorded in the following structure. Mostly the components
are accessed through a local pointer variable. This corresponds to Pascal’s with-statement and results in a
one-time-computation of the index expression.

〈Global variables 6 〉 +≡
static input description ∗input organization [max file index + 1];

§24 TIE FILE I/O 9

24. File I/O.
The basic function get line can be used to get a line from an input file. The line is stored in the buffer part
of the descriptor. The components limit and line are updated. If the end of the file is reached mode is set
to ignore . On some systems it might be useful to replace tab characters by a proper number of spaces since
several editors used to create change files insert tab characters into a source file not under control of the
user. So it might be a problem to create a matching change file.

We define get line to read a line from a file specified by the corresponding file descriptor.

〈 Internal functions 24 〉 ≡
void get line (i)

file index i;
{

register input description ∗inp desc ← input organization [i];

if (inp desc~mode ≡ ignore) return;
if (feof (inp desc~ the file)) 〈Handle end of file and return 25 〉
〈Get line into buffer 27 〉
}

See also sections 38, 39, 42, 43, 44, and 55.

This code is used in section 2.

25. End of file is special if this file is the master file. Then we set the global flag variable input has ended .

〈Handle end of file and return 25 〉 ≡
{

inp desc~mode ← ignore ; inp desc~ limit ← −1; . mark end-of-file /
if (inp desc~ type of file ≡ master) input has ended ← true ;
return;
}

This code is used in section 24.

26. This variable must be declared for global access.

〈Global variables 6 〉 +≡
static boolean input has ended ← false ;

10 FILE I/O TIE §27

27. Lines must fit into the buffer completely. We read all characters sequentially until an end of line is
found (but do not forget to check for EOF!). Too long input lines will be truncated. This will result in a
damaged output if they occur in the replacement part of a change file, or in an incomplerte check if the
matching part is concerned. Tab character expansion might be done here.

〈Get line into buffer 27 〉 ≡
{

int final limit ; . used to delete trailing spaces /
int c; . the actual character read /

〈 Increment the line number and print a progess report at certain times 28 〉
inp desc~ limit ← final limit ← 0;
while (inp desc~ limit < buf size) {
c← fgetc(inp desc~ the file);
〈Check c for EOF, return if line was empty, otherwise break to process last line 29 〉
inp desc~buffer [inp desc~ limit ++]← c← map xord (c);
if (c ≡ nl mark) break; . end of line found /
if (c 6= @’ ’ ∧ c 6= tab mark) final limit ← inp desc~ limit ;

}
〈Test for truncated line, skip to end of line 30 〉
inp desc~ limit ← final limit ;
}

This code is used in section 24.

28. This section does what its name says. Every 100 lines in the master file we print a dot, every 500 lines
the number of lines is shown.

〈 Increment the line number and print a progess report at certain times 28 〉 ≡
incr (inp desc~ line);
if (inp desc~ type of file ≡ master ∧ inp desc~ line % 100 ≡ 0) {

if (inp desc~ line % 500 ≡ 0) print2 ("%ld", inp desc~ line);
else print c(’.’);
update terminal ;
}

This code is used in section 27.

29. There may be incomplete lines of the editor used does not make sure that the last character before
end of file is an end of line. In such a case we must process the final line. Of the current line is empty, we
just can return. Note that this test must be done before the character read is translated.

〈Check c for EOF, return if line was empty, otherwise break to process last line 29 〉 ≡
if (c ≡ EOF) {

if (inp desc~ limit ≤ 0) {
inp desc~mode ← ignore ; inp desc~ limit ← −1; . mark end-of-file /
if (inp desc~ type of file ≡ master) input has ended ← true ;
return;

}
else { . add end of line mark /

c← nl mark ; break;
}
}

This code is used in section 27.

§30 TIE FILE I/O 11

30. If the line is truncated we must skip the rest (and still watch for EOF!).

〈Test for truncated line, skip to end of line 30 〉 ≡
if (c 6= nl mark) {

err print ("! Input line too long")(i);
while ((c← fgetc(inp desc~ the file)) 6= EOF ∧map xord (c) 6= nl mark) do nothing ; . skip to end /
}

This code is used in section 27.

12 REPORTING ERRORS TO THE USER TIE §31

31. Reporting errors to the user.
There may be errors if a line in a given change file does not match a line in the master file or a replacement
in a previous change file. Such errors are reported to the user by saying

err print ("! Error message")(file no);

where file no is the number of the file which is concerned by the error. Please note that no trailing dot is
supplied by the error message because it is appended by err print .

This function is implemented as a macro. It gives a message and an indication of the offending file. The
actions to determine the error location are provided by a function called err loc .

#define error loc(m) err loc(m); history ← troublesome ; }
#define err print (m) { print nl (m); error loc

〈Error handling functions 31 〉 ≡
void err loc(i) . prints location of error /

int i;
{

print3 ln (" (file %s, l.%ld).", input organization [i]~name of file , input organization [i]~ line);
}

This code is used in section 2.

32. Non recoverable errors are handled by calling fatal error that outputs a message and then calls
‘jump out ’. err print will print the error message followed by an indication of where the error was spotted
in the source files. fatal error cannot state any files because the problem is usually to access these.

#define fatal error (m)
{

print (m); print c(’.’); history ← fatal ; term new line ; jump out ();
}

33. jump out just cuts across all active procedure levels and jumps out of the program. It is used when no
recovery from a particular error has been provided. The return code from this program should be regarded
by the caller.

#define jump out () exit (1)

§34 TIE HANDLING MULTIPLE CHANGE FILES 13

34. Handling multiple change files.
In the standard version we take the name of the files from the command line. It is assumed that filenames
can be used as given in the command line without changes.

First there are some sections to open all files. If a file is not accessible, the run will be aborted. Otherwise
the name of the open file will be displayed.

〈Prepare the output file 34 〉 ≡
{

out file ← fopen (out name , "w");
if (out file ≡ Λ) {

fatal error ("! Could not open/create output file");
}
}

This code is used in section 59.

35. The name of the file and the file desciptor are stored in global variables.

〈Global variables 6 〉 +≡
static text file out file ;
static string out name ;

36. For the master file we start just reading its first line into the buffer, if we could open it.

〈Get the master file started 36 〉 ≡
{

input organization [0]~ the file ← fopen (input organization [0]~name of file , "r");
if (input organization [0]~ the file ≡ Λ) fatal error ("! Could not open master file");
print2 ("(%s)", input organization [0]~name of file); term new line ;
input organization [0]~ type of file ← master ; get line (0);
}

This code is used in section 59.

37. For the change files we must skip the comment part and see, whether we can find any change in it.
This is done by init change file .

〈Prepare the change files 37 〉 ≡
{

file index i;

i← 1;
while (i < no ch) {

input organization [i]~ the file ← fopen (input organization [i]~name of file , "r");
if (input organization [i]~ the file ≡ Λ) fatal error ("!Could not open change file");
print2 ("(%s)", input organization [i]~name of file); term new line ; init change file (i, true); incr (i);

}
}

This code is used in section 59.

14 INPUT/OUTPUT ORGANIZATION TIE §38

38. Input/output organization.
Here’s a simple function that checks if two lines are different.

〈 Internal functions 24 〉 +≡
boolean lines dont match (i, j)

file index i, j;
{

buffer index k, lmt ;

if (input organization [i]~ limit 6= input organization [j]~ limit) return (true);
lmt ← input organization [i]~ limit ;
for (k ← 0; k < lmt ; k++)

if (input organization [i]~buffer [k] 6= input organization [j]~buffer [k]) return (true);
return (false);
}

39. Function init change file (i, b) is used to ignore all lines of the input file with index i until the next
change module is found. The boolean parameter b indicates whether we do not want to see @x or @y entries
during our skip.

〈 Internal functions 24 〉 +≡
void init change file (i, b)

file index i;
boolean b;

{
register input description ∗inp desc ← input organization [i];

〈Skip over comment lines; return if end of file 40 〉
〈Skip to the next nonblank line; return if end of file 41 〉
}

40. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

〈Skip over comment lines; return if end of file 40 〉 ≡
loop {

ASCII Code c;

get line (i);
if (inp desc~mode ≡ ignore) return;
if (inp desc~ limit < 2) continue;
if (inp desc~buffer [0] 6= @’@’) continue;
c← inp desc~buffer [1];
if (c ≥ @’X’ ∧ c ≤ @’Z’) c += @’z’ − @’Z’; . lowercasify /
if (c ≡ @’x’) break;
if (c ≡ @’y’ ∨ c ≡ @’z’)

if (b) . scanning for start of change /
err print ("! Where is the matching @x?")(i);

}
This code is used in section 39.

§41 TIE INPUT/OUTPUT ORGANIZATION 15

41. Here we are looking at lines following the @x.

〈Skip to the next nonblank line; return if end of file 41 〉 ≡
do {

get line (i);
if (inp desc~mode ≡ ignore) {

err print ("! Change file ended after @x")(i); return;
}
} while (inp desc~ limit ≤ 0);

This code is used in section 39.

42. The put line function is used to write a line from input buffer j to the output file.

〈 Internal functions 24 〉 +≡
void put line (j)

file index j;
{

buffer index i; . index into the buffer /
buffer index lmt ; . line length /
ASCII Code ∗p; . output pointer /

lmt ← input organization [j]~ limit ; p← input organization [j]~buffer ;
for (i← 0; i < lmt ; i++) fputc(map xchr (∗p++), out file);
new line (out file);
}

43. The function e of ch module returns true if the input line from file i starts with @z.

〈 Internal functions 24 〉 +≡
boolean e of ch module (i)

file index i;
{

register input description ∗inp desc ← input organization [i];

if (inp desc~ limit < 0) {
print nl ("! At the end of change file missing @z ");
print2 ("%s", input organization [i]~name of file); term new line ; return (true);

}
else if (inp desc~ limit ≥ 2)

if (inp desc~buffer [0] ≡ @’@’ ∧ (inp desc~buffer [1] ≡ @’Z’ ∨ inp desc~buffer [1] ≡ @’z’))
return (true);

return (false);
}

44. The function e of ch preamble returns true if the input line from file i starts with @y.

〈 Internal functions 24 〉 +≡
boolean e of ch preamble (i)

file index i;
{

register input description ∗inp desc ← input organization [i];

if (inp desc~ limit ≥ 2 ∧ inp desc~buffer [0] ≡ @’@’)
if (inp desc~buffer [1] ≡ @’Y’ ∨ inp desc~buffer [1] ≡ @’y’) return (true);

return (false);
}

16 INPUT/OUTPUT ORGANIZATION TIE §45

45. To process the input file the next section reads a line of the actual input file and updates the
input organization for all files with index test file greater actual input .

〈Process a line, break when end of source reached 45 〉 ≡
{

file index test file ;

〈Check the current files for any ends of changes 46 〉
if (input has ended ∧ actual input ≡ 0) break; . all done /
〈Scan all other files for changes to be done 47 〉
〈Handle output 48 〉
〈Step to next line 52 〉
}

This code is used in section 53.

46. Any of the current change files may have reached the end of change. In such a case intermediate lines
must be skipped and the next start of change is to be found. This may make a change file inactive if it
reaches end of file.

〈Check the current files for any ends of changes 46 〉 ≡
{

register input description ∗inp desc ;

while (actual input > 0 ∧ e of ch module (actual input)) {
inp desc ← input organization [actual input];
if (inp desc~ type of file ≡ master) { . emergency exit, everything mixed up! /

fatal error ("! This can’t happen: change file is master file");
}
inp desc~mode ← search ; init change file (actual input , true);
while ((input organization [actual input]~mode 6= reading ∧ actual input > 0)) decr (actual input);

}
}

This code is used in section 45.

§47 TIE INPUT/OUTPUT ORGANIZATION 17

47. Now we will set test input to the file that has another match for the current line. This depends on the
state of the other change files. If no other file matches, actual input refers to a line to write and test input
ist set to none .

#define none (max file index + 1)

〈Scan all other files for changes to be done 47 〉 ≡
test input ← none ; test file ← actual input ;
while (test input ≡ none ∧ test file < no ch − 1) {

incr (test file);
switch (input organization [test file]~mode) {
case search :

if (lines dont match (actual input , test file) ≡ false) {
input organization [test file]~mode ← test ; test input ← test file ;

}
break;

case test :
if (lines dont match (actual input , test file) ≡ true) { . error, sections do not match /

input organization [test file]~mode ← search ;
err print ("! Sections do not match")(actual input); err loc(test file);
init change file (test file , false);

}
else test input ← test file ;
break;

case reading : do nothing ; . this can’t happen /
break;

case ignore : do nothing ; . nothing to do /
break;

}
}

This code is used in section 45.

48. For the output we must distinguish whether we create a new change file or a new master file. The
change file creation needs some closer inspection because we may be before a change, in the pattern part or
in the replacement part. For a master file we have to write the line from the current actual input.

〈Handle output 48 〉 ≡
if (prod chf ≡ chf) { loop {
〈Test for normal, break when done 49 〉
〈Test for pre, break when done 50 〉
〈Test for post, break when done 51 〉
}
}
else

if (test input ≡ none) put line (actual input);

This code is used in section 45.

18 INPUT/OUTPUT ORGANIZATION TIE §49

49. Check whether we have to start a change file entry. Without a match nothing must be done.

〈Test for normal, break when done 49 〉 ≡
if (out mode ≡ normal) {

if (test input 6= none) {
fputc(map xchr (@’@’), out file); fputc(map xchr (@’x’), out file); new line (out file);
out mode ← pre ;

}
else break;
}

This code is used in section 48.

50. Check whether we have to start the replacement text. This is the case when we have no more matching
line. Otherwise the master file source line must be copied to the change file.

〈Test for pre, break when done 50 〉 ≡
if (out mode ≡ pre) {

if (test input ≡ none) {
fputc(map xchr (@’@’), out file); fputc(map xchr (@’y’), out file); new line (out file);
out mode ← post ;

}
else {

if (input organization [actual input]~ type of file ≡ master) put line (actual input);
break;

}
}

This code is used in section 48.

51. Check whether an entry from a change file is complete. If the current change was a change for a change
file in effect, then this change file line must be written. If the actual input has been reset to the master file
we can finish this change.

〈Test for post, break when done 51 〉 ≡
if (out mode ≡ post) {

if (input organization [actual input]~ type of file ≡ chf) {
if (test input ≡ none) put line (actual input);
break;

}
else {

fputc(map xchr (@’@’), out file); fputc(map xchr (@’z’), out file); new line (out file);
new line (out file); out mode ← normal ;

}
}

This code is used in section 48.

§52 TIE INPUT/OUTPUT ORGANIZATION 19

52. If we had a change, we must proceed in the actual file to be changed and in the change file in effect.

〈Step to next line 52 〉 ≡
get line (actual input);
if (test input 6= none) {

get line (test input);
if (e of ch preamble (test input) ≡ true) {

get line (test input); . update current changing file /
input organization [test input]~mode ← reading ; actual input ← test input ; test input ← none ;

}
}

This code is used in section 45.

53. To create the new output file we have to scan the whole master file and all changes in effect when it
ends. At the very end it is wise to check for all changes to have completed–in case the last line of the master
file was to be changed.

〈Process the input 53 〉 ≡
actual input ← 0; input has ended ← false ;
while (input has ended ≡ false ∨ actual input 6= 0)
〈Process a line, break when end of source reached 45 〉

if (out mode ≡ post) { . last line has been changed /
fputc(map xchr (@’@’), out file); fputc(map xchr (@’z’), out file); new line (out file);
}

This code is used in section 59.

54. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in the master file or any of the change files.

〈Check that all changes have been read 54 〉 ≡
{

file index i;

for (i← 1; i < no ch ; i++) { . all change files /
if (input organization [i]~mode 6= ignore) err print ("! Change file entry did not match")(i);

}
}

This code is used in section 59.

55. We want to tell the user about our command line options. This is done by the usage () function. It
contains merely the necessary print statement and exits afterwards.

〈 Internal functions 24 〉 +≡
void usage ()
{

print ("Usage: tie −[mc] outfile master changefile(s)"); term new line ; jump out ();
}

20 INPUT/OUTPUT ORGANIZATION TIE §56

56. We must scan through the list of parameters, given in argv . The number is in argc . We must pay
attention to the flag parameter. We need at least 5 parameters and can handle up to max file index change
files. The names fo the file parameters will be inserted into the structure of input organization . The first file
is special. It indicates the output file. When we allow flags at any position, we must find out which name is
for what purpose. The master file is already part of the input organization structure (index 0). As long as
the number of files found (counted in no ch) is −1 we have not yet found the output file name.

〈Scan the parameters 56 〉 ≡
{

int act arg ;

if (argc < 5 ∨ argc > max file index + 4− 1) usage ();
no ch ← −1; . fill this part of input organization /
for (act arg ← 1; act arg < argc ; act arg ++) {

if (argv [act arg][0] ≡ ’−’) 〈Set a flag 57 〉
else 〈Get a file name 58 〉

}
if (no ch ≤ 0 ∨ prod chf ≡ unknown) usage ();
}

This code is used in section 59.

57. The flag is about to determine the processing mode. We must make sure that this flag has not been
set before. Further flags might be introduced to avoid/force overwriting of output files. Currently we just
have to set the processing flag properly.

〈Set a flag 57 〉 ≡
if (prod chf 6= unknown) usage ();
else

switch (argv [act arg][1]) {
case ’c’: case ’C’: prod chf ← chf ; break;
case ’m’: case ’M’: prod chf ← master ; break;
default: usage ();
}

This code is used in section 56.

58. We have to distinguish whether this is the very first file name (known if no ch ≡ (−1)) or if the next
element of input organization must be filled.

〈Get a file name 58 〉 ≡
{

if (no ch ≡ (−1)) {
out name ← argv [act arg];

}
else {

register input description ∗inp desc ;

inp desc ← (input description ∗) malloc(sizeof (input description));
if (inp desc ≡ Λ) fatal error ("! No memory for descriptor");
inp desc~mode ← search ; inp desc~ line ← 0; inp desc~ type of file ← chf ; inp desc~ limit ← 0;
inp desc~name of file ← argv [act arg]; input organization [no ch]← inp desc ;

}
incr (no ch);
}

This code is used in section 56.

§59 TIE THE MAIN PROGRAM 21

59. The main program.
Here is where TIE starts, and where it ends.

〈The main function 59 〉 ≡
main (argc , argv)

int argc ;
string ∗argv ;

{
{
〈Local variables for initialisation 12 〉
〈Set initial values 10 〉

}
print ln (banner); . print a “banner line” /
print ln (copyright); . include the copyright notice /
actual input ← 0; out mode ← normal ; 〈Scan the parameters 56 〉
〈Prepare the output file 34 〉
〈Get the master file started 36 〉
〈Prepare the change files 37 〉
〈Process the input 53 〉
〈Check that all changes have been read 54 〉
〈Print the job history 60 〉
}

This code is used in section 2.

60. We want to pass the history value to the operating system so that it can be used to govern whether
or not other programs are started. Additionaly we report the history to the user, although this may not be
“UNIX” style—but we are in best companion: WEB and TEX do the same.

〈Print the job history 60 〉 ≡
{

string msg ;

switch (history) {
case spotless : msg ← "No errors were found"; break;
case troublesome : msg ← "Pardon me, but I think I spotted something wrong."; break;
case fatal : msg ← "That was a fatal error, my friend"; break;
} . there are no other cases /
print2 nl ("(%s.)",msg); term new line ; exit (history ≡ spotless ? 0 : 1);
}

This code is used in section 59.

22 SYSTEM-DEPENDENT CHANGES TIE §61

61. System-dependent changes.
This section should be replaced, if necessary, by changes to the program that are necessary to make TIE work
at a particular installation. It is usually best to design your change file so that all changes to previous modules
preserve the module numbering; then everybody’s version will be consistent with the printed program. More
extensive changes, which introduce new modules, can be inserted here; then only the index itself will get a
new module number.

§62 TIE INDEX 23

62. Index.
Here is the cross-reference table for the TIE processor.

__STDC__: 16.
idsc: 21.

act arg : 56, 57, 58.
actual input : 22, 45, 46, 47, 48, 50, 51, 52, 53, 59.
argc : 56, 59.
argv : 56, 57, 58, 59.
ASCII Code: 7, 9, 21, 40, 42.
At the end of change file...: 43.
b: 39.
banner : 1, 59.
boolean: 4, 26, 38, 39, 43, 44.
buf size : 5, 20, 21, 27.
buffer : 21, 24, 27, 38, 40, 42, 43, 44.
buffer index: 20, 21, 38, 42.
c: 27, 40.
Change file ended...: 41.
Change file entry ...: 54.
chf : 18, 48, 51, 57, 58.
chr : 9.
copyright : 1, 59.
Could not open change file: 37.
Could not open master file: 36.
Could not open/create output file: 34.
decr : 3, 46.
do nothing : 3, 14, 30, 47.
e of ch module : 43, 46.
e of ch preamble : 44, 52.
EOF: 27, 29, 30.
err loc : 31, 47.
err print : 30, 31, 32, 40, 41, 47, 54.
error loc : 31.
exit : 33, 60.
false : 4, 26, 38, 43, 44, 47, 53.
fatal : 6, 32, 60.
fatal error : 32, 34, 36, 37, 46, 58.
feof : 24.
fflush : 17.
fgetc : 27, 30.
file index: 20, 22, 24, 37, 38, 39, 42, 43, 44,

45, 54.
file no : 31.
file types: 18, 21, 22.
final limit : 27.
first text char : 8, 14.
fopen : 34, 36, 37.
form feed : 11, 13.
fprintf : 15.
fputc : 15, 42, 49, 50, 51, 53.
get line : 24, 36, 40, 41, 52.
history : 6, 31, 32, 60.

i: 12, 24, 31, 37, 38, 39, 42, 43, 44, 54.
ignore : 18, 24, 25, 29, 40, 41, 47, 54.
in file modes: 18, 21.
incr : 3, 28, 37, 47, 58.
init change file : 37, 39, 46, 47.
inp desc : 24, 25, 27, 28, 29, 30, 39, 40, 41,

43, 44, 46, 58.
Input line too long: 30.
input description: 21, 23, 24, 39, 43, 44, 46, 58.
input has ended : 25, 26, 29, 45, 53.
input organization : 23, 24, 31, 36, 37, 38, 39, 42,

43, 44, 45, 46, 47, 50, 51, 52, 54, 56, 58.
j: 38, 42.
jump out : 32, 33, 55.
k: 38.
last text char : 8, 9, 14.
limit : 21, 24, 25, 27, 29, 38, 40, 41, 42, 43, 44, 58.
line : 21, 24, 28, 31, 58.
lines dont match : 38, 47.
lmt : 38, 42.
loop: 3, 40, 48.
main : 59.
malloc : 58.
map xchr : 9, 42, 49, 50, 51, 53.
map xord : 9, 27, 30.
master : 18, 25, 28, 29, 36, 46, 50, 57.
max ASCII : 7, 9.
max file index : 5, 20, 23, 47, 56.
mode : 21, 24, 25, 29, 40, 41, 46, 47, 52, 54, 58.
msg : 60.
name of file : 21, 31, 36, 37, 43, 58.
new line : 15, 42, 49, 50, 51, 53.
nl mark : 11, 13, 27, 29, 30.
No memory for descriptor: 58.
no ch : 22, 37, 47, 54, 56, 58.
none : 47, 48, 49, 50, 51, 52.
normal : 19, 49, 51, 59.
ord : 9.
out file : 34, 35, 42, 49, 50, 51, 53.
out md type: 19, 22.
out mode : 22, 49, 50, 51, 53, 59.
out name : 34, 35, 58.
p: 42.
post : 19, 50, 51, 53.
pre : 19, 49, 50.
print : 15, 32, 55.
print c : 15, 28, 32.
print ln : 15, 59.
print nl : 15, 31, 43.
print2 : 15, 28, 36, 37, 43.

24 INDEX TIE §62

print2 ln : 15.
print2 nl : 15, 60.
print3 : 15.
print3 ln : 15, 31.
prod chf : 22, 48, 56, 57.
put line : 42, 48, 50, 51.
reading : 18, 46, 47, 52.
search : 18, 46, 47, 58.
Sections do not match: 47.
spotless : 6, 60.
stdin : 15.
stdout : 15.
string: 4, 21, 35, 59, 60.
system dependencies: 5, 7, 8, 9, 13, 15, 16,

17, 29, 60, 61.
tab character expansion: 24, 27.
tab mark : 11, 13, 27.
term new line : 15, 32, 36, 37, 43, 55, 60.
term out : 15, 17.
test : 18, 47.
test file : 45, 47.
test input : 22, 47, 48, 49, 50, 51, 52.
text char: 8, 9.
text file: 8, 21, 35.
the file : 21, 24, 27, 30, 36, 37.
This can’t happen...: 46.
troublesome : 6, 31, 60.
true : 4, 25, 29, 37, 38, 43, 44, 46, 47, 52.
type of file : 21, 25, 28, 29, 36, 46, 50, 51, 58.
unknown : 18, 22, 56, 57.
update terminal : 17, 28.
usage : 55, 56, 57.
Where is the match...: 40.
xchr : 9, 10, 12, 13, 14.
xord : 9, 12, 14.

TIE NAMES OF THE SECTIONS 25

〈Check that all changes have been read 54 〉 Used in section 59.

〈Check the current files for any ends of changes 46 〉 Used in section 45.

〈Check c for EOF, return if line was empty, otherwise break to process last line 29 〉 Used in section 27.

〈Error handling functions 31 〉 Used in section 2.

〈Get a file name 58 〉 Used in section 56.

〈Get line into buffer 27 〉 Used in section 24.

〈Get the master file started 36 〉 Used in section 59.

〈Global constants 5 〉 Used in section 2.

〈Global types 4, 7, 8, 18, 19, 20, 21 〉 Used in section 2.

〈Global variables 6, 9, 22, 23, 26, 35 〉 Used in section 2.

〈Global # includes 15, 16 〉 Used in section 2.

〈Handle end of file and return 25 〉 Used in section 24.

〈Handle output 48 〉 Used in section 45.

〈 Increment the line number and print a progess report at certain times 28 〉 Used in section 27.

〈 Internal functions 24, 38, 39, 42, 43, 44, 55 〉 Used in section 2.

〈Local variables for initialisation 12 〉 Used in section 59.

〈Prepare the change files 37 〉 Used in section 59.

〈Prepare the output file 34 〉 Used in section 59.

〈Print the job history 60 〉 Used in section 59.

〈Process a line, break when end of source reached 45 〉 Used in section 53.

〈Process the input 53 〉 Used in section 59.

〈Scan all other files for changes to be done 47 〉 Used in section 45.

〈Scan the parameters 56 〉 Used in section 59.

〈Set a flag 57 〉 Used in section 56.

〈Set initial values 10, 13, 14 〉 Used in section 59.

〈Skip over comment lines; return if end of file 40 〉 Used in section 39.

〈Skip to the next nonblank line; return if end of file 41 〉 Used in section 39.

〈Step to next line 52 〉 Used in section 45.

〈Test for normal, break when done 49 〉 Used in section 48.

〈Test for post, break when done 51 〉 Used in section 48.

〈Test for pre, break when done 50 〉 Used in section 48.

〈Test for truncated line, skip to end of line 30 〉 Used in section 27.

〈The main function 59 〉 Used in section 2.

	Introduction
	The character set
	Input and output
	Data structures
	File I/O
	Reporting errors to the user
	Handling multiple change files
	Input/output organization
	The main program
	System-dependent changes
	Index
	Names of the sections
	Check that all changes have been read
	Check the current files for any ends of changes
	Check c for EOF, return if line was empty, otherwise break to process last line
	Error handling functions
	Get a file name
	Get line into buffer
	Get the master file started
	Global constants
	Global types
	Global variables
	Global # includes
	Handle end of file and return
	Handle output
	Increment the line number and print a progess report at certain times
	Internal functions
	Local variables for initialisation
	Prepare the change files
	Prepare the output file
	Print the job history
	Process a line, break when end of source reached
	Process the input
	Scan all other files for changes to be done
	Scan the parameters
	Set a flag
	Set initial values
	Skip over comment lines; return if end of file
	Skip to the next nonblank line; return if end of file
	Step to next line
	Test for normal, break when done
	Test for post, break when done
	Test for pre, break when done
	Test for truncated line, skip to end of line
	The main function

