Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Facebook
paulmck @kernel.org

June 11, 2023
Release v2023.06.11a

mailto:paulmck@kernel.org

ii

Legal Statement

This work represents the views of the editor and the authors and does not necessarily
represent the view of their respective employers.

Trademarks:

* IBM, z Systems, and PowerPC are trademarks or registered trademarks of Inter-
national Business Machines Corporation in the United States, other countries, or
both.

* Linux is a registered trademark of Linus Torvalds.

¢ Intel, Itanium, Intel Core, and Intel Xeon are trademarks of Intel Corporation or its
subsidiaries in the United States, other countries, or both.

* Arm is aregistered trademark of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

* SPARC is a registered trademark of SPARC International, Inc. Products bearing
SPARC trademarks are based on an architecture developed by Sun Microsystems,
Inc.

* Other company, product, and service names may be trademarks or service marks
of such companies.

The non-source-code text and images in this document are provided under the terms
of the Creative Commons Attribution-Share Alike 3.0 United States license.! In brief,
you may use the contents of this document for any purpose, personal, commercial, or
otherwise, so long as attribution to the authors is maintained. Likewise, the document
may be modified, and derivative works and translations made available, so long as
such modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL.> Some of this code is
GPLv2-only, as it derives from the Linux kernel, while other code is GPLv2-or-later.
See the comment headers of the individual source files within the CodeSamples directory
in the git archive® for the exact licenses. If you are unsure of the license for a given
code fragment, you should assume GPLv2-only.

Combined work © 2005-2023 by Paul E. McKenney. Each individual contribution is
copyright by its contributor at the time of contribution, as recorded in the git archive.

! https://creativecommons.org/licenses/by-sa/3.0/us/

2 https://www.gnu.org/licenses/gpl-2.0.html

3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.
git

https://creativecommons.org/licenses/by-sa/3.0/us/
https://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book 1
1.1 Roadmap e 2
1.2 Quick Quizzes e e 3
1.3 Alternativesto ThisBook 4
1.4 Sample SourceCode 6
1.5 Whose Book Is This? 6

2 Introduction 9
2.1 Historic Parallel Programming Difficulties 9
2.2 Parallel Programming Goals 11

2.2.1 Performance 12
222 Productivity 13
223 Generality 14
2.3 Alternatives to Parallel Programming 17
2.3.1 Multiple Instances of a Sequential Application 17
2.3.2 Use Existing Parallel Software 18
2.3.3 Performance Optimization 18
2.4 What Makes Parallel Programming Hard? 19
24.1 Work Partitioning L. 20
2.4.2 Parallel Access Control 20
2.4.3 Resource Partitioning and Replication 21
244 Interacting With Hardware 21
245 Composite Capabilities 22
2.4.6 How Do Languages and Environments Assist With These Tasks? 22
25 Discussion 23
3 Hardware and its Habits 25
3.1 Overview . ..o e e 25
3.1.1 PipelinedCPUs 25
3.1.2 Memory References 28
3.1.3 AtomicOperations 29
3.14 MemoryBarriers 30
3.1.5 Thermal Throttling 30
316 CacheMisses. 32
3.1.7 TOOperations 33
32 Overheads L 33
3.2.1 Hardware System Architecture 34
32.2 Costsof Operations oo 35

iii

Hardware Optimizations
Hardware Free Lunch?
3D Integration
Novel Materials and Processes
Light, Not Electrons
Special-Purpose Accelerators
Existing Parallel Software
3.4 Software Design Implications

Tools of the Trade

Scripting Languages
POSIX Multiprocessing
POSIX Process Creation and Destruction
POSIX Thread Creation and Destruction
POSIX Locking
POSIX Reader-Writer Locking
Atomic Operations (GCC Classic)
Atomic Operations (C11)
Atomic Operations (Modern GCC)
Per-Thread Variables
Alternatives to POSIX Operations
Organization and Initialization
Thread Creation, Destruction, and Control

Accessing Shared Variables
Atomic Operations
Per-CPU Variables

Why Isn’t Concurrent Counting Trivial?
5.2 Statistical Counters

Array-Based Implementation
Per-Thread-Variable-Based Implementation
Eventually Consistent Implementation

Approximate Limit Counters

Simple Limit Counter Implementation
Simple Limit Counter Discussion
Approximate Limit Counter Implementation
Approximate Limit Counter Discussion
Exact Limit Counters
Atomic Limit Counter Implementation
Atomic Limit Counter Discussion

Signal-Theft Limit Counter Design
Signal-Theft Limit Counter Implementation
Signal-Theft Limit Counter Discussion
Applying Exact Limit Counters

CONTENTS

CONTENTS

5.5

Parallel Counting Discussion
5.5.1 Parallel Counting Validation
5.5.2 Parallel Counting Performance
5.5.3 Parallel Counting Specializations
5.5.4 Parallel Counting Lessons

6 Partitioning and Synchronization Design

6.1 Partitioning Exercises L.
6.1.1 Dining Philosophers Problem

6.1.2 Double-Ended Queue

6.1.3 Partitioning Example Discussion

6.2 DesignCriteria
6.3 Synchronization Granularity
6.3.1 Sequential Program,

6.3.2 Codelocking,

633 Datalocking.,

6.34 DataOwnership

6.3.5 Locking Granularity and Performance

6.4 Parallel Fastpath L L
6.4.1 Reader/Writer Locking

6.4.2 Hierarchical Locking

6.4.3 Resource Allocator Caches

6.5 Beyond Partitioningo Lo
6.5.1 Work-Queue Parallel Maze Solver

6.5.2 Alternative Parallel Maze Solver

6.5.3 Maze Validation

6.5.4 Performance ComparisonI

6.5.5 Alternative Sequential Maze Solver

6.5.6 Performance ComparisonIl

6.5.7 Future Directions and Conclusions

6.6 Partitioning, Parallelism, and Optimization.

7 Locking

7.1 Staying Alive
7.1.1 Deadlock

7.1.2 Livelock and Starvation

7.1.3 Unfairness

7.1.4 Inefficiency

7.2 TypesofLocks
7.2.1 ExclusiveLocks

7.22 Reader-Writer Locks L.

7.2.3 Beyond Reader-Writer Locks

724 ScopedLocking

7.3 Locking Implementation Issues
7.3.1 Sample Exclusive-Locking Implementation Based on Atomic
Exchange L

7.3.2 Other Exclusive-Locking Implementations

7.4 Lock-Based Existence Guarantees
7.5 Locking: Hero or Villain?

7.5.1 Locking For Applications: Hero!

108
108
109
110
110

113
114
114
117
126
126
129
129
131
132
135
136
139
140
140
141
147
147
150
151
152
155
156
157
158

vi

CONTENTS

7.5.2 Locking For Parallel Libraries: Just Another Tool
7.5.3 Locking For Parallelizing Sequential Libraries: Villain!
7.6 Summary e e

Data Ownership

8.1 Multiple Processes
8.2 Partial Data Ownership and pthreads
8.3 Function Shipping
8.4 Designated Thread
85 Privatization o o o
8.6 Other Uses of DataOwnership

Deferred Processing
9.1 Running Example
9.2 Reference Counting
9.3 Hazard Pointers
94 SequencelLocks
9.5 Read-Copy Update (RCU)
9.5.1 IntroductiontoRCU
9.5.2 RCUFundamentals
9.5.3 RCU Linux-Kernel APT
954 RCUUsage oottt
955 RCURelatedWork
9.6 WhichtoChoose?,
9.6.1 Which to Choose? (Overview)
9.6.2 Which to Choose? (Details)
9.6.3 Which to Choose? (ProductionUse)

10 Data Structures

10.1 Motivating Application
10.2 Partitionable Data Structures
10.2.1 Hash-Table Design
10.2.2 Hash-Table Implementation
10.2.3 Hash-Table Performance
10.3 Read-Mostly Data Structures
10.3.1 RCU-Protected Hash Table Implementation
10.3.2 RCU-Protected Hash Table Validation.
10.3.3 RCU-Protected Hash Table Performance
10.3.4 RCU-Protected Hash Table Discussion
10.4 Non-Partitionable Data Structures
10.4.1 Resizable Hash Table Design
10.4.2 Resizable Hash Table Implementation
10.4.3 Resizable Hash Table Discussion
10.4.4 Other Resizable Hash Tables
10.5 Other Data Structures
10.6 Micro-Optimization
10.6.1 Specialization
10.6.2 BitsandBytes
10.6.3 Hardware Considerations

191
193

195
195
196
197
197
198
198

201
202
204
207
213
218
219
228
238
251
277
281
281
282
285
287

CONTENTS

10.7

Summary e e e

11 Validation

11.1

11.2
11.3
11.4
11.5

11.6

11.7

11.8

Introduction
11.1.1 Where Do Bugs Come From?
11.1.2 Required Mindset
11.1.3 When Should Validation Start?
11.1.4 The Open Source Way
Tracing
ASSEItions e e
Static Analysis
CodeReview
11.5.1 Imspection,
11.5.2 Walkthroughs
11.5.3 Self-Inspection
Probability and Heisenbugs
11.6.1 Statistics for Discrete Testing
11.6.2 Statistics Abuse for Discrete Testing
11.6.3 Statistics for Continuous Testing
11.6.4 Hunting Heisenbugs
Performance Estimation
11.7.1 Benchmarking
11.7.2 Profiling
11.7.3 Differential Profiling
11.7.4 Microbenchmarking
11.7.5 TIsolation
11.7.6 Detecting Interference
Summaryo

12 Formal Verification

12.1

12.2

12.3

12.4
12.5
12.6
12.7

State-Space Search oo
12.1.1 Promelaand Spin,
12.1.2 HowtoUsePromela
12.1.3 Promela Example: Locking
12.1.4 Promela Example: QRCU
12.1.5 Promela Parable: dynticks and Preemptible RCU
12.1.6 Validating Preemptible RCU and dynticks
Special-Purpose State-Space Search L.
12.2.1 Anatomy of a Litmus Test

12.2.3 RunningalLitmusTest
12.2.4 PPCMEM Discussion
Axiomatic Approaches o oL
12.3.1 Axiomatic Approaches and Locking
12.3.2 Axiomatic ApproachesandRCU
SAT Solvers e
Stateless Model Checkers
Summary
Choosing a ValidationPlan

vii

321

323
324
324
325
328
329
330
331
332
333
333
334
334
336
337
339
339
341
346
347
347
348
348
349
350
354

viii

CONTENTS

13 Putting It All Together 421
13.1 Counter Conundrums 421
13.1.1 Counting Updates 421
13.1.2 Counting Lookups 421

13.2 Refurbish Reference Counting 422
13.2.1 Implementation of Reference-Counting Categories 424
13.2.2 Counter Optimizations 428

13.3 Hazard-Pointer Helpers 429
13.3.1 Scalable Reference Count 429
13.3.2 Long-Duration Accesses« v v v v v v v 429

13.4 Sequence-Locking Specials 430
13.4.1 Dueling Sequence Locks 430
13.4.2 Correlated DataElements 430
1343 AtomicMove 431
1344 Upgradeto Writer 433

13.5 RCURescueso ittt 433
13.5.1 RCU and Per-Thread-Variable-Based Statistical Counters . . . 433
13.5.2 RCU and Counters for Removable I/O Devices 436
13.5.3 ArrayandLength 437
13.5.4 Correlated Fields 438
13.5.5 Update-Friendly Traversal 439
13.5.6 Scalable Reference Count Two 439
13.5.7 Retriggered Grace Periods 440
13.5.8 Long-Duration Accesses Two 441

14 Advanced Synchronization 445
14.1 AvoidingLocks 445
14.2 Non-Blocking Synchronization 446
142.1 SimpleNBS 447
14.2.2 Applicability of NBS Benefits 450
14.2.3 NBSDiscussiono....... 454

14.3 Parallel Real-Time Computing 455
14.3.1 Whatis Real-Time Computing? 455
14.3.2 Who Needs Real-Time? 461
14.3.3 Who Needs Parallel Real-Time? 462
14.3.4 Implementing Parallel Real-Time Systems 463
14.3.5 Implementing Parallel Real-Time Operating Systems 465
14.3.6 Implementing Parallel Real-Time Applications 478
14.3.7 Real Time vs. Real Fast: How to Choose? 483

15 Advanced Synchronization: Memory Ordering 485
15.1 Ordering: Why and How? 485
15.1.1 Why Hardware Misordering? 487
15.1.2 How to Force Ordering? 490
15.1.3 BasicRulesof Thumb 492

152 Tricksand Trapso o i e 495
15.2.1 Variables With Multiple Values 495
15.2.2 Memory-Reference Reordering 498
15.2.3 Address Dependencies, 501
15.2.4 DataDependencies 503

CONTENTS

15.2.5 Control Dependencies
152.6 CacheCoherence
15.2.7 Multicopy Atomicityo
15.2.8 A Counter-Intuitive Case Study
15.3 Compile-Time Consternation
15.3.1 Memory-Reference Restrictions
15.3.2 Address- and Data-Dependency Difficulties
15.3.3 Control-Dependency Calamities
15.4 Higher-Level Primitives
15.4.1 Memory Allocation
1542 Locking
1543 RCU
15.4.4 Higher-Level Primitives: Discussion
15.5 Hardware Specifics
1551 Alpha
1552 Armv7-A/R oo
1553 Armv8
1554 Ttanium o
1555 MIPS o
155.6 POWER/PowerPC
15,57 SPARCTSO
1558 X86
1559 zSystems e
15.5.10 Hardware Specifics: Discussion
15.6 Memory-Model Intuitions
15.6.1 Transitive Intuitions
15.6.2 Rulesof Thumb

16 Ease of Use

16.1 Whatis Easy?
16.2 Rusty Scale for APIDesign
16.3 Shaving the Mandelbrot Set

17 Conflicting Visions of the Future

17.1 The Future of CPU Technology Ain’t What it UsedtoBe
17.1.1 Uniprocessor Uber Alles
17.1.2 Multithreaded Mania
17.1.3 MoreoftheSame
17.1.4 Crash Dummies Slamming into the Memory Wall
17.1.5 Astounding Accelerators,

17.2 Transactional Memory
17.2.1 OutsideWorld
17.2.2 Process Modification
17.2.3 Synchronization,
17.24 Discussion

17.3 Hardware Transactional Memory
17.3.1 HTM Benefits WRT Locking
17.3.2 HTM Weaknesses WRT Locking
17.3.3 HTM Weaknesses WRT Locking When Augmented
17.3.4 Where Does HTM Best FitIn?

ix

18

CONTENTS

17.3.5 Potential Game Changers
173.6 Conclusions

17.4.1 Automatic Translation
17.42 Environment
1743 Overhead
1744 Locate Bugs
17.4.5 Minimal Scaffolding
17.4.6 RelevantBugs
17.4.7 Formal Regression Scorecard
17.5 Functional Programming for Parallelism
17.6 Summary

Looking Forward and Back

Important Questions

A.1 Why Aren’t Parallel Programs Always Faster?
A.2 Why Not Remove Locking?
A3 WhatTimeIsIt?,
A.4 What Does “After” Mean?
A.5 How Much Ordering Is Needed?

A.5.3 Isthe Problem Partitionable?
A.54 Noneofthe Above?

“Toy” RCU Implementations

B.1 Lock-BasedRCU
B.2 Per-Thread Lock-BasedRCU
B.3 Simple Counter-Based RCU
B.4 Starvation-Free Counter-Based RCU
B.5 Scalable Counter-BasedRCU
B.6 Scalable Counter-Based RCU With Shared Grace Periods
B.7 RCU Based on Free-Running Counter
B.8 Nestable RCU Based on Free-Running Counter
B.9 RCU Based on Quiescent States
B.10 Summary of Toy RCU Implementations

Why Memory Barriers?

C.1 Cache Structure

C.2 Cache-Coherence Protocols
C2.1 MESIStates
C.2.2 MESI Protocol Messages
C.2.3 MESI State Diagram
C.24 MESIProtocol Example

C.3 Stores Result in Unnecessary Stalls
C3.1 StoreBuffers
C.3.2 Store Forwarding

625

629
629
630
630
632
635
636
637
637
637
638
639

641
641
642
643
644
647
650
652
654
656
659

661

664

CONTENTS
C.3.3 Store Buffers and Memory Barriers
C.4 Store Sequences Result in Unnecessary Stalls
C.4.1 Invalidate Queues
C.4.2 Invalidate Queues and Invalidate Acknowledge
C.4.3 Invalidate Queues and Memory Barriers
C.5 Read and Write Memory Barriers
C.6 Example Memory-Barrier Sequences
C.6.1 Ordering-Hostile Architecture
C.6.2 Examplel
C.6.3 Example2
C.64 Example3
C.7 Are Memory Barriers Forever?
C.8 Advice to Hardware Designers

D Style Guide

D.1 Paul’sConventions
D.2 NIST StyleGuide
D.2.1 UnitSymbol
D.2.2 NIST Guide Yet To Be Followed
D3 KIEX Conventions vt
D.3.1 MonospaceFont oL
D.3.2 Crossreference.
D.3.3 Non Breakable Spaces
D.3.4 Hyphenationand Dashes
D35 Punctuation.
D.3.6 Floating Object Format
D.3.7 Improvement Candidates

E Answers to Quick Quizzes
E.1 HowToUseThisBook
E.2 Introduction
E.3 HardwareanditsHabits.
E4 ToolsoftheTrade
E.5 Counting
E.6 Partitioning and Synchronization Design
E.7 Locking e
E.8 DataOwnership,
E.9 Deferred Processing
E.10 Data Structures e
E.11 Validation
E.12 Formal Verification
E.13 Putting It All Together
E.14 Advanced Synchronization
E.15 Advanced Synchronization: Memory Ordering
E.16 Easeof Use i
E.17 Conflicting Visions of the Future
E.18 Important Questions
E.19 “Toy” RCU Implementations

X1

671
674
674
674
675
678
679
679
680
681
681
682
682

685
685
686
686
688
688
688
695
695
696
697
699
699

Xii CONTENTS

Glossary 881
Bibliography 893
Credits 945
IEX AVISOr o o e 945
Reviewers 945
Machine Owners 946
Original Publications 946
Figure Credits 947
Other Support e 949
Acronyms 951
Index 953

API Index 957

If you would only recognize that life is hard, things
would be so much easier for you.

Louis D. BRANDEIS

Chapter 1

How To Use This Book

The purpose of this book is to help you program shared-memory parallel systems
without risking your sanity.! Nevertheless, you should think of the information in this
book as a foundation on which to build, rather than as a completed cathedral. Your
mission, if you choose to accept, is to help make further progress in the exciting field of
parallel programming—progress that will in time render this book obsolete.

Parallel programming in the 21% century is no longer focused solely on science,
research, and grand-challenge projects. And this is all to the good, because it means
that parallel programming is becoming an engineering discipline. Therefore, as befits
an engineering discipline, this book examines specific parallel-programming tasks and
describes how to approach them. In some surprisingly common cases, these tasks can
be automated.

This book is written in the hope that presenting the engineering discipline underlying
successful parallel-programming projects will free a new generation of parallel hackers
from the need to slowly and painstakingly reinvent old wheels, enabling them to instead
focus their energy and creativity on new frontiers. However, what you get from this
book will be determined by what you put into it. It is hoped that simply reading this
book will be helpful, and that working the Quick Quizzes will be even more helpful.
However, the best results come from applying the techniques taught in this book to
real-life problems. As always, practice makes perfect.

But no matter how you approach it, we sincerely hope that parallel programming
brings you at least as much fun, excitement, and challenge that it has brought to us!

1 Or, perhaps more accurately, without much greater risk to your sanity than that incurred
by non-parallel programming. Which, come to think of it, might not be saying all that much.

2 CHAPTER 1. HOW TO USE THIS BOOK
1.1 Roadmap

Cat: Where are you going?

Alice: Which way should | go?

Cat: That depends on where you are going.
Alice: | don’t know.

Cat: Then it doesn’t matter which way you go.

Lewis CARROLL, ALICE IN WONDERLAND

This book is a handbook of widely applicable and heavily used design techniques, rather
than a collection of optimal algorithms with tiny areas of applicability. You are currently
reading Chapter 1, but you knew that already. Chapter 2 gives a high-level overview of
parallel programming.

Chapter 3 introduces shared-memory parallel hardware. After all, it is difficult to
write good parallel code unless you understand the underlying hardware. Because
hardware constantly evolves, this chapter will always be out of date. We will nevertheless
do our best to keep up. Chapter 4 then provides a very brief overview of common
shared-memory parallel-programming primitives.

Chapter 5 takes an in-depth look at parallelizing one of the simplest problems
imaginable, namely counting. Because almost everyone has an excellent grasp of
counting, this chapter is able to delve into many important parallel-programming issues
without the distractions of more-typical computer-science problems. My impression is
that this chapter has seen the greatest use in parallel-programming coursework.

Chapter 6 introduces a number of design-level methods of addressing the issues
identified in Chapter 5. It turns out that it is important to address parallelism at the
design level when feasible: To paraphrase Dijkstra [Dij68], “retrofitted parallelism
considered grossly suboptimal” [McK12c].

The next three chapters examine three important approaches to synchronization.
Chapter 7 covers locking, which is still not only the workhorse of production-quality
parallel programming, but is also widely considered to be parallel programming’s worst
villain. Chapter 8 gives a brief overview of data ownership, an often overlooked but
remarkably pervasive and powerful approach. Finally, Chapter 9 introduces a number
of deferred-processing mechanisms, including reference counting, hazard pointers,
sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to hash tables, which are heavily
used due to their excellent partitionability, which (usually) leads to excellent performance
and scalability.

As many have learned to their sorrow, parallel programming without validation is a
sure path to abject failure. Chapter 11 covers various forms of testing. It is of course
impossible to test reliability into your program after the fact, so Chapter 12 follows up
with a brief overview of a couple of practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel programming problems. The
difficulty of these problems vary, but should be appropriate for someone who has
mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods, including non-blocking
synchronization and parallel real-time computing, while Chapter 15 covers the advanced
topic of memory ordering. Chapter 16 follows up with some ease-of-use advice. Chap-
ter 17 looks at a few possible future directions, including shared-memory parallel system

1.2. QUICK QUIZZES 3

design, software and hardware transactional memory, and functional programming for
parallelism. Finally, Chapter 18 reviews the material in this book and its origins.

This chapter is followed by a number of appendices. The most popular of these
appears to be Appendix C, which delves even further into memory ordering. Appendix E
contains the answers to the infamous Quick Quizzes, which are discussed in the next
section.

1.2 Quick Quizzes

Undertake something difficult, otherwise you will
never grow.

ABBREVIATED FROM RONALD E. OSBURN

“Quick quizzes” appear throughout this book, and the answers may be found in
Appendix E starting on page 705. Some of them are based on material in which that
quick quiz appears, but others require you to think beyond that section, and, in some
cases, beyond the realm of current knowledge. As with most endeavors, what you get
out of this book is largely determined by what you are willing to put into it. Therefore,
readers who make a genuine effort to solve a quiz before looking at the answer find their
effort repaid handsomely with increased understanding of parallel programming.

[Quick Quiz 1.1: Where are the answers to the Quick Quizzes found? H]

Quick Quiz 1.2: Some of the Quick Quiz questions seem to be from the viewpoint of the
reader rather than the author. Is that really the intent? Wl

[Quick Quiz 1.3: These Quick Quizzes are just not my cup of tea. What can I do about it? .]

In short, if you need a deep understanding of the material, then you should invest
some time into answering the Quick Quizzes. Don’t get me wrong, passively reading
the material can be quite valuable, but gaining full problem-solving capability really
does require that you practice solving problems. Similarly, gaining full code-production
capability really does require that you practice producing code.

Quick Quiz 1.4: If passively reading this book doesn’t get me full problem-solving and
code-production capabilities, what on earth is the point??? W

I learned this the hard way during coursework for my late-in-life Ph.D. I was studying
a familiar topic, and was surprised at how few of the chapter’s exercises I could answer
off the top of my head.> Forcing myself to answer the questions greatly increased
my retention of the material. So with these Quick Quizzes I am not asking you to do
anything that I have not been doing myself.

Finally, the most common learning disability is thinking that you already understand
the material at hand. The quick quizzes can be an extremely effective cure.

2 So I suppose that it was just as well that my professors refused to let me waive that
class!

4 CHAPTER 1. HOW TO USE THIS BOOK

1.3 Alternatives to This Book

Between two evils | always pick the one I never tried
before.

MAE WEST

As Knuth learned the hard way, if you want your book to be finite, it must be focused.
This book focuses on shared-memory parallel programming, with an emphasis on
software that lives near the bottom of the software stack, such as operating-system
kernels, parallel data-management systems, low-level libraries, and the like. The
programming language used by this book is C.

If you are interested in other aspects of parallelism, you might well be better served
by some other book. Fortunately, there are many alternatives available to you:

1. If you prefer a more academic and rigorous treatment of parallel programming,
you might like Herlihy’s and Shavit’s textbook [HS08, HSLS20]. This book starts
with an interesting combination of low-level primitives at high levels of abstraction
from the hardware, and works its way through locking and simple data structures
including lists, queues, hash tables, and counters, culminating with transactional
memory, all in Java. Michael Scott’s textbook [Sco13] approaches similar material
with more of a software-engineering focus, and, as far as I know, is the first formally
published academic textbook with section devoted to RCU.

Herlihy, Shavit, Luchangco, and Spear did catch up in their second edi-
tion [HSLS20] by adding short sections on hazard pointers and on RCU, with the
latter in the guise of EBR.? They also include a brief history of both, albeit with
an abbreviated history of RCU that picks up almost a year after it was accepted
into the Linux kernel and more than 20 years after Kung’s and Lehman’s landmark
paper [KL80]. Those wishing a deeper view of the history may find it in this
book’s Section 9.5.5.

However, readers who might otherwise suspect a hostile attitude towards RCU
on the part of this textbook’s first author should refer to the last full sentence on
the first page of one of his papers [BGHZ16]. This sentence reads “QSBR [a
particular class of RCU implementations] is fast and can be applied to virtually
any data structure.” These are clearly not the words of someone who is hostile
towards RCU.

2. If you would like an academic treatment of parallel programming from a program-
ming-language-pragmatics viewpoint, you might be interested in the concurrency
chapter from Scott’s textbook [Sco06, Scol5] on programming-language pragmat-
ics.

3. If you are interested in an object-oriented patternist treatment of parallel pro-
gramming focussing on C++, you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHSO7]. Volume 4 in particular has some interesting chapters
applying this work to a warehouse application. The realism of this example is
attested to by the section entitled “Partitioning the Big Ball of Mud”, in which

3 Albeit an implementation that contains a reader-preemption bug noted by Richard
Bornat.

1.3.

10.

11.

12.

13.

14.

ALTERNATIVES TO THIS BOOK 5

the problems inherent in parallelism often take a back seat to getting one’s head
around a real-world application.

. If you want to work with Linux-kernel device drivers, then Corbet’s, Rubini’s, and

Kroah-Hartman’s “Linux Device Drivers” [CRKHO5] is indispensable, as is the
Linux Weekly News web site (https://lwn.net/). There is a large number of
books and resources on the more general topic of Linux kernel internals.

. If your primary focus is scientific and technical computing, and you prefer a

patternist approach, you might try Mattson et al.’s textbook [MSMOS5]. It covers
Java, C/C++, OpenMP, and MPI. Its patterns are admirably focused first on design,
then on implementation.

. If your primary focus is scientific and technical computing, and you are interested

in GPUs, CUDA, and MPI, you might check out Norm Matloff’s “Programming
on Parallel Machines” [Mat17]. Of course, the GPU vendors have quite a bit of
additional information [AMD?20, Zell1, NVil7a, NVil7b].

. If you are interested in POSIX Threads, you might take a look at David R. Butenhof’s

book [But97]. In addition, W. Richard Stevens’s book [Ste92, Ste13] covers UNIX
and POSIX, and Stewart Weiss’s lecture notes [Weil 3] provide an thorough and
accessible introduction with a good set of examples.

. If you are interested in C++11, you might like Anthony Williams’s “C++ Concur-

rency in Action: Practical Multithreading” [Will12, Wil19].

If you are interested in C++, but in a Windows environment, you might try Herb
Sutter’s “Effective Concurrency” series in Dr. Dobbs Journal [SutO8]. This series
does a reasonable job of presenting a commonsense approach to parallelism.

If you want to try out Intel Threading Building Blocks, then perhaps James
Reinders’s book [Rei07] is what you are looking for.

Those interested in learning how various types of multi-processor hardware cache
organizations affect the implementation of kernel internals should take a look at
Curt Schimmel’s classic treatment of this subject [Sch94].

If you are looking for a hardware view, Hennessy’s and Patterson’s classic
textbook [HP17, HP11] is well worth a read. A “Readers Digest” version of this
tome geared for scientific and technical workloads (bashing big arrays) may be
found in Andrew Chien’s textbook [Chi22]. If you are looking for an academic
textbook on memory ordering from a more hardware-centric viewpoint, that of
Daniel Sorin et al. [SHW11, NSHW20] is highly recommended. For a memory-
ordering tutorial from a Linux-kernel viewpoint, Paolo Bonzini’s LWN series is a
good place to start [Bon21a, Bon21e, Bon21c, Bon21b, Bon21d, Bon21f{].

Those wishing to learn about the Rust language’s support for low-level concurrency
should refer to Mara Bos’s book [Bos23].

Finally, those using Java might be well-served by Doug Lea’s textbooks [Lea97,
GPB*07].

However, if you are interested in principles of parallel design for low-level software,
especially software written in C, read on!

https://lwn.net/

6 CHAPTER 1. HOW TO USE THIS BOOK

Listing 1.1: Creating an Up-To-Date PDF

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
cd perfbook

You may need to install a font. See item 1 in FAQ.txt.

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-l1c.pdf & # One-column version for e-readers

make help # Display other build options

1.4 Sample Source Code

Use the source, Luke!

UNKNOWN STAR WARS FAN

This book discusses its fair share of source code, and in many cases this source code
may be found in the CodeSamples directory of this book’s git tree. For example, on
UNIX systems, you should be able to type the following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls. c, which is called out in Appendix B.
Non-UNIX systems have their own well-known ways of locating files by filename.

1.5 Whose Book Is This?

If you become a teacher, by your pupils you’ll be
taught.

OscAR HAMMERSTEIN Il

As the cover says, the editor is one Paul E. McKenney. However, the editor does accept
contributions via the perfbook@vger.kernel.org email list. These contributions
can be in pretty much any form, with popular approaches including text emails, patches
against the book’s IZTEX source, and even git pull requests. Use whatever form
works best for you.

To create patches or git pull requests, you will need the I&TEX source to
the book, which is at git://git.kernel.org/pub/scm/linux/kernel/git/
paulmck/perfbook.git, or, alternatively, https://git.kernel.org/pub/scm/
linux/kernel/git/paulmck/perfbook.git. You will of course also need git
and I&TEX, which are available as part of most mainstream Linux distributions. Other
packages may be required, depending on the distribution you use. The required list
of packages for a few popular distributions is listed in the file FAQ-BUILD. txt in the
IXTEX source to the book.

To create and display a current IXTEX source tree of this book, use the list of Linux
commands shown in Listing 1.1. In some environments, the evince command that
displays perfbook.pdf may need to be replaced, for example, with acroread. The
git clone command need only be used the first time you create a PDF, subsequently,
you can run the commands shown in Listing 1.2 to pull in any updates and generate an

mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

1.5. WHOSE BOOK IS THIS? 7

Listing 1.2: Generating an Updated PDF

git remote update

git checkout origin/master

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-1c.pdf & # One-column version for e-readers

updated PDF. The commands in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

PDFs of this book are sporadically posted at https://kernel.org/pub/
linux/kernel/people/paulmck/perfbook/perfbook.html and at http://
www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and sending git pull requests is similar to
that of the Linux kernel, which is documented here: https://www.kernel.org/doc/
html/latest/process/submitting-patches.html. One important requirement
is that each patch (or commit, in the case of a git pull request) must contain a valid
Signed-off-by: line, which has the following format:

Signed-off-by: My Name <myname@example.org>

Please see https://1lkml.org/1lkml/2007/1/15/219 for an example patch with
a Signed-off-by: line. Note well that the Signed-off-by: line has a very specific
meaning, namely that you are certifying that:

(a) The contribution was created in whole or in part by me and I have the right to
submit it under the open source license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my knowledge, is
covered under an appropriate open source license and I have the right under that
license to submit that work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am permitted to submit under
a different license), as indicated in the file; or

(c) The contribution was provided directly to me by some other person who certified
(a), (b) or (¢) and I have not modified it.

(d) I understand and agree that this project and the contribution are public and that
a record of the contribution (including all personal information I submit with
it, including my sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s) involved.

This is quite similar to the Developer’s Certificate of Origin (DCO) 1.1 used by the
Linux kernel. You must use your real name: I unfortunately cannot accept pseudonymous
or anonymous contributions.

The language of this book is American English, however, the open-source nature
of this book permits translations, and I personally encourage them. The open-source
licenses covering this book additionally allow you to sell your translation, if you wish. I
do request that you send me a copy of the translation (hardcopy if available), but this
is a request made as a professional courtesy, and is not in any way a prerequisite to
the permission that you already have under the Creative Commons and GPL licenses.
Please see the FAQ.txt file in the source tree for a list of translations currently in

https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://lkml.org/lkml/2007/1/15/219

8 CHAPTER 1. HOW TO USE THIS BOOK

progress. I consider a translation effort to be “in progress” once at least one chapter has
been fully translated.

There are many styles under the “American English” rubric. The style for this
particular book is documented in Appendix D.

As noted at the beginning of this section, I am this book’s editor. However, if you
choose to contribute, it will be your book as well. In that spirit, I offer you Chapter 2,
our introduction.

If parallel programming is so hard, why are there so
many parallel programs?

UNKNOWN

Chapter 2

Introduction

Parallel programming has earned a reputation as one of the most difficult areas a
hacker can tackle. Papers and textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to scaling, and excessive realtime
latencies. And these perils are quite real; we authors have accumulated uncounted years
of experience along with the resulting emotional scars, grey hairs, and hair loss.

However, new technologies that are difficult to use at introduction invariably become
easier over time. For example, the once-rare ability to drive a car is now commonplace
in many countries. This dramatic change came about for two basic reasons: (1) Cars
became cheaper and more readily available, so that more people had the opportunity to
learn to drive, and (2) Cars became easier to operate due to automatic transmissions,
automatic chokes, automatic starters, greatly improved reliability, and a host of other
technological improvements.

The same is true for many other technologies, including computers. It is no longer
necessary to operate a keypunch in order to program. Spreadsheets allow most non-
programmers to get results from their computers that would have required a team of
specialists a few decades ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has been easily done by untrained,
uneducated people using various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out research project [Eng68], described
at the time as “like a UFO landing on the White House lawn” [Gri00].

Therefore, if you wish to argue that parallel programming will remain as difficult as
it is currently perceived by many to be, it is you who bears the burden of proof, keeping
in mind the many centuries of counter-examples in many fields of endeavor.

2.1 Historic Parallel Programming Difficulties

Not the power to remember, but its very opposite,
the power to forget, is a necessary condition for our
existence.

SHOLEM ASCH

As indicated by its title, this book takes a different approach. Rather than complain
about the difficulty of parallel programming, it instead examines the reasons why

9

10 CHAPTER 2. INTRODUCTION

parallel programming is difficult, and then works to help the reader to overcome these
difficulties. As will be seen, these difficulties have historically fallen into several
categories, including:

1. The historic high cost and relative rarity of parallel systems.

2. The typical researcher’s and practitioner’s lack of experience with parallel systems.
3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering discipline of parallel programming.

5. The high overhead of communication relative to that of processing, even in tightly
coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome. First, over
the past few decades, the cost of parallel systems has decreased from many multiples of
that of a house to that of a modest meal, courtesy of Moore’s Law [Moo65]. Papers
calling out the advantages of multicore CPUs were published as early as 1996 [ONH*96].
IBM introduced simultaneous multi-threading into its high-end POWER family in 2000,
and multicore in 2001. Intel introduced hyperthreading into its commodity Pentium
line in November 2000, and both AMD and Intel introduced dual-core CPUs in 2005.
Sun followed with the multicore/multi-threaded Niagara in late 2005. In fact, by 2008,
it was becoming difficult to find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By 2012, even smartphones were
starting to sport multiple CPUs. By 2020, safety-critical software standards started
addressing concurrency.

Second, the advent of low-cost and readily available multicore systems means that the
once-rare experience of parallel programming is now available to almost all researchers
and practitioners. In fact, parallel systems have long been within the budget of students
and hobbyists. We can therefore expect greatly increased levels of invention and
innovation surrounding parallel systems, and that increased familiarity will over time
make the once prohibitively expensive field of parallel programming much more friendly
and commonplace.

Third, in the 20" century, large systems of highly parallel software were almost
always closely guarded proprietary secrets. In happy contrast, the 21% century has
seen numerous open-source (and thus publicly available) parallel software projects,
including the Linux kernel [Tor03], database systems [Pos08, MS0S8], and message-
passing systems [The08, UniO8a]. This book will draw primarily from the Linux kernel,
but will provide much material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of the 1980s and
1990s were almost all proprietary projects, these projects have seeded other communities
with cadres of developers who understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this book is to present this
engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative to that
of processing, remains largely in force. This difficulty has been receiving increasing
attention during the new millennium. However, according to Stephen Hawking,
the finite speed of light and the atomic nature of matter will limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been in force since the late 1980s,
so that the aforementioned engineering discipline has evolved practical and effective

2.2. PARALLEL PROGRAMMING GOALS 11

strategies for handling it. In addition, hardware designers are increasingly aware of
these issues, so perhaps future hardware will be more friendly to parallel software, as
discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has been known to be exceedingly
hard for many decades. You seem to be hinting that it is not so hard. What sort of game are you
playing? W

However, even though parallel programming might not be as hard as is commonly
advertised, it is often more work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be as easy as sequential programming?

It therefore makes sense to consider alternatives to parallel programming. However,
it is not possible to reasonably consider parallel-programming alternatives without
understanding parallel-programming goals. This topic is addressed in the next section.

2.2 Parallel Programming Goals

If you don’t know where you are going, you will end
up somewhere else.

YocGi BERRA

The three major goals of parallel programming (over and above those of sequential
programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is possible to achieve at best two of
these three goals for any given parallel program. These three goals therefore form the
iron triangle of parallel programming, a triangle upon which overly optimistic hopes all
too often come to grief.!

Quick Quiz 2.3: Oh, really??? What about correctness, maintainability, robustness, and so
on? W

Quick Quiz 2.4: And if correctness, maintainability, and robustness don’t make the list, why
do productivity and generality? W

Quick Quiz 2.5: Given that parallel programs are much harder to prove correct than are
sequential programs, again, shouldn’t correctness really be on the list? H

[Quick Quiz 2.6: What about just having fun? Wl]

Each of these goals is elaborated upon in the following sections.

I Kudos to Michael Wong for naming the iron triangle.

12 CHAPTER 2. INTRODUCTION

10000 7T T T T T 3

%) - m:
a -]
S 1000 | ® -
3 E :
5 100 f =5
> o E
o E + E
o [++]
> 10 + 3
3 +
5 i + +]
=) 1 . =
5 f+]

0.1 | | | | | | | |

L O 1 O W O 1V O W O

N © X &® O © © = =— «

o O O O O © © O o O

— ~— ~— — -— Al Al [eV] A [q\}

Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

2.2.1 Performance

Performance is the primary goal behind most parallel-programming effort. After all, if
performance is not a concern, why not do yourself a favor: Just write sequential code,
and be happy? It will very likely be easier and you will probably get done much more
quickly.

Quick Quiz 2.7: Are there no cases where parallel programming is about something other
than performance? W

Note that “performance” is interpreted broadly here, including for example scalability
(performance per CPU) and efficiency (performance per watt).

That said, the focus of performance has shifted from hardware to parallel software.
This change in focus is due to the fact that, although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the traditional single-threaded
performance increases. This can be seen in Figure 2.1,> which shows that writing
single-threaded code and simply waiting a year or two for the CPUs to catch up may
no longer be an option. Given the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is the way to go for those wanting
to avail themselves of the full performance of their systems.

Quick Quiz 2.8: Why not instead rewrite programs from inefficient scripting languages to C
orC++? H

Even so, the first goal is performance rather than scalability, especially given that the
easiest way to attain linear scalability is to reduce the performance of each CPU [Tor01].

2 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one
or more instructions per clock, and MIPS (millions of instructions per second, usually from
the old Dhrystone benchmark) for older CPUs requiring multiple clocks to execute even the
simplest instruction. The reason for shifting between these two measures is that the newer
CPUS’ ability to retire multiple instructions per clock is typically limited by memory-system
performance. Furthermore, the benchmarks commonly used on the older CPUs are obsolete,
and it is difficult to run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

2.2. PARALLEL PROGRAMMING GOALS 13

Given a four-CPU system, which would you prefer? A program that provides 100
transactions per second on a single CPU, but does not scale at all? Or a program that
provides 10 transactions per second on a single CPU, but scales perfectly? The first
program seems like a better bet, though the answer might change if you happened to
have a 32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and of itself
areason to use them all, especially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel programming is primarily a
performance optimization, and, as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no reason to optimize, either by
parallelizing it or by applying any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to the best
sequential algorithms. This may require some care, as far too many publications ignore
the sequential case when analyzing the performance of parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.9: Why all this prattling on about non-technical issues??? And not just any
non-technical issue, but productivity of all things? Who cares? H

Productivity has been becoming increasingly important in recent decades. To see
this, consider that the price of early computers was tens of millions of dollars at a time
when engineering salaries were but a few thousand dollars a year. If dedicating a team
of ten engineers to such a machine would improve its performance, even by only 10 %,
then their salaries would be repaid many times over.

One such machine was the CSIRAC, the oldest still-intact stored-program computer,
which was put into operation in 1949 [Mus04, Dep06]. Because this machine was built
before the transistor era, it was constructed of 2,000 vacuum tubes, ran with a clock
frequency of 1 kHz, consumed 30kW of power, and weighed more than three metric
tons. Given that this machine had but 768 words of RAM, it is safe to say that it did
not suffer from the productivity issues that often plague today’s large-scale software
projects.

Today, it would be quite difficult to purchase a machine with so little computing
power. Perhaps the closest equivalents are 8-bit embedded microprocessors exemplified
by the venerable Z80 [Wik08], but even the old Z80 had a CPU clock frequency more
than 1,000 times faster than the CSIRAC. The Z80 CPU had 8,500 transistors, and
could be purchased in 2008 for less than $2 US per unit in 1,000-unit quantities. In
stark contrast to the CSIRAC, software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be seen in
Figure 2.2. This figure plots an approximation to computational power per die over the
past four decades, showing an impressive six-order-of-magnitude increase over a period
of forty years. Note that the advent of multicore CPUs has permitted this increase to
continue apace despite the clock-frequency wall encountered in 2003, albeit courtesy of
dies supporting more than 50 hardware threads each.

3 Of course, if you are a hobbyist whose primary interest is writing parallel software,
that is more than enough reason to parallelize whatever softwar