
The jsonparse package
An easy way to parse, store and access JSON data from files or strings in
LaTeX documents

Jasper Habicht *

Version 0.8.0, released on 24 April 2024

1 Introduction

The jsonparse package provides a handy way to read in JSON data from files or strings in La-
TeX documents, parse the data and store it in a user-defined token variable. The package allows
accessing the stored data via a JavaScript-flavored syntax.

This package is still in a beta stage and not thoroughly tested. Bugs or improvements can be
issued via GitHub at https://github.com/jasperhabicht/jsonparse/issues.

2 Loading the package

To install the package, copy the package file jsonparse.sty into the working directory or into
the texmf directory. After the package has been installed, the jsonparse package is loaded by
calling \usepackage{jsonparse} in the preamble of the document.

The package does not load any dependencies.

debug

The package can be loaded with the option debug . It will then output to the log file every instance
of a string, a boolean (true or false) value, a null value, a number as well as the start and end of every
object and the start and end of every array that is found while parsing the JSON string or JSON file.

3 Escaping and special treatment of the input

In general, the package reads the JSON source as string, which means that all characters have cat-
egory code 12 (other), except for spaces which have category code 10 (space). The \endlinechar
value is set to −1. Furthermore, if PDFLaTeX is used, the upper-half of the 8-bit range is set to
“active”. JSON, however, defines a small set of escape sequences and in order to be able to process
these, the category code of the backslash is set to 0 (escpape).

JSON strings cannot contain the two characters " and \ . These two characters need to be
escaped with a preceding backslash (\). This package therefore redefines locally the TeX control
symbols \" , \/ , \\ , \b , \f , \n , \r , \t and \u . These control symbols are prevented from
expandingduringparsing. For example, \" is first definedas \exp_not:N \" andonly hen type-
set, \" is expanded to " , which ensures that strings are parsed properly.

Similarly, the control symbol \/ expands eventually to / and \\ to \c_backslash_str (i. e.
a backslash with category code 12). The escape sequence \u followed by a hex value consisting of
four digits eventually eventually expands to \char" followed by the relevant four hex digits. The

* E-mail: mail@jasperhabicht.de

1

https://github.com/jasperhabicht/jsonparse/issues
mailto:mail@jasperhabicht.de

JSON escape sequences \b , \f , \n , \r , \t or \u (followed by a hex value) eventually expand
to token variables of which the contents can be set using the relevant replacement key. Seemore
on setting keys below in section 4.1.

It is possible to insert TeXmacros to the JSON source that will eventually be parsed when type-
setting. Backslashes of TeX macros need to be escaped by another backslash. The TeX macros \"
and \\ must be escaped twice in the JSON source, so that they become \\\" and \\\\ respec-
tively.

\x[‹token variable name›][‹key›]

Using the control sequence \x , it is possible to nest JSON strings into each other. The control se-
quence takes two arguments delimited by square brackets. The first argument represents the name
of the token variable that holds the parsed JSON data where the inserted JSON string should be
taken from.The second argument sets the key that should be selected. The following example shows
a simple use case:

c

\JSONParse{\myJSONdataA}{
{ "a" : { "b" : "c" } }

}

\JSONParse{\myJSONdataB}{
{ "d" : \x[myJSONdataA][a] }

}

\JSONParseValue{\myJSONdataB}{d.b}

replacement/backspace={‹string›}
replacement/formfeed={‹string›}
replacement/linefeed={‹string›}
replacement/carriage return={‹string›}
replacement/horizontal tab={‹string›}

These keys can be used to set the replacement text for the JSON escape sequences \b (backspace),
\f (formfeed), \n (linefeed), \r (carriage return) and \t (horizontal tab). The default replace-
ment string is a space. Only strings can be used as replacement.

4 Main user commands

\JSONParse{‹token variable›}{‹JSON string›}

The command \JSONParse is used to parse a JSON string and store the parsed result in a token
variable (a property list). The first argument takes the name of the token variable that is created by
the command. The second argument takes the JSON string to be parsed.

For example, using \JSONParse{\myJSONdata}{ { "key" : "value" } } , the relevant
JSONstringwill beparsedand the result stored in the tokenvariable \myJSONdata asproperty list.
In this case, the property list only consists of one entry with the key key and the value value . The
command \JSONParseValue{\myJSONdata}{key} , for example, can then be used to extract
the relevant value from this property list (see the description below).

\JSONParseFromFile{‹token variable›}{‹JSON file›}

2

The command \JSONParseFromFile is used to parse a JSON file and store the parsed result in
a token variable (a property list). It works the same way as \JSONParse , but instead of a JSON
string, it takes as second argument the path to the JSON file relative to the working directory.

This commandwill temporarily change the category code of b , f , n , r , t and u to 12 (other)
if full escaping is activated. See more on escaping above in section 3.

\JSONParseKeys{‹token variable›}{‹token variable›}

The command \JSONParseKeys is used to store all top-level keys of a parsed JSON object as array
into a token variable. The command takes as first argument the token variable that holds the parsed
JSON data. The second argument takes the token variable that is assigned a JSON array containing
the top-level keys of the object represented by the token variable in the first argument. The token
variable to store the keys as array is created if it does not exist.

\JSONParseValue{‹token variable›}{‹key›}
\JSONParseValue*{‹token variable›}{‹key›}
\JSONParseExpandableValue{‹token variable›}{‹key›}

The command \JSONParseValue is used to select values from the token variable (property list)
that has been created using the commands \JSONParse or \JSONParseFromFile . The first
argument takes the token variable that holds the parsed JSON data. The second argument takes the
key to select the relevant entry from the parsed JSON data using JavaScript syntax.

If the JSON string { "key" : "value" } is parsed into the token variable \myJSONdata ,
using \JSONParseValue{\myJSONdata}{key} would extract the value associated with the key
key , which in this case is value , and typeset it to the document.

Nested objects and arrays are assigned keys that adhere to JavaScript syntax. For example, if
the JSON string { "outer_key" : { "inner_key" : "value" } } is parsed into the token
variable \myJSONdata , to select the value associated with the key inner_key , the command
\JSONParseValue{\myJSONdata}{outer_key.inner_key} can be used. To give an example
for anarray, the command \JSONParseValue{\myJSONdata}{key[0]} selects thefirst valueof
the array associated with the key key in the JSON string { "key" : ["one" , "two"] } .

The non-starred variant of this command, \JSONParseValue , rescans the token list before it
is typeset (which means that all category codes that may have been changed before are set to the
default values). The starred variant, \JSONParseValue* , does not rescan the ouput. The non-
starred variants of this and similar commands should therefore not be placed in a \JSONParse
command.

When a key is associated with an object or array, the whole object or array is output as JSON
string. The special key . (or the string defined using the key child sep) returns the whole JSON
object as string.

Whole objects or arrays can also be output as JSON string for further use in other macros using
the expandable command \JSONParseExpandableValue .

\JSONParseArrayValues{‹token variable›}{‹key›}[‹subkey›]{‹string›}
\JSONParseArrayValues*{‹token variable›}{‹key›}[‹subkey›]{‹string›}

The command \JSONParseArrayValues is used to select all values from an array from a parsed
JSON string or JSON file. The first argument takes the token variable that holds the parsed JSON
data. The second argument takes the key to select the relevant entry from the parsed JSON data
using JavaScript syntax. The third argument is optional and can be used to pass a subkey, i. e. a key
that is used to select a value for every item. The last argument takes a string that is inserted between
all values when they are typeset.

For example, let us assume the following JSON data structure is parsed into the token variable
\myJSONdata :

3

{
"array" : [
{
"key_a" : "one" ,
"key_b" : "two"

} ,
{
"key_a" : "three" ,
"key_b" : "four"

}
]

}

Then, when using \JSONParseArrayValues{\myJSONdata}{array}[key_a]{, } , ‘one,
three’ is typeset to the document.

The starred variant, \JSONParseArrayValues* , does not rescan the token lists before they
are typeset.

\JSONParseArrayValuesMap{‹token variable›}{‹key›}[‹subkey›]{‹command name›}
\JSONParseArrayValuesMap*{‹token variable›}{‹key›}[‹subkey›]{‹command name›}

The command \JSONParseArrayValuesMap takes the same first three arguments as the com-
mand \JSONParseArrayValues and works in a similar way. However, instead of a string that is
added between the array items, it takes a command name as fourth argument. This command can
be defined beforehand and will be called for every array item. Inside its definition, the commands
\JSONParseArrayIndex , \JSONParseArrayKey and \JSONParseArrayValue can be used
which are updated for each item and output the index, the key and the value of the current item
respectively.

For example, let us assume the same JSONdata structure as defined above parsed into the token
variable \myJSONdata . Then, the following can be done:

• one

• three

\newcommand{\myJSONitem}{
\item \emph{\JSONParseArrayValue}

}

\begin{itemize}
\JSONParseArrayValuesMap{\myJSONdata}

{array}[key_a]{myJSONitem}
\end{itemize}

The starred variant, \JSONParseArrayValuesMap* , does not rescan the token lists before
they are typeset.

\JSONParseArrayCount{‹token variable›}{‹key›}

Thecommand \JSONParseArrayCount takes as first argument a token variable holding a parsed
JSON string or JSONfile and as second argument a key. It returns an integer representing the num-
ber of items contained in the selected array.

4.1 Changing separators, output and other settings

Thepackageprovides a set of keys canbe set to change the separatorsused to select the relevant value
in the JSON structure, the output that is generated from the JSON data as well as other things.

4

\JSONParseSet{‹key-value list›}

The commands \JSONParseSet can be used to specify settings via key-value pairs (separated by
commas). Keys that arepresentedhereas a subkey (i. e. precededbyanotherkeyanda slash) canalso
be set using the syntax key={subkey} andmultiple subkeys belonging toonekey canbe combined
using a comma as separator. The following keys are available:

separator/child={‹string›}

With the key child sep , the separator for child objects that is used in the syntax to select a spe-
cific value in the JSON data structure can be changed. Per default, the child separator is a dot (.).
Changing the separator can be useful if keys in the JSON structure already use these characters.

separator/array left={‹string›}
separator/array right={‹string›}

With the keys array sep left and array sep right , the separators for arrays that are used
in the syntax to select a specific value in the JSON data structure can be changed. Per default, the
separators are square brackets ([and]). Changing the separators canbeuseful if keys in the JSON
structure already use these characters.

replacement/true={‹string›}
replacement/false={‹string›}
replacement/null={‹string›}

With the keys true , false and null , the string that is typeset for true, false and null values can
be changed. The default strings that are typeset are true , false and null respectively. Only
strings can be used as replacement.

array index zero-based
array index zero-based={‹boolean›}

If set (or explicitly set to true), the key array index zero-based sets the numbering of the
index of array items to zero-based. If set to false, the indexing starts with one instead. Per default,
the package uses zero-based indexing to resemble JavaScript notation.

4.2 L3 commands

\jsonparse_parse:n {‹JSON string›}

The command \jsonparse_parse:n takes as argument a JSON string and populates the token
variable (property list) \g_jsonparse_entries_prop with key-value pairs representing all ele-
ments of the JSON data structure represented by this string. This command does not escape the
input in any way.

\jsonparse_parse_to_prop:Nn ‹token variable› {‹JSON string›}

The command \jsonparse_parse_to_prop:Nn creates the token variable given as the first ar-
guments as property list and, after having called \jsonparse_parse:n using the second argu-
ment, sets this newly createdproperty list equal to \g_jsonparse_entries_prop . If escaping is

5

activated, this commandwill pre-process the input according to the selected escapingmode before
forwarding it to \jsonparse_parse:n . See more on escaping above in section 3.

\jsonparse_filter:Nn ‹token variable› {‹key›}

The command \jsonparse_parse_to_prop:Nn processes the token variable given as the first
arguments as property list and filters it according to the key given as second argument. Filtering
means that for every entry in the property list, the key of this entry is compared against the key
given to the command. If the key in the property list starts with the given key, the matching part is
removed from the key in the property list. If the keys do notmatch, the entry is completely removed
from the property list.

5 Changes

v0.3.0 (2024/04/08)
First public beta release.

v0.5.0 (2024/04/09)
Changed from string token variables to token lists to support Unicode.

v0.5.5 (2024/04/09)
Bug fixes, introduction and enhancement of user functions.

v0.5.6 (2024/04/11)
Bug fixes, escaping of special chars added.

v0.5.7 (2024/04/14)
Bug fixes, key-value option setting added.

v0.6.0 (2024/04/15)
Bug fixes, renaming of several commands.

v0.7.0 (2024/04/18)
Renaming and rearranging of keys, escaping of special JSON escape sequences added.

v0.7.1 (2024/04/20)
Access to first-level keys of object added.

v0.8.0 (2024/04/24)
Internal rewrite, escaping procedures changed.

6

	Introduction
	Loading the package
	Escaping and special treatment of the input
	Main user commands
	Changing separators, output and other settings
	L3 commands

	Changes

